=02
5o

L
#
O
€

=

1

fafm

SR

A

ilog
Heucit

|)JTuiellSystem Design with SystemVerilog

SystemVer
P2

u

Mark Zwolinski

[E] 4 o, F 15 & & 3 1 (R BT RO

Digital System Design with SystemVerilog

SystemVerilog #=F & %1% 1T

Mark Zwolinski

A B & K i

& =

E<F:01-2012-2732

B E T

SystemVerilog 2 21 tt @M FERITHSHEBHRERMEFTZ— AN ERRIHT MR
R TREZ LG A WEEFE. A HEH SystemVerilog 7 FH B H RIEHF AL
BEAMAMAAT . B EEARFERNERM L, B3R 7 MM SystemVerilog #4 B3 &
Bt LR RYE , LA BB AT SystemVerilog # @RI & Xt BT RAE .

AEHEAER T AT RN L LARERNFRENHEH B, LECELER
Verilog 1 VHDL {45558 5 B TR .

Original edition, entitled DIGITAL SYSTEM DESIGN WITH SYSTEMVERILOG, 1E,
9780137045792 by ZWOLINSKI, MARK, published by Pearson Education, Inc, publishing as
Prentice Hall, Copyright © 2010 Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording or by any information
storage retrieval system, without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD. ,and CHINA SCIENCE
PUBLISHING & MEDIA LTD. (SCIENCE PRESS) Copyright © 2012

FEANETHFEAMBR AEE 68 . T 5HITHX).,

B B4 B (CIP) ¥R

SystemVerilog B & 8118 11 =Digital System Design with SystemVerilog: %
X/ (F) L5 (Mark Z) 4. —ZHIM. —JbI - BHeg i AL, 2012

(E5h e FE B RED

ISBN: 978-7-03-034380-2

1.8 0.5 ML.EFRERHERIT-HL N.TP271

Hh [A T 5 4E CIP S B (2012) 58 103154 5

RERF:RT KT / FEFH KA/ HBE - BHR

4“4 4 4 B 8 K
EFREBRAS 16 5
WL S . 100717
http://www.sciencep.com

§& P AU 184 126 & ERI
Bl it 21T SHFE-BESY

20124F 6 A% — J JFAR. 787X1092 1/16
2012 4F 6 HSE—KEDR] EPSK: 25
=¥ 551 000
EHr: 80.00 7T
(RN Ep SR B () A, AL 0 T3

(BSBRFERBERIZIMEF

20 42 90 EALLISK, (FEMEBARBAMAZFHFTESE,
W& LT eRkiumt—5 kR, UIMABT. HEYL. BEMMEREAR
AREHEEEAR, AN HSNBERERERR, BEER
R, MAERSTAREEAR. FEEAMERTH THBRT. HE
Pl @5, R, BRESLKAR, e T AP bR, 68
W BEMREBFEARTWMBRK . FE KR RAF A2
SYIRAET . XUHLHBEAERALEZME, BREHFE - MEEK
SEEA. BRZESIMRBKIHEERG. EPE, FR™LE
EREFRBT EERXERENMWA, BHHREFEEIE .
R, FENEEPEIREARR B IERE, FEHERELLFL
BIERHIKF, B, RERRRE SRR ORIy 3 8 1 8 B
KF.

EFRENFEERAEF R RER, FERZET/EEM TR
ARANBATHRFERSBE . Boh, RATENE W AR TEE M TR
BARARQIEEANTRBHAEE, MEXHEBHARM R SRE
B, KHhdassSE BRI E 5 H R TIE,

MHRRRIAESE, RTRERMH D RES B 2R R
Rob, IR BRI R KA BB, BATH, BESMHT
FEESIHBIERN, RAEF PSRRI AR E S HE S
R, REEREREEENR . Pod it g #—#E M4 d iR
MIRFESE, ERENSEEERNT KB TAEEMIRERAR
REABMIREI A ISR, X FHESh B ES BB AR SRR S8 ¥ 2+
S I

SR RAE AR ZAE R T X B R ER b, 28 REWIE.
framgtit, LG8 T /IR 30 ARSMRA, KK EWAS AT, H—
REEMBICEE, B KRR TR AT HEREE, A RNEREY
R A5 BOEAIBRH BUR , KREHOR 2005 FJ5 AR, SR “BRE.

WEH . SR, RSB LEEIT B2 R — T #ET
TR

MR, X R RIS B R RAR A, BT TAEE
PIZAESE T %, W T —SEEEES . WAFR. BERRZ iR
PL B SCHIAR, XA R T AR R e 3. RInE, R
B REHF R MR, URSEREENS K BRI

B2, BXTRLEHALE ESMR X — 2 R UM X,

X — TARBUR BB K ALSH .

T E R T
FE TR L
2006 £ 12 A

Preface

About This Book

When Digital System Design with VHDL was published, the idea of combining a
text on digital design with one on a hardware description language seemed novel.
At about the same time, several other books with similar themes were published.
Digital System Design with VHDL has now been adopted by several universities as a
core text and has been translated into Polish, Chinese, Japanese, and Italian. I had
thought about writing Digital System Design with Verilog, but I had (and still have)
some doubts about using Verilog as a teaching language despite its widespread use.
Soon after the second edition of Digztal Systems Design with VHDL was published, a
new hardware description language appeared—SystemVerilog. This new language
temoved many of my doubts about Verilog and even offered some noticeable ad-
vantages over VHDL. So the success of the first book and the appearance of the
new language convinced me that the time had come for a new edition.

This book is intended as a student textbook for both undergraduate and post-
graduate students. The majority of Verilog and System Verilog books are aimed at
practicing engineers. Therefore, some features of SystemVerilog are not described
at all in this book. Equally, aspects of digital design are covered that would not be
included in a typical SystemVerilog book.

Syllabuses for electrical, electronic, and computer engineering degrees vary
between countries and between universities or colleges. The material in this book
has been developed over a number of years for second- and third-year undergradu-
ates and for postgraduate students. It is assumed that students will be familiar with
the principles of Boolean algebra and combinational logic design. At the University
of Southampton, UK, the first-year undergraduate syllabus also includes introduc-
tions to synchronous sequential design and programmable logic. This book there-
fore builds upon these foundations. It has often been assumed that topics such as
SystemVerilog are too specialized for second-year teaching and are best left to final
year or postgraduate courses. There are several good reasons why SystemVerilog

xvii

xviii Preface

should be introduced eatlier into the curriculum. With increasing integrated circuit
complexity, there is a need for graduates with knowledge of SystemVerilog and the
associated design tools. If left to the final year, there is little or no time for the
student to apply such knowledge in project work. Second, conversations with col-
leagues from many countries suggest that today’s students are opting for computer
science or computer engineering courses in preference to electrical or electronic
engineering. SystemVerilog offers a means to interest computing-oriented students
in hardware design. Finally, simulation and synthesis tools and FPGA design kits
are now mature and available relatively inexpensively to educational establishments
on PC platforms.

Structure of This Book

Chapter 1 introduces the ideas behind this book, namely the use of electronic design
automation tools and CMOS and programmable logic technology. We also consider
some engineering problems, such as noise margins and fan-out. In Chapter 2, the
principles of Boolean algebra and combinational logic design are reviewed. The
important matter of timing and the associated problem of hazards are discussed.
Some basic techniques for representing data are discussed.

SystemVerilog is introduced in Chapter 3 through basic logic gate models. The
importance of documented code is emphasized. We show how to construct netlists
of basic gates and how to model delays through gates. We also discuss parameter-
ized models. The idea of using SystemVerilog to verify models with testbenches is
introduced.

In Chapter 4, a variety of modeling techniques are described. Combinational
building blocks, buffers, decoders, encoders, multiplexers, adders, and parity check-
ers are modeled using a range of concurrent and sequential SystemVerilog coding
constructs. The SystemVerilog models of hardware introduced in this chapter and in
Chapters 5, 6, and 7 are, in principle, synthesizable, although discussion of exactly
what is supported is deferred until Chapter 10. Testbench design styles are again
discussed in Chapter 4. In addition, the IEEE dependency notation is introduced.

Chapter 5 introduces various sequential building blocks: latches, flip-flops, reg-
isters, counters, memory, and a sequential multiplier. The same style as Chapter 4
is used, with JEEE dependency notation, testbench design, and the introduction of
SystemVerilog coding constructs.

Chapter 6 is probably the most important chapter of the book and discusses
what might be considered the cornerstone of digital design: the design of finite state
machines. The ASM chart notation is used. The design process from ASM chart to

Preface

D flip-flops and next state and output logic is described. SystemVerilog models of
state machines are introduced.

In Chapter 7, the concepts of the previous three chapters are combined. The
ASM chart notation is extended to include coupled state machines and registered
outputs, and hence to datapath-controller partitioning. From this, we explain the
idea of instructions in hardware terms and go on to model a very basic micro-
processor in SystemVerilog. This provides a vehicle to introduce interfaces and
packages.

The design of testbenches is discussed in more detail in Chapter 8. After re-
capping the techniques given in earlier chapters, we go on to discuss testbench
architecture, constrained random test generation, and assertion-based verification.

SystemVerilog remains primarily a modeling language. Chapter 9 describes the
operation of a SystemVerilog simulator. The idea of event-driven simulation is first
explained, and the specific features of a SystemVerilog simulator are then discussed.

The other, increasingly important, role of SystemVerilog is as a language for
describing synthesis models, as discussed in Chapter 10. The dominant type of
synthesis tool available today is for RTL synthesis. Such tools can infer the existence
of flip-flops and latches from a SystemVerilog model. These constructs are described.
Conversely, flip-flops can be created in etror if the description is poorly written,
and common pitfalls are described. The synthesis process can be controlled by
constraints. Because these constraints are outside of the language, they are discussed
in general terms. Suitable constructs for FPGA synthesis are discussed. Finally,
behavioral synthesis, which promises to become an important design technology, is
briefly examined.

Chapters 11 and 12 are devoted to the topics of testing and design for test. This
area has often been neglected, but is now recognized as being an important part of
the design process. In Chapter 11, the idea of fault modeling is introduced. This is
followed by test generation methods. The efficacy of a test can be determined by
fault simulation.

In Chapter 12, three important design-for-test principles are described: scan
path, built-in self-test (BIST), and boundary scan. This has always been a very dry
subject, but a SystemVerilog simulator can be used, for example, to show how a
BIST structure can generate different signatures for fault-free and faulty circuits.

We use SystemVerilog as a tool for exploring anomalous behavior in asyn-
chronous sequential circuits in Chapter 13. Although the predominant design style
is currently synchronous, it is likely that digital systems will increasingly consist
of synchronous circuits communicating asynchronously with each other. We intro-
duce the concept of the fundamental mode and show how to analyze and design

XX Preface

asynchronous circuits. We use SystemVerilog simulations to illustrate the problems
of hazards, races, and setup and hold time violations. We also discuss the problem
of metastability.

The final chapter introduces Verilog-AMS and mixed-signal modeling. Brief
descriptions of digital-to-analog converters (DACs) and analog-to-digital converters
(ADCs) are given. Verilog-AMS constructs to model such converters are given. We
also introduce the idea of a phase-locked loop (PLL) here and give a simple mixed-
signal model.

The Appendix briefly describes how SystemVerilog differs from earlier versions
of Verilog.

At the end of each chapter a number of exercises have been included. These
exercises are almost secondary to the implicit instruction in each chapter to sim-
ulate and, where appropriate, synthesize each SystemVerilog example. To perform
these simulation and synthesis tasks, the reader may have to write his or her
own testbenches and constraints files. The examples are available on the Web at
zwolinski.org.

How to Use This Book

Obviously, this book can be used in a number of different ways, depending on the
level of the course. At the University of Southampton, I have been using the material
as follows.

Second Year of MEng/BEng in Electronic Engineering

Chapters 1 and 2 are review material, which the students would be expected to read
independently. Lectures then cover the material of Chapters 3 through 7. Some of
this material can be considered optional, such as Sections 5.3 and 5.7. Additionally,
some constructs could be omitted if time is limited. The single-stuck fault model of
Section 11.2 and the principles of test pattern generation in Section 11.3, together
with the principles of scan design in Section 12.2, would also be covered in lectures.

Third Year of MEng/BEng in Electronic Engineering

Students would be expected to independently re-read Chapters 4 to 7. Lectures
would cover Chapters 8 to 13. Verilog-AMS, Chapter 14, is currently covered in a
fourth-year module.

In all years, students need to have access to a SystemVerilog simulator and an
RTL synthesis tool in order to use the examples in the text. In the second year, a group

Preface

design exercise involving synthesis to an FPGA would be an excellent supplement
to the material. In the third year at Southampton, all students do an individual
project. Some of the individual projects will involve the use of SystemVerilog,

Web Resources

A Web site accompanies Digital System Design with SystemVerilog by Mark
Zwolinski. Visit the site at zwolinski.org. Here you will find valuable teaching and
learning material including all the SystemVerilog examples and links to sites with
SystemVerilog tools.

Acknowledgments

I would like to thank all those who pointed out errors in the VHDL versions of
this book.

I would also like to thank everyone involved in the commissioning and prepa-
ration of this book: Bernard Goodwin and Elizabeth Ryan at Prentice Hall, Madhu
Bhardwaj and Ben Kolstad at Glyph International, Susan Fox-Greenberg, who copy
edited the text, Danielle Shaw for proof-reading, and Jack Lewis for indexing. Any
errors are, however, my fault and not theirs!

Finally, I would like to thank several cohorts of students to whom I have deliv-
ered this material and whose comments have encouraged me to think about better
ways of explaining these ideas.

xxiii

About the Author

Mark Zwolinski is a full professor in the School
of Electronics and Computer Science, Univer-
sity of Southampton, United Kingdom. He is
the author of Digital System Design with VHDL,
which has been translated into four languages
and widely adopted as a textbook in universities
worldwide. He has published over 120 refereed
papers in technical journals and has been teach-
ing digital design and design automation to un-
dergraduate and graduate students for twenty
years,

Contents

List of Figures ix

List of Tables xv
Preface xvii
Acknowledgments xxiit
About the Author xxv

1. Introduction 1
1.1 Moderm Digital Design 1
1.2 Designing with Hardware Description Languages
1.2.1 Design Automation 2
1.2.2 What is SystemVerilog? 2
1.2.3 Whatis VHDL? 3
1.2.4 Simulation 3
1.2.5 Synthesis 4
1.2.6 Reusability 4
1.2.7 Verification 5
1.2.8 Design Flow 6
13 CMOS Technology 8
1.3.1 Logic Gates 8
1.3.2 ASICs and FPGAs 10
1.4 Programmable Logic 16

1.5 Electrical Properties 19
1.5.1 Noise Margins 19
152 Fan-Out 20

Summary 22
Further Reading 22
Exercises 23

ii

2. Combinational Logic Design 25

2.1

2.2
23

24
25

Boolean Algebra 25
2.1.1 Values 25

2.1.2 Operators 25
2.1.3 Truth Tables 26

2.1.4 Rules of Boolean Algebra

2.1.5 De Morgan’s Law 28

Contents

28

2.1.6 Shannon’s Expansion Theorem 29

Logic Gates 29
Combinational Logic Design

2.3.1 Logic Minimization 32

2.3.2 Karnaugh Maps 33
Timing 37

Number Codes 40

2.5.1 Integers 40

2.5.2 Fixed Point Numbers
2.5.3 Floating Point Numbers

2.5.4 Alphanumeric Characters

25.5 GrayCodes 42
2.5.6 Parity Bits 43

Summary 43
Further Reading 44
Exercises 44

30

41

42

3. Combinational Logic Using SystemVerilog Gate Models 47

31
32
3.3
34
35
3.6

Modules and Files 47

Identifiers, Spaces, and Comments 48

Basic Gate Models 50
A Simple Netlist 51
Logic Values 52

Continuous Assignments 52
3.6.1 SystemVerilog Operators

3.7 Delays 53
3.8 Parameters 56
3.9 Testbenches 56
Summary 58

Further Reading 58

Exercises 58

52

Contents

4. Combinational Building Blocks 61

4.1

4.2

43

44

4.5
4.6

4.7

Multiplexers 61

4.1.1 2to 1 Multiplexer 61

4.1.2 4 to 1 Multiplexer 63

Decoders 63

4.2.1 2to4 Decoder 63

422 Parameterizable Decoder 65
4.2.3 Seven-Segment Decoder 66
Priority Encoder 68

4.3.1 Don’t Cares and Uniqueness 68
Adders 69

4.4.1 Functional Model 69

4.4.2 Ripple Adder 70

443 Tasks 71

Parity Checker 72

Three-State Buffers 73

4.6.1 Multi-Valued Logic 73
Testbenches for Combinational Blocks 74

Summary 76
Further Reading 76
Exercises 76

5. SystemVerilog Models of Sequential Logic Blocks 79

5.1

5.2

53
54

55

Latches 79

5.1.1 SRLatch 79

5.12 DLatch 81

Flip-Flops 82

5.2.1 Edge-Triggered D Flip-Flop ~ 82
5.2.2 Asynchronous Set and Reset 82
5.2.3 Synchronous Set and Reset and Clock Enable
JK and T Flip-Flops 86

Registets and Shift Registers 88

5.4.1 Multiple Bit Register 88

5.4.2 Shift Registers 88

Counters 90

5.5.1 Binary Counter 90

5.5.2 Johnson Counter 93

5.5.3 Linear Feedback Shift Register 95

84

iii

iv

5.6 Memory 97
56.1 ROM 98
5.6.2 SRAM 98
5.6.3 Synchronous RAM 99
5.7 Sequential Multiplier =~ 100
5.8 Testbenches for Sequential Building Blocks
5.8.1 Clock Generation 102
5.8.2 Reset and Other Deterministic Signals
5.8.3 Checking Responses 104
Summary 106
Further Reading 106

Exercises 106

6. Synchronous Sequential Design 109

6.1 Synchronous Sequential Systems 109
6.2 Models of Synchronous Sequential Systems
6.2.1 Moore and Mealy Machines 110
6.2.2 State Registers 110
6.2.3 Design of a Three-Bit Counter 112
6.3 Algorithmic State Machines 114
6.4 Synthesis from ASM Charts 119
6.4.1 Hardware Implementation 119
6.4.2 State Assignment 121
6.4.3 State Minimization 125
6.5 State Machines in SystemVerilog 129
6.5.1 A First Example 129
6.5.2 A Sequential Parity Detector 132
6.5.3 Vending Machine 133
6.5.4 Storing Data 135
6.6 Testbenches for State Machines 137
Summary 138
Further Reading 138
Exercises 138

7. Complex Sequential Systems 143

7.1 Linked State Machines 143

7.2 Datapath/Controller Partitioning 147
7.3 Instructions 150

7.4 A Simple Microprocessor 151

102

104

110

7.5 SystemVerilog Model of a Simple Microprocessor

156

Contents

Contents

Summary 165
Further Reading 165
Exercises 165

8. Writing Testbenches 167

10.

8.1 Basic Testbenches 168
8.1.1 Clock Generation 169
8.1.2 Reset and Other Deterministic Signals 169
8.1.3 Monitoring Responses 169
8.1.4 Dumping Responses 169
8.1.5 Test Vectors from a File 170

8.2 Testbench Structure 170
82.1 Programs 172

8.3 Constrained Random Stimulus Generation 174
8.3.1 Object-Oriented Programming 174
8.3.2 Randomization 176

8.4 Assertion-Based Verification 178

Summary 182

Further Reading 183

Exercises 183

. SystemVerilog Simulation 185

9.1 Event-Driven Simulation 185
9.2 SystemVerilog Simulation 189

93 Races 192
9.3.1 Avoiding Races 193

9.4 Delay Models 194
9.5 Simulator Tools 195
Summary 196
Further Reading 196
Exercises 196

SystemVerilog Synthesis 199

10.1 RTL Synthesis 200
10.1.1 Non-Synthesizable SystemVerilog 201
10.1.2 Inferred Flip-Flops and Latches 202
10.1.3 Combinational Logic = 206
10.1.4 Summary of RTL Synthesis Rules 210
10.2 Constraints 210
10.2.1 Attributes 211

