TRiNG BIRRIE TSN Z R 3

wEeR

B SedgewickZBZE, 55 MNTAOCP—XAEH
D NHEIRIETT, RAREIGHHEP
) SRETEERRUAERENS0fPEE

PEARSON

Ay Algorithms rourth Edicion

(FE3ChR - 4Nk)

Robert Sedgewick
Kevin Wayne

ot

[X]

B H {1 R AL

POSTS & TELECOM PRESS

A\

[ESRETENN2 R

‘\ Algorithms rourth Edition
(PEChiR - B840)

Robert Sedgewick
[X] Kevin Wayne &

A R HE B R A
it =

EHEMRHKE (C1P) BiE

vk . #48R% = Algorithms, Fourth Edition : &
X/ (3E) EZEL (Sedgewick,R.) , () FBA
(Wayne, K.) . — dbxt . ARBEHE AR, 2012.3
(E R FERRHEAEZE RS
ISBN 978-7-115-27146-4

[. O 1I. O @F- . OBEHNEE—
HX IV. OTP301.6

o A P B TR C TP % (2011) 352585005
nmERE
APENERGRERSES, 2ENA T R TREMBARSEWOLEEIR, IR
FEXTHERF . R, EAEMFARTRLIHET TIeR. 56 4 WAL TEAERF RN NS
9 50 M, $RAE T SEBRRES, 1 ELX L Java fRASSEBUR T HBIL ARG, EETTLL
TIERMLIBGE . ABEEMGREE T A4 A RELE 2RI, MREdE. 4.
Sl S
AAGE A AERFEEM BN E S E .
B R R LR R 5
Bk (ZE3ChR - B4R)
* 5 [3€] Robert Sedgewick Kevin Wayne
TEHRE K O#
PATHREE BEE
& NRHPHL AL URAT desmiise X 4 BB 145

k% 100061 HLFHRM: 315@ptpress.com.cn
M4k http://www.ptpress.com.cn

LR B ik BRI A BR 2 R E
& FEA: 787X1092 1/24

Efgk: 40.33
FH: 966 T F 20124E3 H 4 1 hR
Ep¥: 1-2 500t 20124E3 H 46 1 YRENR

EEAERIZIES EF: 01-2011-78035
ISBN 978-7-115-27146-4
FEH: 99.007C
EEREHL: (010)5109518655604 ENEFREHLZ: (01067129223
BB (010)67171154

hiX X 7= BA

Original edition, entitled Algorithms, Fourth Edition, 9780321573513 by Robert
Sedgewick, Kevin Wayne, published by Pearson Education, Inc., publishing as Addison
Wesley, Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording or by
any information storage retrieval system, without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD. and POSTS &
TELECOM PRESS Copyright © 2012.

This edition is manufactured in the People’s Republic of China, and is authorized for

sale only in the People’s Republic of China excluding Hong Kong, Macao and Taiwan.

A 459 3 it i Pearson Education Asia Ltd B2AUN R HRE H At ph 8 . R&
WE B, ARUMEA T RE SR EABHE.

{URTF A ANRILIERPN GE. IR TBIX M SIS ERIN) 858 %47

A A5 EHTH Wi Pearson Education (BFAEHE HARERD BOGRIIRE, ThR%
BEAEHE. REUTA, B

L dk 2 Adam. Andrew. Brett. Robbie, 4% %] &4 Linda.

Robert Sedgewick
#k 4 JackieFr Alex.

—XKevin Wayne

el

d

T}

AA 1 BTG Y 4 B A TS
BRI R — S R B B BB 4R AT K
RAFE . EEEHETH IR BN 2
F, B2 TR R G ER
THRARBER R A . ABBATHT
A, BUREATFRARMSE TN,
RG4S T F 2 SERRE IR 5
P T ENTR R SR . XA H
BT iz, RESERZIRBAT
#Ht o

HikAedp B LE M0 F 3] RETEIHTE
VLRt FH =T RIRBEAL, BEHARE
X BT RN RBAEA M (R
R E A B EIREETEE
PR— LBl RE AR DB R HUAR Y (], A
B FIENAR TS0k KRBT
BIR R, —ANT LA L&A,
B B NS) B o3 1 AR o
IR RS AR, BT R B A Ty
EXBHER R B RS AR R

R RGRIEL T, XERRE
ZN TRSUER HER M TH,; A
EERGDERMERG %, FEE R
ABAEA R G A AT SR — 3843
AR FME , FiE AL
GUBHIAWHY 7K, X LERERE 5 ¥ 5
AR K,

FETT I~ X SR A EL 2 T, 3
MEEAB2HPE2HEIRER .. B
SRR BHERAL . RIERATH
WHEFEHER? . R . BRIP4 807 H Y
HER . R — B R UL AL
HEBHINA,

ThEFZ Ak

ABEATHITA LHMMER R,
B F ZRE LM, IR
T REMXNES, EHEIZEAE
DESMITRISE T, IR
Eflle ARERRRY LTI TTH.

vi B

bl

Stk BRARIEN R, I
PHE TRFEZ G LE PR, B
AR AR S AT LAE AT iR T JE AR
i, HEAEHETRAMLEH, Brhiy
M availi SR E Y, (HH G ER KUk 5
{2 (L A A S AR = 1
YRR A R SE B R B0 o

A EA RAOERIEMS FRA
T IARGRFRINES , B EHiE 25+ A5kt
%;EET_‘EO

B AR R TR B AR
FSCHAE R R 5, X ey 5 £ Fif
ZrE, RIS 0 TAEYF . 3
BHLS RR TR, ULRITARN %
P FEAR A 548 R

FAME AR EE R
BURAM R LBOPERE . FRAT AR T
FRITERE, RS E LRI BT
PP A Y T

ST ARIRHE T AR SR
KR, HERPSE . ERE. BT
LB, FATEREHTHE H BT R
T (NI R7 S 4 (W E B g) 2
B KR 2 20 THE 22 604F X AR A 22 i
Ti ik A B A5 7 A BT T o

HATH EZ Bhr RS R IREE R
THREN BRI THE) 2 B, X
WAL — B AR, 20T A
AR R LARIA . BRI /Y8
fRRBE SIS NS WAL . BAEENT, 21
EITRRE . RPN
AR SEATTRER o

AP Wk

ABH— AR TR E M algsd.
cs.princeton.edu, X — 3 [[a] () 2 2
i, FEMEWAL, B8 TRTHE
ARSI EF IR, RT3k,

—AERKNA BEFTARBARNG
FFEHRAE T B, WSR2 8,

R T BRASY AT
PfEx BRE|, HHEXERHTRF
Tk MeAh, BEFEF LN HAL S,
BN B A SE R A5 b R O) S
B, Ay R B R LA R A
M2 PR FRATTAY SR FH LS
N FHER B

AMEEE MU RREE T — e
IR (R 2 — Ul {5 T SRR
BR) | RESFENMHBBIT . %
> VB SR UL B — AT PRSP e

ST FHRIER, (HRLE
WEHY, e ELFEA 5850 F I EDE 28R
TERMINHIBOR

RARICAT AL S A R N
X —BELT R, DA — RS i
Pl B . MREE A IR T

EES N k=T O TR PN i
e, SRR R 23 SRR R
) BB HAB T IR

Tl A B SRR E RN
— BRI, IR TR — K S A
B SR A BN B AER R, Jf
TR AR 092 5 SR TE L A 4R
FEEEAEL,

1EAH 4

A AR EL VBB
B XA LN E, JFRELE
A FE T B RS AR AN A)
RUETTTIRE ST o — R UL, AT
—IHHEI T ER e RRERER, R
TRGE— TR R = TR Gt
HHLRG, SARRERE B EA

B IRA AT H JavaSE IR AL g0

Z54E, AE AR XS (A5 B H A B
AR H I AMRER M, ROTTEAFA

i

HI vii
TlavafydhptE (WEZA) |, HASL
MR 138 = A 1R

i B B 22 OB AR A e
AP (DA) , R
BABIHATEMERKZHFR, R
AT — B BCF IR Y RS 4. B
SRR A HABF R SR N 2, [FRIRE
TR ZERENA,

AW KN BRI E & T
HOLBLE BRI, BEFELIM
AT R BERR RN, OF ELX AT R
Bt Bes sl TR ARG E A+
HPME.

BRITA

XA AR T — A SER
(lavaf&fFisit: —FEEFR L) |
BBAS A5 XF LA T HEFR TEAN 47 -
X P A5 A Sk v AR 3 =22 101
THEMEEATTIREE B, a4
£ ARBL . TR SR E P figg o
TH5) R AL 00 25 B LA L

ARAS KK H Sedgewick (137
ZHBEE., AR L, ABAZRIIHL
WSS 2R IRART, (HIR & TR 247
HEAMZEI A, Sedgewickfl) CHLB:
(5E3RR)) . (C+E0E CE3R)) . (JavaBE:

viii B

i

% (B3W)) EEA S HEER
FIRRHEM, MABNREL TR
—. ARG —EEM, B
BT THERMLE S E A,

Bt

AFHGE L T IT404FERS], PRIAR
B——SHTAES 5 ARATREN . A$
HIRTJLIR—HFH T LA, Hba
& (FFHEEF) Andrew Appel., Trina
Avery. MarcBrown, LynDupré. Philippe
Flajolet, TomFreeman, DaveHanson, Janet
Incerpi. Mike Schidlowsky . Steve Summit
HChris Van Wyk, FRERIFIHA A,
SRAEH A L6\ B ST EE # 2L 48
Hio ZETHAR, RATERHHIH T A

R B PRI B H At B A B B 44
FHE, DARGE A AR Wk R T AR
AR T R R A

AT B R AR TR 2% T
BB AR E SR, XREABGLUR
T A

Peter GordonJL-F- NAHEVEZ Wi
HTIRZA M, X—RET “H
AWHR” Hfe T B AR AR R AR G
KFEHAR, FRATE i Barbara WoodiA
H BRI ETAE, Julie NahilXhA: 7=
HRMEHE, Ll K Pearsonth BiA Al H K
AL FEME B TN A, BT
AN B R, A 45
BIFRAZBNLZR W,

H=x

1

Fundamentals .

1.1
1.2
1.3
1.4
15
Sorting .
2.1
2.2
2.3
2.4
2.5

Searching .

3.1
32
3.3
3.4
3:5

Basic Programming Model
Data Abstraction

Bags, Queues, and Stacks
Analysis of Algorithms
Case Study: Union-Find

Elementary Sorts
Mergesort
Quicksort
Priority Queues

Applications

Symbol Tables
Binary Search Trees
Balanced Search Trees

Hash Tables
Applications

64
120
172
216

244
270
288
308
336

362
396
424
458
486

ro
-
W

361

4 Graphs 515
4.1 Undirected Graphs 518
4.2 Directed Graphs 566
4.3 Minimum Spanning Trees 604
4.4 Shortest Paths 638
S5 SEINGS v o+ w5 5 % 5 5% 55 ¥ b w5 @ 60w s 695
5.1 String Sorts 702
5.2 Tries 730
5.3 Substring Search 758
5.4 Regular Expressions 788
5.5 Data Compression 810
6 COTMEERE: w o o o o o oo 0 0 o ¢ @ %5 6 8 8 @ + & & 3 853
Index: o : & s o ws s o imwsmos s os@ssss 933
Algorithtits: « o = « w5 = ¢35 o s 8 58 & » « ® 55 % 954

Clients « v v v v i v e e e e e e e e e 955

ONE

Fundamentals

1.1 Basic Programming Model. 8
12200 A talADS A Gl ORI S 64
1.3 Bags, Queues, and Stacks 120
1.4 Analysis of Algorithms 7.2

1.5 Case Study: Union-Find. 216

he objective of this book is to study a broad variety of important and useful
algorithms—methods for solving problems that are suited for computer imple-
mentation. Algorithms go hand in hand with data structures—schemes for or-
ganizing data that leave them amenable to efficient processing by an algorithm. This
chapter introduces the basic tools that we need to study algorithms and data structures.

First, we introduce our basic programming model. All of our programs are imple-
mented using a small subset of the Java programming language plus a few of our own
libraries for input/output and for statistical calculations. SECTION 1.1 is a summary of
language constructs, features, and libraries that we use in this book.

Next, we emphasize data abstraction, where we define abstract data types (ADTs) in
the service of modular programming. In SECTION 1.2 we introduce the process of im-
plementing an ADT in Java, by specifying an applications programming interface (API)
and then using the Java class mechanism to develop an implementation for use in client
code.

As important and useful examples, we next consider three fundamental ADTs: the
bag, the queue, and the stack. SECTION 1.3 describes APIs and implementations of bags,
queues, and stacks using arrays, resizing arrays, and linked lists that serve as models and
starting points for algorithm implementations throughout the book.

Performance is a central consideration in the study of algorithms. SECTION 1.4 de-
scribes our approach to analyzing algorithm performance. The basis of our approach is
the scientific method: we develop hypotheses about performance, create mathematical
models, and run experiments to test them, repeating the process as necessary.

We conclude with a case study where we consider solutions to a connectivity problem
that uses algorithms and data structures that implement the classic union-find ADT.

CHAPTER1 ® Fundamentals

Algorithms When we write a computer program, we are generally implementing a
method that has been devised previously to solve some problem. This method is often
independent of the particular programming language being used—it is likely to be
equally appropriate for many computers and many programming languages. It is the
method, rather than the computer program itself, that specifies the steps that we can
take to solve the problem. The term algorithm is used in computer science to describe
a finite, deterministic, and effective problem-solving method suitable for implementa-
tion as a computer program. Algorithms are the stuff of computer science: they are
central objects of study in the field.

We can define an algorithm by describing a procedure for solving a problem in a
natural language, or by writing a computer program that implements the procedure,
as shown at right for Euclid’s algorithm for finding the greatest common divisor of
two numbers, a variant of which was devised
over 2,300 years ago. If you are not familiar
with Euclid’s algorithm, you are encour- Compute the greatest common divisor of
aged to work EXERCISE 1.1.24 and EXERCISE two nonnegative integers p and q as follows:
1125, perhaps after reading SECTION 1:1. In ;fn‘fj ‘tsa?(’e ‘&eear‘::’;‘n‘; o rIan}?etail:wﬁii l::.g
this book, we use computer programs to de- greatest common divisor of g and r.
scribe algorithms. One important reason for
doing so is that it makes easier the task of Java-language description
checking whether they are finite, determin- public static int ged(int p, int q)
istic, and effective, as required. But it is also { §§ G o= O poxums p3
important to recognize that a program in a intr=p%a;
particular language is just one way to express 3 PELATE gRniiy. i
an algorithm. The fact that many of the al-
gorithms in this book have been expressed
in multiple programming languages over the
past several decades reinforces the idea that each algorithm is a method suitable for
implementation on any computer in any programming language.

Most algorithms of interest involve organizing the data involved in the computa-
tion. Such organization leads to data structures, which also are central objects of study
in computer science. Algorithms and data structures go hand in hand. In this book we
take the view that data structures exist as the byproducts or end products of algorithms
and that we must therefore study them in order to understand the algorithms. Simple
algorithms can give rise to complicated data structures and, conversely, complicated
algorithms can use simple data structures. We shall study the properties of many data
structures in this book; indeed, we might well have titled the book Algorithms and Data
Structures.

English-language description

Euclid’s algorithm

CHAPTER1 = Fundamentals

When we use a computer to help us solve a problem, we typically are faced with a
number of possible approaches. For small problems, it hardly matters which approach
we use, as long as we have one that correctly solves the problem. For huge problems (or
applications where we need to solve huge numbers of small problems), however, we
quickly become motivated to devise methods that use time and space efficiently.

The primary reason to learn about algorithms is that this discipline gives us the
potential to reap huge savings, even to the point of enabling us to do tasks that would
otherwise be impossible. In an application where we are processing millions of objects,
it is not unusual to be able to make a program millions of times faster by using a well-
designed algorithm. We shall see such examples on numerous occasions throughout
the book. By contrast, investing additional money or time to buy and install a new
computer holds the potential for speeding up a program by perhaps a factor of only 10
or 100. Careful algorithm design is an extremely effective part of the process of solving
a huge problem, whatever the applications area.

When developing a huge or complex computer program, a great deal of effort must
go into understanding and defining the problem to be solved, managing its complex-
ity, and decomposing it into smaller subtasks that can be implemented easily. Often,
many of the algorithms required after the decomposition are trivial to implement. In
most cases, however, there are a few algorithms whose choice is critical because most
of the system resources will be spent running those algorithms. These are the types of
algorithms on which we concentrate in this book. We study fundamental algorithms
that are useful for solving challenging problems in a broad variety of applications areas.

The sharing of programs in computer systems is becoming more widespread, so
although we might expect to be using a large fraction of the algorithms in this book, we
also might expect to have to implement only a small fraction of them. For example, the
Java libraries contain implementations of a host of fundamental algorithms. However,
implementing simple versions of basic algorithms helps us to understand them bet-
ter and thus to more effectively use and tune advanced versions from a library. More
important, the opportunity to reimplement basic algorithms arises frequently. The pri-
mary reason to do so is that we are faced, all too often, with completely new computing
environments (hardware and software) with new features that old implementations
may not use to best advantage. In this book, we concentrate on the simplest reasonable
implementations of the best algorithms. We do pay careful attention to coding the criti-
cal parts of the algorithms, and take pains to note where low-level optimization effort
could be most beneficial.

The choice of the best algorithm for a particular task can be a complicated process,
perhaps involving sophisticated mathematical analysis. The branch of computer sci-
ence that comprises the study of such questions is called analysis of algorithms. Many

CHAPTER1 ® Fundamentals

of the algorithms that we study have been shown through analysis to have excellent
theoretical performance; others are simply known to work well through experience.
Our primary goal is to learn reasonable algorithms for important tasks, yet we shall also
pay careful attention to comparative performance of the methods. We should not use
an algorithm without having an idea of what resources it might consume, so we strive
to be aware of how our algorithms might be expected to perform.

Summary of topics As an overview, we describe the major parts of the book, giv-
ing specific topics covered and an indication of our general orientation toward the
material. This set of topics is intended to touch on as many fundamental algorithms as
possible. Some of the areas covered are core computer-science areas that we study in
depth to learn basic algorithms of wide applicability. Other algorithms that we discuss
are from advanced fields of study within computer science and related fields. The algo-
rithms that we consider are the products of decades of research and development and
continue to play an essential role in the ever-expanding applications of computation.

Fundamentals (CHAPTER 1) in the context of this book are the basic principles and
methodology that we use to implement, analyze, and compare algorithms. We consider
our Java programming model, data abstraction, basic data structures, abstract data
types for collections, methods of analyzing algorithm performance, and a case study.

Sorting algorithms (CHAPTER 2) for rearranging arrays in order are of fundamental
importance. We consider a variety of algorithms in considerable depth, including in-
sertion sort, selection sort, shellsort, quicksort, mergesort, and heapsort. We also en-
counter algorithms for several related problems, including priority queues, selection,
and merging. Many of these algorithms will find application as the basis for other algo-
rithms later in the book.

Searching algorithms (CHAPTER 3) for finding specific items among large collections
of items are also of fundamental importance. We discuss basic and advanced methods
for searching, including binary search trees, balanced search trees, and hashing. We
note relationships among these methods and compare performance.

Graphs (CHAPTER 4) are sets of objects and connections, possibly with weights and
orientation. Graphs are useful models for a vast number of difficult and important
problems, and the design of algorithms for processing graphs is a major field of study.
We consider depth-first search, breadth-first search, connectivity problems, and sev-
eral algorithms and applications, including Kruskal’s and Prim’s algorithms for finding
minimum spanning tree and Dijkstra’s and the Bellman-Ford algorithms for solving
shortest-paths problems.

