>

nviDIA ‘ C U DA
e BliEHE

S ——i@FAGPUSRIZ(ZENIR)

CUDA by Example:
An Introduction to
General-Purpose
GPU Programming

() Jason Sanders ..
“~’ Edward Kandrot

=1

/

REF Hhtt

it
fox
i

CUDA 3t Pl #&&

——i@ A GPU %#2(FEDhi)

(%) Jason Sanders .
Edward Kandrot

AR AT
[

Original edition, entitled CUDA by Example: An Introduction to General-Purpose GPU Programming,
First Edition, 978-0-13-138768-3 by Jason Sanders, Edward Kandrot, published by Pearson Education, Inc,
publishing as Addison-Wesley, copyright © 2010

All Rights Reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD., and TSINGHUA UNIVERSITY
PRESS Copyright 2010

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in the
People’s Republic of China excluding Hong Kong, Macao and Taiwan.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macao SAR).

(PR T b e A\ RILF E (N ESE B, 3014 BT BUX A E & A H) 8 AT
LR RASEERERZILS BT : 01-2010-5495

A B ENEA Pearson Education (4B E HRER) A HRE, TREELHBHEE.
KRR S , B3R, SRERBIE: 010-62782989 13701121933

BB R B (CIP)EiRE

CUDA af¥sf——iB A GPU %if£=CUDA by Example: An Introduction to General-Purpose GPU
Programming : 37/ (3€) LL{#/R (Sanders,].), (38)RHE#54F(Kandrot,E) . —REHIA.

—dbat: HHEKRFEHMAE, 201010

ISBN 978-7-302-23995-6

[.C II. Ol @ IL iHHHLERSE—#L V. TP391.41

o 5 i A B 0 CIP ¥ 4% 7-(2010) 58 191928 5

1

HEHRE: T E KW gt fLEEE

BRERX: B FHENH: TFH

H AR & 17 . AR d At i fh. AR ERRFFBRE A
http: /www. tup. com. cn 1 %% . 100084
it =2 #L: 010-62770175 B M. 010-62786544

WEE5IEERS: 010-62776969,c-service@ tup. tsinghua. edu. cn
B B &k f{&:010-62772015,zhiliang@ tup. tsinghua. edu. cn
BN Rl & At HEFER
¥ T & W EEKT)
. EFEARE
Z%. 185X230 BN 3. 19.25 = #. 431 FF
. 2010 4F 10 A% 1 W Ep Y. 2010 4F 10 H 21 KEIRI
#. 1~3000
#r: 39.00 JT
=

gD FCH MW

+%
En
£

: 040345-01

Foreword

Recent activities of major chip manufacturers such as NVIDIA make it more
evident than ever that future designs of microprocessors and large HPC
systems will be hybrid/heterogeneous in nature. These heterogeneous systems
will rely on the integration of two major types of components in varying
proportions:

¢ Multi- and many-core CPU technology: The number of cores will continue to
escalate because of the desire to pack more and more components on a chip
while avoiding the power wall, the instruction-level parallelism wall, and the
memory wall.

 Special-purpose hardware and massively parallel accelerators: For example,
GPUs from NVIDIA have outpaced standard CPUs in floating-point performance
in recent years. Furthermore, they have arguably become as easy, if not easier,
to program than multicore CPUs.

The relative balance between these component types in future designs is not
clear and will likely vary over time. There seems to be no doubt that future
generations of computer systems, ranging from laptops to supercomputers,

will consist of a composition of heterogeneous components. Indeed, the petaflop
(10 floating-point operations per second) performance barrier was breached by
such a system.

And yet the problems and the challenges for developers in the new computational
landscape of hybrid processors remain daunting. Critical parts of the software
infrastructure are already having a very difficult time keeping up with the pace

of change. In some cases, performance cannot scale with the number of cores
because an increasingly large portion of time is spent on data movement rather
than arithmetic. In other cases, software tuned for performance is delivered years
after the hardware arrives and so is obsolete on delivery. And in some cases, as
on some recent GPUs, software will not run at all because programming environ-
ments have changed too much.

FOREWORD

CUDA by Example addresses the heart of the software development challenge by
leveraging one of the most innovative and powerful solutions to the problem of
programming the massively parallel accelerators in recent years.

This book introduces you to programming in CUDA C by providing examples and
insight into the process of constructing and effectively using NVIDIA GPUs. It
presents introductory concepts of parallel computing from simple examples to
debugging (both logical and performance), as well as covers advanced topics and
issues related to using and building many applications. Throughout the book,
programming examples reinforce the concepts that have been presented.

The book is required reading for anyone working with accelerator-based
computing systems. It explores parallel computing in depth and provides an
approach to many problems that may be encountered. It is especially useful for
application developers, numerical library writers, and students and teachers of
parallel computing.

I'have enjoyed and learned from this book, and | feel confident that you will
as well.

Jack Dongarra
University Distinguished Professor, University of Tennessee Distinguished Research
Staff Member, Oak Ridge National Laboratory

Preface

This book shows how, by harnessing the power of your computer’s graphics
process unit (GPUJ, you can write high-performance software for a wide range
of applications. Although originally designed to render computer graphics on

a monitor (and still used for this purpose), GPUs are increasingly being called
upon for equally demanding programs in science, engineering, and finance,
among other domains. We refer collectively to GPU programs that address
problems in nongraphics domains as general-purpose. Happily, although you
need to have some experience working in C or C++ to benefit from this book,
you need not have any knowledge of computer graphics. None whatsoever! GPU
programming simply offers you an opportunity to build—and to build mightily—
on your existing programming skills.

To program NVIDIA GPUs to perform general-purpose computing tasks, you
will want to know what CUDA is. NVIDIA GPUs are built on what's known as
the CUDA Architecture. You can think of the CUDA Architecture as the scheme
by which NVIDIA has built GPUs that can perform both traditional graphics-
rendering tasks and general-purpose tasks. To program CUDA GPUs, we will
be using a language known as CUDA C. As you will see very early in this book,
CUDA C is essentially C with a handful of extensions to allow programming of
massively parallel machines like NVIDIA GPUs.

We've geared CUDA by Example toward experienced C or C++ programmers

who have enough familiarity with C such that they are comfortable reading and
writing code in C. This book builds on your experience with C and intends to serve
as an example-driven, “quick-start” guide to using NVIDIA's CUDA C program-
ming language. By no means do you need to have done large-scale software
architecture, to have written a C compiler or an operating system kernel, or to
know all the ins and outs of the ANSI C standards. However, we do not spend
time reviewing C syntax or common C library routines such as malloc () or
memcpy (), so we will assume that you are already reasonably familiar with these
topics.

PREFACE

You will encounter some techniques that can be considered general parallel
programming paradigms, although this book does not aim to teach general
parallel programming techniques. Also, while we will look at nearly every part of
the CUDA API, this book does not serve as an extensive API reference nor will it
go into gory detail about every tool that you can use to help develop your CUDAC
software. Consequently, we highly recommend that this book be used in conjunc-
tion with NVIDIA's freely available documentation, in particular the NVIDIA CUDA
Programming Guide and the NVIDIA CUDA Best Practices Guide. But don’t stress
out about collecting all these documents because we’ll walk you through every-
thing you need to do.

Without further ado, the world of programming NVIDIA GPUs with CUDA C awaits!

Acknowledgments

It's been said that it takes a village to write a technical book, and CUDA by Example
is no exception to this adage. The authors owe debts of gratitude to many people,
some of whom we would like to thank here.

lan Buck, NVIDIA's senior director of GPU computing software, has been immea-
surably helpful in every stage of the development of this book, from championing
the idea to managing many of the details. We also owe Tim Murray, our always-
smiling reviewer, much of the credit for this book possessing even a modicum of
technical accuracy and readability. Many thanks also go to our designer, Darwin
Tat, who created fantastic cover art and figures on an extremely tight schedule.
Finally, we are much obliged to John Park, who helped guide this project through
the delicate legal process required of published work.

Without help from Addison-Wesley's staff, this book would still be nothing more
than a twinkle in the eyes of the authors. Peter Gordon, Kim Boedigheimer, and
Julie Nahil have all shown unbounded patience and professionalism and have
genuinely made the publication of this book a painless process. Additionally,
Molly Sharp’s production work and Kim Wimpsett's copyediting have utterly
transformed this text from a pile of documents riddled with errors to the volume
you're reading today.

Some of the content of this book could not have been included without the
help of other contributors. Specifically, Nadeem Mohammad was instrumental
in researching the CUDA case studies we present in Chapter 1, and Nathan
Whitehead generously provided code that we incorporated into examples
throughout the book.

We would be remiss if we didn’t thank the others who read early drafts of
this text and provided helpful feedback, including Genevieve Breed and Kurt
Wall. Many of the NVIDIA software engineers provided invaluable technical

ACKNOWLEDGMENTS

assistance during the course of developing the content for CUDA by Example,
including Mark Hairgrove who scoured the book, uncovering all manner of
inconsistencies—technical, typographical, and grammatical. Steve Hines,
Nicholas Wilt, and Stephen Jones consulted on specific sections of the CUDA
API, helping elucidate nuances that the authors would have otherwise over-
looked. Thanks also go out to Randima Fernando who helped to get this project
off the ground and to Michael Schidlowsky for acknowledging Jason in his book.

And what acknowledgments section would be complete without a heartfelt
expression of gratitude to parents and siblings? It is here that we would like to
thank our families, who have been with us through everything and have made
this all possible. With that said, we would like to extend special thanks to loving
parents, Edward and Kathleen Kandrot and Stephen and Helen Sanders. Thanks
also go to our brothers, Kenneth Kandrot and Corey Sanders. Thank you all for
your unwavering support.

bout the Authors

Jason Sandersis a senior software engineer in the CUDA Platform group at
NVIDIA. While at NVIDIA, he helped develop early releases of CUDA system
software and contributed to the OpenCL 1.0 Specification, an industry standard
for heterogeneous computing. Jason received his master’s degree in computer
science from the University of California Berkeley where he published research in
GPU computing, and he holds a bachelor’s degree in electrical engineering from
Princeton University. Prior to joining NVIDIA, he previously held positions at ATI
Technologies, Apple, and Novell. When he’s not writing books, Jason is typically
working out, playing soccer, or shooting photos.

Edward Kandrotis a senior software engineer on the CUDA Algorithms team at
NVIDIA. He has more than 20 years of industry experience focused on optimizing
code and improving performance, including for Photoshop and Mozilla. Kandrot
has worked for Adobe, Microsoft, and Google, and he has been a consultant at
many companies, including Apple and Autodesk. When not coding, he can be
found playing World of Warcraft or visiting Las Vegas for the amazing food.

To our families and friends, who gave us endless support.
To our readers, who will bring us the future.
And to the teachers who taught our readers to read.

Contents

Foreword vii
Prefate . c ¢ commems o5 s vmammas 5+ 5m @ s ms s s dimadnbos iX
Acknowledgments Xi
Aboutthe Authors xiii
WHY CUDA? WHY NOW? 1
1.1 Chapter Objectives 2
1.2 The Age of ParallelProcessing 2
1.21 Central ProcessingUnits 2
1.3 The Rise of GPU Computing 4
1.3.1 ABriefHistoryof GPUs 4
1.3.2 EarlyGPU Computing 5
1.4 CUDA . . . e 6
1.41 What Is the CUDA Architecture? 7
1.4.2 Using the CUDA Architecture 7
1.5 Applicationsof CUDA 8
1.5.1 Medicallmaging 8
1.5.2 Computational Fluid Dynamics 9
1.5.3 EnvironmentalScience 10
1.6 ChapterReview "

CONTENTS

2 GETTING STARTED 13
2.1 Chapter Objectives i 14
2.2 Development Environment oL 14

2.2.1 CUDA-Enabled Graphics Processors 14
2.2.2 NVIDIA Device Driver 16
2.2.3 CUDA Development Toolkit 16
2.2.4 Standard CCompiler 18
2.3 Chapter REVIEW « « « 2 w w w5 % 5 5% 5 s 5 5 8 8 5 ¢+ 5 8 5 5 8 98 95 5 5 19

3 INTRODUCTION TOCUDAC 21
3.1 Chapter Objectives 22
3.2 AFirstProgram i i i i e e e e e 22

3.21 Hello,World! 22
3.22 AKernelCall 23
3.2.3 PassingParameters 24
3.3 QueryingDevices 27
3.4 Using Device Properties 33
3.5 ChapterReview 35

4 PARALLEL PROGRAMMING IN CUDAC 37
4.1 Chapter Objectives 38
4.2 CUDA ParallelProgramming 38

421 SummingVectors. 38
422 AFunExample 46
43 ChapterReview 57

CONTENTS

5 THREAD COQRERATION 1559
5.1 Chapter Objectives 60
5.2 Splitting ParallelBlocks 60

5.21 VectorSums:Redux 60
5.2.2 GPURIippleUsingThreads 69
5.3 Shared Memory and Synchronization 75
531 DotProduct 76
5.3.2 Dot Product Optimized (Incorrectly) 87
5.3.3 Shared MemoryBitmap 90
5.4 ChapterReview 94

6 CONSTANT MEMORY AND EVENTS 95
6.1 Chapter Objectives 96
6.2 ConstantMemory 96

6.21 Ray Tracing Introduction. 96
6.2.2 RayTracingontheGPU 98
6.2.3 Ray Tracing with Constant Memory 104
6.2.4 Performance with ConstantMemory 106
6.3 Measuring Performance with Events 108
6.3.1 Measuring Ray Tracer Performance 110
6.4 ChapterReview 114

7 TEXTURE MEMORY 115

7.1 Chapter Objectives 116

7.2 Texture MemoryOverview 116

CONTENTS

7.3 SimulatingHeatTransfer 117
7.3.1 Simple HeatingModel 117
7.3.2 Computing TemperatureUpdates 119
7.3.3 Animating the Simulation 121
7.3.4 UsingTextureMemory. 125
7.3.5 Using Two-Dimensional Texture Memory 131

7.4 ChapterReview e 137

8 GRAPHICS INTEROPERABILITY 139

8.1 Chapter Objectives 140

8.2 Graphics Interoperation 140

8.3 GPU Ripple with Graphics Interoperability. 147
8.3.1 The GPUAnimBitmap Structure 148
8.3.2 GPURIippleRedux 152

8.4 Heat Transfer with GraphicsiInterop 154

8.5 DirectX Interoperability 160

8.6 ChapterReview 161

9 ATOMICS 163

9.1 Chapter Objectives 164

9.2 Compute Capability 164
9.2.1 The Compute Capability of NVIDIAGPUs 164
9.2.2 Compiling for a Minimum Compute Capability 167

9.3 Atomic Operations Overview 168

9.4 Computing Histograms 170
9.4.1 CPU Histogram Computation 171
9.4.2 GPU Histogram Computation 173

9.5 ChapterReview 183

CONTENTS

10 STREAMS 185
10.1 Chapter Objectives 186
10.2 Page-Locked HostMemory 186
10.3 CUDAStreams o o vttt ittt 192
10.4 Using aSingle CUDAStream 192
10.5 Using Multiple CUDA Streams 198
10.6 GPUWork Scheduling 205
10.7 Using Multiple CUDA Streams Effectively 208
10.8 ChapterReview yAN|
11 CUDA C ON MULTIPLE GPUS 213
11.1 Chapter Objectives 214
11.2 Zero-Copy HostMemory 214
11.21 Zero-CopyDotProduct. 214

11.2.2 Zero-Copy Performance 222

1.3 Using MultipleGPUs 224
11.4 Portable PinnedMemory 230
11.5 ChapterReview 235
12 THE FINAL COUNTDOWN 237
12.1 ChapterObjectives 238
12.2 CUDATools 238
12.21 CUDAToolkit 238
1222 CUFFT . . . 239
12.2.3 CUBLAS 239
12.2.4 NVIDIAGPU ComputingSDK 240

CONTENTS

12.2.5 NVIDIA Performance Primitives 241
12.2.6 DebuggingCUDAC 241
12.2.7 CUDAVisual Profiler 243
12.3 Written Resources 244
12.3.1 Programming Massively Parallel Processors:
AHands-OnApproach 244
123.2 CUDAU e 245
12.3.3 NVIDIAForums 246
12.4 CodeResources 246
12.4.1 CUDA Data Parallel Primitives Library 247
12.4.2 CULAtools e 247
12.4.3 Language Wrappers 247
12.5 ChapterReview 248
A ADVANCED ATOMICS 249
A1 DotProductRevisited 250
A1l Atomiclocks, 251
A1.2 Dot Product Redux: Atomic Locks 254
A.2 ImplementingaHashTable 258
A.21 HashTableOverview 259
A22 ACPUHashTable.......................... 261
A.2.3 MultithreadedHashTable 267
A24 AGPUHashTable.......................... 268
A.2.5 HashTable Performance 276
A3 AppendixReview, 277

