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Foreword

Recent activities of major chip manufacturers such as NVIDIA make it more
evident than ever that future designs of microprocessors and large HPC
systems will be hybrid/heterogeneous in nature. These heterogeneous systems
will rely on the integration of two major types of components in varying
proportions:

¢ Multi- and many-core CPU technology: The number of cores will continue to
escalate because of the desire to pack more and more components on a chip
while avoiding the power wall, the instruction-level parallelism wall, and the
memory wall.

 Special-purpose hardware and massively parallel accelerators: For example,
GPUs from NVIDIA have outpaced standard CPUs in floating-point performance
in recent years. Furthermore, they have arguably become as easy, if not easier,
to program than multicore CPUs.

The relative balance between these component types in future designs is not
clear and will likely vary over time. There seems to be no doubt that future
generations of computer systems, ranging from laptops to supercomputers,

will consist of a composition of heterogeneous components. Indeed, the petaflop
(10 floating-point operations per second) performance barrier was breached by
such a system.

And yet the problems and the challenges for developers in the new computational
landscape of hybrid processors remain daunting. Critical parts of the software
infrastructure are already having a very difficult time keeping up with the pace

of change. In some cases, performance cannot scale with the number of cores
because an increasingly large portion of time is spent on data movement rather
than arithmetic. In other cases, software tuned for performance is delivered years
after the hardware arrives and so is obsolete on delivery. And in some cases, as
on some recent GPUs, software will not run at all because programming environ-
ments have changed too much.



FOREWORD

CUDA by Example addresses the heart of the software development challenge by
leveraging one of the most innovative and powerful solutions to the problem of
programming the massively parallel accelerators in recent years.

This book introduces you to programming in CUDA C by providing examples and
insight into the process of constructing and effectively using NVIDIA GPUs. It
presents introductory concepts of parallel computing from simple examples to
debugging (both logical and performance), as well as covers advanced topics and
issues related to using and building many applications. Throughout the book,
programming examples reinforce the concepts that have been presented.

The book is required reading for anyone working with accelerator-based
computing systems. It explores parallel computing in depth and provides an
approach to many problems that may be encountered. It is especially useful for
application developers, numerical library writers, and students and teachers of
parallel computing.

I'have enjoyed and learned from this book, and | feel confident that you will
as well.

Jack Dongarra
University Distinguished Professor, University of Tennessee Distinguished Research
Staff Member, Oak Ridge National Laboratory



Preface

This book shows how, by harnessing the power of your computer’s graphics
process unit (GPUJ, you can write high-performance software for a wide range
of applications. Although originally designed to render computer graphics on

a monitor (and still used for this purpose), GPUs are increasingly being called
upon for equally demanding programs in science, engineering, and finance,
among other domains. We refer collectively to GPU programs that address
problems in nongraphics domains as general-purpose. Happily, although you
need to have some experience working in C or C++ to benefit from this book,
you need not have any knowledge of computer graphics. None whatsoever! GPU
programming simply offers you an opportunity to build—and to build mightily—
on your existing programming skills.

To program NVIDIA GPUs to perform general-purpose computing tasks, you
will want to know what CUDA is. NVIDIA GPUs are built on what's known as
the CUDA Architecture. You can think of the CUDA Architecture as the scheme
by which NVIDIA has built GPUs that can perform both traditional graphics-
rendering tasks and general-purpose tasks. To program CUDA GPUs, we will
be using a language known as CUDA C. As you will see very early in this book,
CUDA C is essentially C with a handful of extensions to allow programming of
massively parallel machines like NVIDIA GPUs.

We've geared CUDA by Example toward experienced C or C++ programmers

who have enough familiarity with C such that they are comfortable reading and
writing code in C. This book builds on your experience with C and intends to serve
as an example-driven, “quick-start” guide to using NVIDIA's CUDA C program-
ming language. By no means do you need to have done large-scale software
architecture, to have written a C compiler or an operating system kernel, or to
know all the ins and outs of the ANSI C standards. However, we do not spend
time reviewing C syntax or common C library routines such as malloc () or
memcpy (), so we will assume that you are already reasonably familiar with these
topics.




PREFACE

You will encounter some techniques that can be considered general parallel
programming paradigms, although this book does not aim to teach general
parallel programming techniques. Also, while we will look at nearly every part of
the CUDA API, this book does not serve as an extensive API reference nor will it
go into gory detail about every tool that you can use to help develop your CUDAC
software. Consequently, we highly recommend that this book be used in conjunc-
tion with NVIDIA's freely available documentation, in particular the NVIDIA CUDA
Programming Guide and the NVIDIA CUDA Best Practices Guide. But don’t stress
out about collecting all these documents because we’ll walk you through every-
thing you need to do.

Without further ado, the world of programming NVIDIA GPUs with CUDA C awaits!
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