‘ ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA
I\\\! FoAR SRR R A o R4 B 8 iR

Hujun Bao
Wei Hua

Real-Time Graphics
Rendering Engine

ZHEJIANG UNIVERSITY PRESS

ST k=M pRat 2D Springer

ERMFHERERZEHREEZE LR

Hujun Bao
Wei Hua

Real-Time Graphics
Rendering Engine

With 66 figures, 11 of them in color

ZHEJIANG UNIVERSITY PRESS .
W T K O Springer

B 45 FERRER B (CIP) 3R

SEI B 2215 28+ K = Real-Time Graphics
Rendering Engine : #£3 / #f12 %, f45E. —HiM
: WITLRSEHARAE, 2010.12

(R R A 15)
ISBN 978-7-308-08133-7

[. @5 1. Offl--- @4 TIL O EHLHE —
3 IV, OTP391.41

Hb [i A B P TR CIPESHE #% 7-(2010) 552279115

Not for sale outside Mainland of China
1 A5 PR o [K el s X 4

LR ER LRSI B K
sRFE e F

RERE WEF

HER Y

HER&IT AL RE: AL
M Hk: http://www.zjupress.com
Springer-Verlag GmbH
P 4k: hitp://www.springer.com

R FUNPRE OB R A A

El Rl AR ENREE HE R A E]

F A& 710mmX960mm 1/16

B %k 195

FO# 495

KEOED R 20104E 12 A% 1R 2010 4E 12 A5 1 Ik ELRI
5 ISBN978-7-308-08133-7 (WYL K22 Hif #t)

ISBN 978-3-642-18341-6 (Springer-Verlag GmbH)
£ 130007

MARERE BENwR ENREE HHiAR
TR 2 AR R AT SR B11% (0571)88925591

ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

Zhejiang University is one of the leading universities in China. In Advanced
Topics in Science and Technology in China, Zhejiang University Press and
Springer jointly publish monographs by Chinese scholars and professors, as well
as invited authors and editors from abroad who are outstanding experts and
scholars in their fields. This series will be of interest to researchers, lecturers, and
graduate students alike.

Advanced Topics in Science and Technology in China aims to present the latest
and most cutting-edge theories, techniques, and methodologies in various research
areas in China. It covers all disciplines in the fields of natural science and
technology, including but not limited to, computer science, materials science, life
sciences, engineering, environmental sciences, mathematics, and physics.

Preface

A real-time graphics rendering engine is a middleware, and plays a fundamental
role in various real-time or interactive graphics applications, such as video games,
scientific computation visualization systems, CAD systems, flight simulation, etc.
There are various rendering engines, but in this book we focus on a 3D real-time
photorealistic graphics rendering engine, which takes 3D graphics primitives as
the input and generates photorealistic images as the output. Here, the phrase
“real-time” indicates that the image is generated online and the rate of generation
is fast enough for the image sequence to be looked like a smooth animation. For
conciseness, we use the rendering engine to represent a 3D real-time photorealistic
graphics rendering engine throughout this book.

As a rendering engine is a middleware, users are mainly application developers.
For application developers, a rendering engine is a software development kit.
More precisely, a rendering engine consists of a set of reusable modules such as
static or dynamic link libraries. By using these libraries, developers can concentrate
on the application’s business logic, not diverting attention to rather complicated
graphics rendering issues, like how to handle textures or how to calculate the
shadings of objects. In most cases, a professional rendering engine usually does
rendering tasks better than the programs written by application developers who are
not computer graphics professionals. Meanwhile, adopting a good rendering
engine in application development projects can reduce the development period,
since lots of complex work is done by the rendering engine and, consequently,
development costs and risks are alleviated.

In this book we are going to reveal the modern rendering engine’s architecture
and the main techniques used in rendering engines. We hope this book can be
good guidance for developers who are interested in building their own rendering
engines.

The chapters are arranged in the following way. In Chapter 1, we introduce the
main parts of a rendering engine and briefly their functionality. In Chapter 2, basic
knowledge related to developing real-time rendering is introduced. This covers the
rendering pipeline, the visual appearance and shading and lighting models.
Chapter 3 is the main part of this book. It unveils the architecture of the rendering
engine through analyzing the Visionix system, the rendering engine developed by

vi Preface

the authors’ team. Lots of details about implementation are also presented in
Chapter 3. In Chapter 4, a distributed parallel rendering system for a multi-screen
display, which is based on Visionix, is introduced.

In Chapters 5 and 6, two particular techniques for real-time rendering that
could be integrated into rendering engines are presented. Chapter 5 presents an
overview of real-time rendering approaches for a large-scale terrain, and a new
approach based on the asymptotic fractional Brownian motion. Chapter 6 presents
a variation approach to a computer oriented bounding box tree for solid objects,
which is helpful in visibility culling and collision detection.

This book is supported by the National Basic Research Program of China, also
called “973” program (Grant Nos. 2002CB312100 and 2009CB320800) and the
National Natural Science Foundation of China (Grant No. 60773184). Additionally,
several contributors have helped the authors to create this book.

Dr. Hongxin Zhang and Dr. Rui Wang from CAD&CG State Key Lab, Zhejiang
University, China, have made key contributions to Chapter 2 “Basics of Real-time
Rendering”. Ying Tang from Zhejiang Technology University, China, has done
lots of work on tailoring contents, translating and polishing this book.

Special thanks to Chongshan Sheng from Ranovae Technologies, Hangzhou,
China, as one of the main designers, for providing a lot of design documents and
implementation details of the Visionix system, which is a collaboration between
Ranovae Technologies and the CAD&CG State Key Lab.

Many people who work, or have ever studied, at the CAD&CG State Key Lab,
Zhejiang University, provided help and support for this book: Rui Wang, Huaisheng
Zhang, Feng Liu, Ruijian Yang, Guang Hu, Fengming He, Wei Zhang, Gaofeng
Xu, Ze Liang, Yifei Zhu, Yaqgian Wei, En Li, and Zhi He.

Hujun Bao

Wei Hua
Hangzhou, China
October, 2010

Contents

1 Introduction 1
1.1 Scene Graph Management.........coeccvevrerererieerisesnesirsesniesnssesssiosiosores 2

1.2 Scene Graph Traverse.......c.cocevrererreriinesinieset sttt s sae e 4

1.3 Rendering QUELIEceceeeriireiieeecesstrcceseeseesmneeesee st cenesssevessenenteseseaeenes 5

1.4 Rending Modleo..cciviiiirioiiieecentc e v 5

2 Basics of Real-Time Rendering.........cccuoveisensssanssncssenrosasss 7
2.1 Rendering PIPEliNEcoceeveveeriiiiiiecrerriiecre ettt s 7
2.1.1 Conceptual Rendering Phasescoc.ccoeeeeevrioivceiiieciivvaeveeen, 9

2.1.2 Programmable Rendering Pipeline.........c..ccccocvvireveeicnnreenennnene. 10

2.1.3 Geometry Transformsc.ooeevreereererinsiesercieseeecnssseresseeeseennss 11

2.2 SRAQINE oo e ene ettt re e 12
2.2.1 Rendering EQUAtiON......couivieiiiiicrceieneecrerenrne s v s 12

222 LigHHNE ..ottt e e ran e s v 14

2.2.3 BRDF ..ottt sttt s et 15

2.2.4 Light TranSPOI ..c..oriiivececreneeiereee e teee e easer e s st sre s 17

2.3 SUITHNATY ...oiimiiiiiireciteeer ettt etessasess e sse e e aeeeee s eneeebeemessessetessrsaesnerneens 19
RETEIENCES... ..ttt et rte st st ete e s s te s sr st nrens s eeeeene 19

3 Architecture of Real-Time Rendering Engine....... 21
3.1 OVEIVIEW coniieiiiieciiiee ettt e esm e em et se e es s s aeesseneeneteeneeeensnansen 21

3.2 Basic Data TYPE .oooecvicerrecree et eee e mee e 22
3.2.1 Single-Field Data TYPE....c.ccoeevvueneeeeerecereesieerivivetiesesseesnee e 22

3.2.2 Multiple-Field Data TYPecccooeeeueereeiieremrereeee e 25

3.2.3 Persistent Pointer: TAAAress<>o..ooveveveeiveriniesiee s 26

3.3 Basicsof Scene Modelcooooeeiiireieoeieeeeeeeeeee e, 26

34 BDULY coreiicecece et ettt st bbbt et ee e s 28

3.5 TFRALUIE ... vttt v s e et en e s e e emen e s e s eresens 29
3.5.1 IAtributedObject and IFeature............ccccoceeveveeereeeeeeeeesnnn 29

3.5.2 IBoUNdEAODBIECL cccuverereecterecrivie et e e eeen e ens 31

viii

Contents

3.6
3.7

38
39

3.10

3.11

3.12

3.13
3.14
3.15

3.16
3.17
3.18

3.5.3 TCHIIAFEAIULE.veeeieteereceeeeeeeeeeeesssobeeeeeeeeeeseests e besesivesasnas 31
3.5.4 Subclasses of IGroupingFeatureccoccevviviircrnernninsisneinn. 32
3.5.5 Subclasses of IShapeFeaturecevveeriiminncneniinions 33
3.5.6 TAnimatedFeatureccccccoceinrerenimienreee et e e 38
3.5.7 Subclasses of ILightFeature.........ccoovviinviciiiicene, 40
3.5.8 Subclasses of IBindableFeature.........ccoooeeiieic i 40
3.5.9 IGeomMEtTYFEAtUIT ... i ciieirircceeine et enrene e nescsen e nmecene e 42
3.5.10 IAppearanceFeature and Related Featuresc.ccvevvvveinnnne. 55
SceNe GIaPh. ...coiviciieceriet it et e n et e 73
Spatial INAEXcccoiriiieiiiiiicccee ettt 75
3.7.1 Relation Schema Acccooveiiirciiieienere e e 77
3.7.2 Relation Schema Bccccoooiiiieiiiiiiiniciniees e eceneseceieneens 79
Scene Model Schema........cccvvieniiniiieiceiecree e 79
Scene Model Interface and Implementationc.cc.eooivvnniceeeneeesinns 82
3.9.1 Scopeof Name and ID ...c....ccovievviveeiiiee et 82
3.9.2 TranSactionocveeeeicieccieniireeeeeeiteas et snsasetssesseseaenerantens 82
3.9.3 SCENE STOTAZE ..eeenveitieeeeecieseee e eeee et s e e e ees e e e s amte s saberaes 82
3.94 Reference and Garbage Collectionc.eeceveevevriecrmecnvereenen. 83
3.9.5 Data Visit and Cachecccoeevviverirniececeesee e 84
3.9.6 Out-of-Core Entity....cccoeocimiieirriscmrsiere vt 85
3.9.7 ISceneMOdel.........cccceviiiaicirmimrirtsee st e 86
3.9.8 ISCENESIOTAZE .. cuoeveereierierereceeeireeciit v st e e et snrsesreessnessnnan 89
3.9.9 Implementation of ISceneModel and ISceneStorage............... 91
Scene Manipulator........cccueiiiiscciserincrneestsniesresressensssessrssessetesreen 93
3.10.1 Manipulator FUNCHONS.ccceirerervicracerriniee e serrvscraesensrevensnes 94
3.10.2 Usage of Scene Model Manipulatorccooeceocecevivrccnernnnrens. 97
Traversing Scene Model ... 98
3.11.1 Traverse viad Herator .. cooereerereerinieecerieeesreresesee e e snesaenens 98
3.11.2 Traverse via VISIOT.....cccciimrrrecienieeestenrv s sressesseeressvennenns 107
Rendering ENZINeoooviviiiiiiiiciiee ettt et csesn s 115
3.12.1 CRenderingEngineccvivvverecveieevereceeereeeeeeteesseneveeeeaneas 115
3.12.2 The Composition of the CRenderingEngine.........c....cevcue..e. 119
Render Queue and Its Managere...ooeeveeceeeeeniieeeeerseeee s e eeassee s 122
Camera ManageT......cceiieciiriierccrcteanie e reresas e sr e e e e sre e sranan 123
GPU Resources and Its Manipulatorccoiveceeiivvese e vee e e 124
3.15.1 Texture RESOUICEcccuivrieerrcereeticreeeeeeeeeeeeeeere e et ebe s e esoees 125
3.15.2 Buffer RESOUICE ..coeovvveriicriieeecr e e s ecmsesesnaee s e 126
3.15.3 Shader PIOZIam ...cococvcoueeeeenivecvestieie et eeeee e 128
3.15.4 GPU Resource Manipulator..........c..eeevoreeveneeeesaeeevereeraeennnne 128
Render Target and Its MaNAZeT......c.....coevvivceeveeeeeeeeeeeesesr e 131
Render Control Ut ..o e 134

Contents ix

3.18.1 TPreRender.. ..o 137
3.18.2 CPreRenderManagerc..cococeereemeesorenrerecceersemresmecsserenanns 140
3.19 Render Pipelines and Its Managerccooooceceincrcncniinnsccnenne e 142
3.19.1 TRenderPipeline......coovicirirrimniisererenisenicncnsnesessnsernosessasasens 142
3.19.2 Modular Render Pipeling........ccoceivmricriieniiccinnieniensecninienens 147
3.19.3 Render Module.......ccccoeveiiirniiiieiieniiieicee e 157
3.19.4 CRenderPipelineManager.........cccecerireminnereninisnisnnsraessceneens 160
3.20 Examples of Pre-renderoccocveevnieiimnmeciis it 161
3.20.1 CVFCullingPreRendercoveirnirerciimicninis e 161
3.20.2 CMIrrorPreRender.. ... rircriereer e eeese e 163
3.20.3 COOCENtLtYLOAAEr ... ccciceeireeceeeren it eab e e 165
3.20.4 CFeature TypeClassifierccccocvveveiiceiices e ccseeee s 169
3.20.5 CRenderQueueElementProcessor.........cccvvvveeeseerenssvncernonnnss 171
3.20.6 CLightCullingPreRender.........c.ccvveeveenieciiniemreeiaraerieesecnne 173
3.21 Examples of Modular Render Pipeline and Render Module 174
3.21.1 CShapeRenderPipeline............ccccvierniveecreicnnseene s 175
3.21.2 CShapeRenderModule........cc.cvceirreierirenriineiecescieniicre e 176
3.22 Implementation Details of CRenderingEngine...........cccovvvecveeennnnnn. 186
3221 CONFIGUIE .ceieeeieeniaieeie ettt et e ettt e e e e e e e snsasrs e s 186
3.22.2 INTHALZE...coceiiiriieeeeeeerieiieeeme et e st secreese e s e seennans 189
3.22.3 DORENAEIING ..ooveieieieeteeteie sttt et s 190
3.22.4 OpenSceneMOodelooccveieveririenniee et 190
323 CONCIUSION vttt be s a e sessr e e e b s aeas 191
RETEIEIICES. ...cvviiiicieciit ittt ettt st s e st s sbasssbesesesnns 192
Rendering System for Multichannel Display 193
4.1 The Overview of Paralle]l Renderingc.ccovvievrirvenenrvesseninsiesrennenns 193
4.1.] CHENE-SEIVET ...ccoiiteeieeerenseceeerrnesreesete st reaneesee s sasssbe s e reeenees 195
4.1.2 MaSter-SIaVE...cc.eioirreiirieerecreecritrsreres e s s e b en 196
4.2 The Architecture of a Cluster-Based Rendering System..................... 196
4.3 Rendering System INLErfaCe.ccooveireervinniiir i ceerr st 197
431 vxIRenderingSyStem . ..uiie it s 199
432 VIIMOCE] ...ooetieniiii ettt e s et s s an e e 201
4.3.3 VEIUL .ottt vttt n 218
4.34 The Basic Example.......cccocveveeeriieeeeieecneceeieseeeer et 231
4.4 Server Manager.......cccocuiiieieieeeceiee et eee et eee e eeeee s araeeerannseaneanaes 233
4.4.1 Functionality.......cco.coeeoeeeeeeeieiiee ettt 233
442 SHUCHITE ...ttt eesi sttt eneseeeeenenn s 233
4.4.3 CServerManager......coocucveueeviereecrcrieeseeeeeee s eeeeereses s 236
4.4.4 CServiceReqUeStMaNAgeTcueeveveeeeeeeeeeeeeeererereeeeees 236
4.45 CServiceRequestTranslatorco..coeeveneeeeeeeeeiee s s 238

4.4.6 CServiceRequestSenderooiiveeeeeeeeeceee e 238

6

Contents
447 CSystemStateManager, CScreenState and CRenderServerState
.. 240
4.4.8 CServiceRequestSRThreadPoolcocvivivcciieencenceneren e 242
4.4.9 IServiceRequest and Subclasses........ccooeevicienieereceineenerinenne 243
4.5 TImplementation of Rendering System Interfaceccocvevvevrcnnenanee 245
4.5.1 Implementation Principles......ccccoovierrirccincincneiniiveriennns 245
4.5.2 Example 1: Startup SYSteM....covevvieeeieeiceeeieieeeee e 246
4.5.3 Example 2: Open Scene Modelcooceevvereeneicieneniernrnnnns 247
4.54 Example 3: Do Rendering and Swap Bufferoceeeeeeen. 248
4.6 Render Server and Server Interface............coouevevcvenrenneceeciercciceeeenne. 250
4.7 Application: the Immersive Presentation System for Urban Planning
.. 251
477.1 System Deployment.........ccceereeeereciereeeeeeeesiiec e eee s 253
4.7.2 Functionality.......occceoernieuieiereeeeteeeeeee e seesse s s s 254
REferences.coiiiiiiic et s en et 256
Optimal Representation and Rendering for Large-Scale Terrain......... 257
5.1 OVEIVIEW .ottt st abns 258
5.1.1 LOD Model of TeITaill........ccoveiuiercnrenainriesninecmeeseseeesseen s 258
5.1.2 Out-of-Core Techniquesc.coeeeeeeerereriereriisieceeree e 262
5.2 Procedural Terrain Rendering..........ococoeommvieeeeeeeeeeereeeseeersnesenanns 263
3.2.1 An Overview of Asymptotic Fractional Brownian Motion Tree
.. 265
5.2.2 afBm-Tree CORSIIUCHON .e.covvvreeririereeeicecetiste s eeen e 268
5.2.3 Procedural Terrain Rendering........ocucvvveececcommeeeeeeee e 270
5.2.4 APPLCAtIONcoiceeririerceiccreeieeeeee et et 275
5.3 CONCIUSION ..ot iirrerieiesitrcrriacisie et et eeeceenssae st eas s tenreesestese seeeneenensanes 277
RETEIEIICES ... vttt cieee et teie s et s st st et mr et e e et e st et et e e st sessentetaseas 277
Variational OBB-Tree Approximation for Solid Objects............ cemneranne .281
6.1 Related WOTKcocoueoeirriieieriniecete st et 282
6.2 The Approximation Problem of an OBB Treecccoovvveeeveveeennnn, 283
6.3 Solver for OBB TI€e.......ccovurreereierereeeereeeteres et eeeeeneens 285
6.3.1 Computation of Outside Volume for Single Bounding Box ... 285
6.3.2 Solver for OBB TI€e......cocvueuriiierireeeecerereneeee e 287
6.4 Experiments and RESUILSccoourieeimucreneveriieetetseeeees s e seseeeeenna, 290
6.5 CONCIUSION.ccriireriirieiecirire ettt en s e 291
RETETENCES. ..ottt ettt 292

INOEX c..ureriiinirinccsinresensesainresensisaressessnasarsessessassnssssenseesessssnssensssons 295

1
Introduction

In this chapter, we are going to introduce the main parts of most rendering engines
and, briefly, their functionality. Fig. 1.1 shows a classical structure of a rendering
engine. In this graph, the rendering engine is composed of offline toolkits and a
runtime support environment. The offline toolkit mainly comprises the tools that
export data from the third party modeling software and the tools which perform
some pre-operations to the Scene Model. These pre-operations include simplification,
visibility pre-computation, lighting pre-computing and data compression. Besides
these tools, the more advanced rendering engine includes some special effects
generators. The main parts supported in Runtime are Scene Model, Scene Model
Management, Scene Graph Traversal and Render. The applications call Scene
Model Management and Scene Graph Traversal to run the rendering engine. In the
following paragraphs, we will give a brief description of the core parts of the
runtime support environment.

Application
N —i
3rd party Scene Model Scene Ciraph Traversal
software Management ® Transforming
data exportor Scene ® Animating
graph ® Culling
- ® Level-of-Detail
Preprocessing
Toolkits 0 ﬂ
Renderable objects
Development Render
Toolkits ® Object Rendering
® Rendering Utility

Runtime supporting environment
Graphics primitives

Graphics Library: OpenGL.Direct3D,---

Fig. 1.1 The classical structure of a rendering engine

2 1 Introduction

1.1 Scene Graph Management

Inside a rendering engine, the scene model is the digital depiction of the virtual
world in cyberspace. For most rendering engines, the scene model adopts graph
data structures, which is called the scene graph. The scene graph is a directed
acyclic graph, where nodes represent the entities of the virtual world and arcs
represent relations between these entities.

In a scene graph, different kinds of nodes represent different classes of entities.
The two most fundamental nodes are renderable objects and light sources. The
renderable objects represent the objects that can be displayed on the images
produced by rendering engines. The light sources stand for the sources of light,
which describe light intensity, emission fashion, position, direction, etc. Given a
scene graph, the prime function of rendering engines is to use the light sources to
illuminate the renderable objects, and render the renderable objects according to
certain viewing parameters.

Undoubtedly, renderable objects are the most important class of entities. In
object-oriented architecture, the renderable object is a subclass of the base class
entity. To represent various perceptible entities in a virtual world optimally, there
is a variety of subclasses of renderable objects. Although these subclasses of
renderable objects may look quite different, most of them have two parts in
common, geometry and appearance. The geometric part describes the outline,
contour, surface or volume of a renderable object. The number of geometric types
that can be supported is regarded as an index to measure the performance of a
rendering engine. The polygonal mesh or, more precisely, the triangular mesh is
the most widely supported geometric representation for all rendering engines with
a simple structure. The polygonal mesh can be used to represent most geometric
entities and can be easily mapped to graphics hardware. Some more advanced
rendering engines adopt a spline surface as the geometric representation to
describe finer surfaces. The rendering engine aiming at scientific visualization
would support a volumetric dataset. The appearance part describes the optical
characteristics of material that constitutes the surface or volume of a renderable
object. Many visual effects of renderable objects are dependent on it. Since
textures are well supported, on all modern 3D graphics cards the appearance part
often uses multiple textures to record various optical properties on surfaces.

The arcs in a scene graph represent the relations between renderable objects.
Most rendering engines implement the scene graph by tree structures. In a tree,
different types of nodes represent different node relations. The most common
relationship is a grouping relationship and the corresponding node is a group node.
A group node represents a group of entities and the entities inside the group
become the child node of this group node. A grouping relationship is very useful,
for it is used to model the hierarchy of the virtual world. In some rendering
engines, a group node has a transformation field, which depicts a coordinate
transformation for all children in the group’s coordinate frame.

Besides a grouping relationship, there is another kind of important relationship

1.1 Scene Graph Management 3

between nodes—reference. The reference here is similar to the reference in C++.
The goal of adopting a reference here is to improve the reuse efficiency and
decrease the storage size. For example, in order to represent a district with 100
similar houses, a straightforward method is that we first build one mesh to
represent one house and then build the other 99 houses by replicating the mesh
99 times with spatial transformations. This method is very simple. However, it
consumes a great amount of memory by replicating the mesh multiple times. To
solve this problem, most rendering engines adopt a reference, where we first build
a mesh for a house, then build 100 nodes. Each node includes a reference to the
mesh and the related spatial transformation. In this way, we only need to store one
mesh and use references to realize reuse of the meshes multiple times. The
references in different engines are realized in different ways, which can be
achieved by 1D, address or handles.

In order to build the spatial relations of the nodes in a scene graph, we need to
build the spatial index to a scene graph. The most often used spatial indices are
BSP tree, quad tree, octree and kd tree. With a spatial index we can quickly
determine the spatial relations between entity and ray/line, entity and entity,
entity and view frustum, including intersection, disjoint or enclosed. With such
accelerations, we can obviously improve the time efficiency of scene graph
operations, such as object selection and collision detection.

Most rendering engines provide one module, a scene graph manager (different
rendering engines may have different names), to help manipulate scene graphs, so
as to create, modify, reference, duplicate, rename, search, delete scene graph
nodes. The functions of a scene graph manager can be roughly classified into the
following categories:

(1) Node lifetime management. This is mainly for creating, duplicating and
deleting nodes.

(2) Node field management. This is to provide get/set functions of nodes’
fields. Furthermore, it provides more complex field updating functions, such as
changing the node’s name, which requires solving the name conflicts problems.
Applying a transformation such as translation, rotation, scale, or their combinations
to nodes is the basic but important function in this category. For some powerful
rendering engines, adding and deleting user-defined fields are supported.

(3) Node relation management. This is mainly for grouping/ungrouping nodes,
referencing/ dereferencing nodes, etc., and collapsing nodes.

(4) Spatial index management. This is to construct and update the spatial index
of a scene. Since there are several kinds of spatial index, such as binary partition
tree, kd tree and octree, one rendering engine usually implements one spatial index.
A local update of the spatial index for dynamic scenes is very crucial for a large
scene, for it will save much computational expense.

(5) Query utility. This is for finding nodes by name, type, bounding volume,
intersecting ray or other information.

(6) Loader and serializer. Almost every rendering engine has one module to
load the scene graph from files. It checks the syntax of the contents of files (some
even check the semantics), creates nodes and assembles them to form a scene

4 1 Introduction

graph in the host memory. Most rendering engines tend to define one intrinsic file
format, and provide a plug-in of third-part modeling software, such as 3D Studio
MAX, Maya, to export their own file. Some of them provide tools to convert other
formats into it. Corresponding to the parser module, a rendering engine has a
serialize module, which serializes the whole or part of the scene graph into a
stream.

1.2 Scene Graph Traverse

The rendering engine works in a cycling manner. For each cycle the rendering
engine sets the camera parameters and traverses the scene graph once, during
which time it finishes the rendering for one frame. So we only need to set the
camera parameters according to the walkthrough path to realize the walkthrough
of a scene.

There is one specific module, which we call a traversal manipulator, responsible
for scene graph traversal. The traversal manipulator traverses the scene graph node
by node. Among the operations done to the nodes, the animation controllers are
the most important. They update the states of animated nodes according to the
time.

To represent dynamic objects in a virtual world, such as moving vehicles, light
flicker, a running athlete and so on, some rendering engines provide various
animation controllers, such as a keyframe animation controller, skeletal animation
controller, particles controller, etc. Each animated node could have one or several
controllers attached. In the traverse of a scene graph, the attached controllers are
visited and have the opportunity to execute some codes to make the state of the
object up-to-date.

After the operations on the nodes have been done, the traversal manipulator
determines which nodes need to be rendered and puts these nodes in a rendering
queue. The two most important decisions to made are as follows:

(1) Visibility Culling. By using visibility culling, potentially visible objects are
selected and sent to the primitive render, so as to avoid those definitely invisible
objects consuming rendering resources. Therefore, visibility culling is an important
rendering acceleration technique and is very effective for in-door scenes.

(2) Level-of-detail selection. Level-of-detail technique uses a basic idea to
reduce the rendering computation, so that the objects close to the viewpoint are
rendered finely and the objects far away from the viewpoint are rendered coarsely.
Powered by level-of-detail techniques, one renderable object usually has many
versions, each of which has a different level of detail. During the traverse, for each
renderable object with LOD, an object version with a proper level of detail is
carefully selected according to the distance and viewing direction from the
viewpoint to the object, so that the rendering results of the selected object version
look almost the same as that of the original object.

1.3 Rendering Queue 5

1.3 Rendering Queue

Through the traversal manipulator, the to-be-rendered scene graph nodes are
stored in the rendering queuec and delivered to the render module. The render
arranges the nodes in the rendering queue in a proper order, which may be spatial
relations from front to back or from back to front, or material types. Most
rendering engines regard the underline graphic rendering pipeline as a finite state
machine. They arrange the rendering order according to the goal to reduce the
switch times of state machines, which improves the rendering speed with the
precondition of rendering accuracy.

1.4 Rending Modle

After rearranging the order, the render calls a proper rendering process according
to the node types. Generally speaking, there is at least one rendering process for
each renderable object, such as triangle meshes, billboards, curves, indexed face
sets, NURBS and text. The rendering engine uses one module to manage these
rendering processes, which is called a render. The so-called rendering process is
actually a set of algorithms, which break down the rendering for a renderable
object to a series of rendering statements supported by a bottom graphics library
(like OpenGL or Direct3D). A render is not just a simple combination of a set of
rendering processes. It has a basic framework to coordinate, arrange and manage
the rendering queue and rendering processes. In addition, it includes a series of
public rendering utilities, to reduce the difficulty of developing rendering processes
for different nodes. The core parts of the render are:

(1) Texture mapping module. This handles a variety of texture mappings, such
as multi-texturing, mipmapping, bump mapping, displacement mapping, volumetric
texture mapping, procedural texture mapping, etc. Some of the rendering engines
also provide texture compression/decompression, texture packing, texture synthesis
and other advanced texture related functions,

(2) Shading module. This calculates reflected or refracted light on the object
surface covered by a certain material and lit by various light sources, such as
point-like omni-light sources, line-like light sources, spotlight sources, directional
light sources, surface-like light sources, environmental light sources, etc. The
module supports several kinds of illumination models, such as the Phong model,
the Blinn model, the Cook and Torrance model, and so on. Adopting a different
illumination model usually requires a different appearance model. At the runtime
stage, rendering engines only support local illumination, for global illumination
is computationally very expensive to achieve in real-time. To simulate global
illumination, lightmapping is used by many rendering engines. However,
lightmapping is limited to showing diffuse components in static lighting scenarios.
Nowadays, precomputed radiosity transfer techniques provide a new way to show

6 1 Introduction

objects with a complex appearance model in dynamic lighting conditions.

(3) Shadows module. As a shadow is a phenomenon of lighting, shadow
computation rigorously should be a feature of a lighting and shading module.
Nevertheless, if we consider the light source as a viewpoint, the shaded places can
be considered as the places invisible to the light source. Therefore, shadow
computation by nature is a visibility determination problem, which is a global
problem depending on the spatial relations of the entire scene, including
object-object and light-object relations. Due to the complexity of this problem, it
becomes a separate module in most rendering engines.

Besides the above important modules, some rendering engines provide a series
of assistance modules, such as:

(1) Observer controller: To control the observer’s position, direction, field of
view, motion speed/angular speed, motion path and the characteristics of image
Sensors.

(2) Special visual effects: To simulate the effects of ground/water explosion,
explosion fragments, flashes from weapon firing, traces of flying missiles, rotation
of airscrew, airflows of rotating wings, smoke and flames, etc.

(3) Display environment configuration: To support the display devices of
CAVE, Powerwall etc. Users can configure the number of displays, their
arrangement styles and the stereo eyes’ distance. This also supports non-linear
distortion correction, cylinder and planar projection display and the edge blending
of multi-displays.

