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Martingale Theory and the Stochastic
Integral for Point Processes

A stochastic integral is a kind of integral quite different from the usual
deterministic integral. However, its theory has broad and important appli-
cations in Science, Mathematics itself, Economic, Finance, and elsewhere.
A stochastic integral can be completely charaterized by martingale theory.
In this chapter we will discuss the elementary martingale theory, which
forms the foundation of stochastic analysis and stochastic integral. As a
first step we also introduce the stochastic integral with respect to a Point
process.

1.1 Concept of a Martingale.

In some sense the martingale conception can be explained by a fair game.
Let us interprete it as follows:

In a game suppose that a person at the present time s has wealth z, for
the game, and at the future time ¢ he will have the wealth z;. The expected
money for this person at the future time ¢ is naturally expressed as E[z:|§,),
where E[-] means the expectation value of -, §, means the information up
to time s, which is known by the gambler, and E[-|F,] is the conditional
expectation value of - under given §,. Obviously, if the game is fair, then
it should be

Elz|F,] = z,,Vt > s.

This is exactly the definition of a martingale for a random process z,,¢ >

0. Let us make it more explicit for later developement.
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Let (Q,3,P) be a probability space, {3’:}»0 be an information family
(in Mathematics, we call it a o—algebra family or a o—field family, see
Appendix A), which satisfies the so-called “Usual Conditions”:

(1) Fo CFr, as0< s <5 (41) Fig = On>0Ftsn-

Here condition (i) means that the information increases with time, and
condition (ii) that the information is right continuous, or say, Fe+n | Ft,
as h | 0. In this case we call {§:},5, a o—field filtration.

Definition 1 A real random process {z:},5, is called o martingale (su-
permartingale, submartingale) with respect to {§t},50, or {ze,Fi}yno 15 @
martingale (supermartingale, submartingale), if

(i) z; is integrable for each t > 0; that is, E || < co,Vt > 0;

(ii) ¢ is Fo—adapted; that is, for each t > 0, x; is §e—measurable;

(iii) E(x4|§s) = x5, (respectively, <, >), a.s. YO<s <t

For the random process {z¢},¢(o 1) and the random process {zn}o, with
discrete time similar definitions can be given.

Example 2 If {z:},., is a random process with independent increments;
that is, YO < t; < ty < --- < t,, the family of random variables
{1110,-’-'%l = Z0, Tty — Ttyy ' 3 Tty —xtn_.}

is independent, and the increment T, — z,,Vt > 3, is integrable and with
non-negative ezpectation, moreover, o is also integrable, then {z:},5, is a
submartingale with respect to {F7 }:>o , where 37 = o(x,,s < t), which is a

o—field generated by {z,,s < t} (that is, the smallest o—field which makes
all z,,8 <t measurable) and makes a completion.

In fact, by independent and non-negative increments,
0 < E(z¢ — x5) = El(z: — z,)|FE), Vt > s.
Hence the conclusion is reached.

Example 3 If {:1:,}£>0 is a submartingale, let y; := z; V 0 = max(z:,0),
then {yt}po is still a submartingale.

In fact, since f(x) = z V 0 is a convex function, hence by Jensen’s in-
equality for the conditional expectation

Elz: VOIF,| 2 E[z:|3,| V E{0}3s] 2 2, VOVt > 5.
So the conclusion is true.

Example 4 If {2:},5, is a martingale, then {|z¢|},5, is o submartingale.

In fact, by Jensen'’s inequality

Effeel (8] > [Elaafdell = lea] Ve 2 o.
Thus the conclusion is deduced.

Martingales, submartingales and supermartingales have many important
and useful properties, which make them become powerful tools in dealing
with many theoretical and practical problems in Science, Finance and else-
where. Among them the martingale inequalites, the limit theorems, and the
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Doob-Meyer decomposition theorem for submartingales and supermartin-
gales are most helpful and are frequently encountered in Stochastic Analysis
and its Applications, and in this book. So we will discuss them in this chap-
ter. However, to show them clearly we need to introduce the concept called
a stopping time, which will be important for us later. We proceed to the
next section.

1.2 Stopping Times. Predictable Process

Definition 5 A random variable 7(w) € [0,00] is called a F:—stopping
time, or simply, a stoping time, if for any (oo >)t > 0, {r(w) < t} € §:.

The intuitive interpletation of a stopping time is as follows: If a gambler
has a right to stop his gamble at any time 7(w), he would of course like
to choose the best time to stop. Suppose he stops his game before time ¢,
i.e. he likes to make 7(w) < ¢, then the maximum information he can get
about his decision is only the information up to ¢, i.e {r(w) <t} € §;. The
trivial example for a stopping time is 7(w) = t,Vw € Q. That is to say, any
constant time ¢t actually is a stopping time.

For a discrete random variable 7(w) € {0,1,2,--- ,00} the definition
can be reduced to that 7(w) is a stopping time, if for any n € {0,1,2,---},
{r(w) =n} € §n, since {r(w) =n} = {r(w) <n} - {r(w)<n-1}, and
{r(w) < n} = Up_, {r(w) = k}. The following examples of stopping time
are useful later.

Example 6 Let B be a Borel set in R* and {z,}.>, be a sequence of real
Fit—adapted random variables. Define the first hitting time 7p(w) to the set
B (i.e. the first time that {z.}.., hits B) by

7p(w) = inf{n: z,(w) € B}.
Then Tg(w) is a discrete stopping time.

In fact,

{ra(w) ='n} = N2} {zx € B} N {zy, € B} € Fn.

For a general random process with continuous time parameter ¢ we have
the following similar example.

Example 7 Let z; be a d—dimensional right continuous §.—adapted process

and let A be an open set in R%. Denote the first hitting time o 4(w) to A by
oa(w) =inf {t > 0: z(w) € A}.

Then o 4(w)is a stopping time.

In fact, by the open set property and the right continuity of z; one has
that

foaw) <t} =n, {oalw) <t+1}

= N2 UreQ,r<t+1/n {Zr(w) € A} € Feso = e,
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where () is the set of all rational numbers.
The following properties of general stopping times will be useful later.

Lemma 8 7(w) is a stopping time, if and only if {r(w) <t} € F, VL.

Proof. =: {r(w) < t} =UX l{T(w)<t—l}€§c
<={’r( <t} ﬂ 1{1’ <t+ = }€3t+0—3t

Lemma 9 Let o,7,0,,n=1,2,--- be stopping times. Then
(i)oAT,oVT,
(i) 0 =lim, .00 On, when o, T or o, |,

are all stopping times.

Proof. (i): {s AT <t} ={oc <t}U{r <t} €,

{fovr<t}={o<t}n{r <t} €F:.

(ii): If o5 1 o, then

{o <t} =N, {on <t} €T

Ifo,|o, then

{o <t} =u2, {0, <t} €F:.
By Lemma 8 ¢ is a stopping time. =

Now let us introduce a o— field which describes the information obtained
up to stopping time 7. Set

Fr={A€Foo: VL €[0,00), AN {1 (w) < t} € F:},
where we naturally define that Fo = Vi>o8:, i.e. the smallest o—field
including all §;,t € [0, 00). Obviously, §, is a o— algebra, and if 7(w) = ¢,
then &, = §:.

Proposition 10 Let 0,7,0,,n=1,2,--- be stopping times.
(1) If o(w) < 7(w),Vw, then T, C -
(2) If 0n(w) | o(w), Y, then N2, 0, = Fo-
(3) 0 € F5. (We use f € F, to mean that f is F,—measurable).

Proof. (1): An{r <t}=(An{o <tHN{r <t} € F.

(2): By (1) §» C N%%, s, - Conversely, if A € N22;Fs,,., then

An{a,, <t} =U2 (AN{on <t-1}) €3, Vt > 0,Vn.
Hence AN{o <t} =UX (AN{on <t}) €T, and

An{o <t} =n2 (AN {o<t+i}) €Frro=5 ie. A€F,.

(3): For any constant 0 < ¢ < oo one has that {o < c}N{o <t} € Feac C
§uso{o<cleF, m

It is natural to ask that if {z:},., is §:—adapted, and o is a stopping
time, is it true that z, € §,7 Generally speaking, it is not true. However,
if {z:},o is a progressive measurable process, then it is correct. Let us
introduce such a related concept.

Definition 11 An R%—valued process {z¢};50 is called measurable (respec-

tively, progressive measurable), if the mapping
(t,w) € [0,00) x Q@ — z,(w) € R4
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(respectively, for each t > 0,(s,w) € [0,¢] x @ — ,(w) € RY)
is B([0,00)) x §F /B(R?) —measurable
(respectively, B([0,t]) x F¢ /B(R?) —measurable);
that is, {(t,w) : z:(w) € B} € B([0,00)) x § VBe B(RY)
(respectively, {(s,w) : s € [0, t], z,(w) € B} € B([0, t]) x ¢, VBE B(RY)).

Let us introduce two useful o—algebras as follows: Denote by P (re-
spectively, O) as the smallest —algebra on [0,00) x € such that all left-
continuous (respectively, right-continuous) §;—adapted processes

(W) : [0,00) x @ — ye(w) € R?
are measurable, P (respectively, O) is called the predictable (respectively,
optional) o—algebra. Thus, the following definition is natural.

Definition 12 A process {z:},5, s called predictable (optional), if the
mapping -

(t,w) € [0,00) x Q — z4(w) € R4
is P /B(R?) ~measurable (respectively O /B(R*) —measurable).

Let us use the notation f € P to mean that f is P— measurable; etc. It
is easily seen that the following relations hold:

feP=>feO= f is progressive measurable => f is measurable and
Fi—adapted.

We only need to show the first two implications. The last one is obvious.

Assume that {z;};>0 is left-continuous, let z} = z 4 BSTE [, &Ly,
k=0,1,---;n =1,2,--- . Then obviously, z} is right-continuous, and by
the left-continuity of z¢, 27" (w) — z¢(w), as n — 00,Vt,Yw. So {z: }150 € O.
From this one sees that PC 0. Let us show that {z;}:>0 € O implies that
{x¢}e>0 is progressive measurable. For this for each given ¢t > 0 we show
that {z,},>0 restricted on (s,w) € [0,¢] x Q is B([0,]) x F— measurable.
In fact, without loss of generality we may assume that {z;}:>¢ is right-

continuous. Now for each given ¢t > 0, let 27 = Thp8SSE [;‘,‘. . S"LlL) k=
0,1,---,2" = Iin = 1,2,---. Then obviously, {z7},¢ is B([0,4]) x
F:—measurable, so is {z’}SG[O,tl’ since by the right continuity of z, we
have that as n — 00,27 {w) — z,(w) ,Vs € [0, ], Vw.

Let us show the following

Theorem 13 If {:1:,},>0 is a R%—valued progressive measurable process,
then for each stopping time 0, Zyl, <o 18 §,—measurable.

We will use the compositon of measurable maps to show this theorem.
For this we need the following lemma.

Lemma 14 If f; is a measurable mapping from (Q,%) to (U, F.),i =
1,2,---; then

f(w) = (fl(w)’ fZ(w)7 e )
is @ measurable mapping from (Q,J) to () x Qg x -+« F x Fp x---).
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In fact, forany B; € §i,i =1,2,--- , f}(ByxByx---) = ﬂf;lfi—l(B;) €
FSofYFxFHmx--)CF

Now let us prove Theorem 13.

Proof. Let , = {0 < 00} . We need to show that z, is a measurable
mapping from (2, §,) to (R?, B(R%)). For any given ¢t > 0 by Proposition
10 o € §,. So by the definition of §,, o is a measurable mapping from
({o <t},3%) to ([0,],B([0,¢])). Hence by Lemma 14 g;(w) = (o(w),w)
is a measurable mapping from ({0 < t},F:) to ([0,] x 2, B([0,t]) x F.).
Note that by the progressive measurability of {z:},-¢, g2(s,w) = z,(w) isa
measurable mapping from ([0, t] x 2, B([0,£]) x §:) to (R, B(R?)). Hence
Zo()(@)o<o0 = g2 © 91(w) is & measurable mapping from ({0 < t}, )
to (R4,'B(R?)) This shows that for any B € B(R?), {z,ls<c0 € B} N
{o <t} € §:.Since t > 0 is arbitrary by definition {z;I,<0oc € B} € F,. B

1.3 Martingales with Discrete Time

First we will show the Doob’s stopping theorem (or called Doob’s optional
sampling theorem) for bounded stoping times.

Theorem 15 Let {"’n}n=o,1,2.m be a martingle (supermartingle, submartin-

gale), o < 7 be two bounded stopping times. Then {-’Bn},.=0'1'2..,. is a strong

martingle (respectively, strong supermartingle, strong submartingle), i.e.
Elz,|§o] = x5 (respectivly, <, >), a.s.

Proof. We only prove the conclusion for the case of submartingle. By
assumption there exists a natural number 0 < ng such that 7 < ng. So
|z-| < max{|za|,n=0,1,2,--- ,n0} < E::.o |Znl. So E |z,] < 0o. By the
same manner E |z,| < 0o. Note that by the definition of a stopping time
and §, for A€ §, and 0 <n<ng

An{o=n}n{r >n} € Fn.

Now suppose 7 — o < 1 in addition. Then by the definition of a submartin-
gale

fA(z" - z")dP = Z:c=0 fAﬂ(a=n}n{1’>n}(x" - z"‘H)dP <0.

In the general case set T, = 7A (0 +n),n=1,2,--- ,ng. Then all T,, are
stopping times, and

<L SThyy=17T1-0<,T1 -1 <1,

n=12..,n—1.

Let A€, C3r, 0" Then by the above conclusion

[ zsdP < [ zr,dP < --- < [, 2,dP.

The proof is complete. =
Now we have the following martingale inequality:

Theorem 16 Let {z.},_,, .. be a submartingale. Then for every A > 0
and natural number N :
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AP(maXocneh Tn 2 A) < E(ZN maxocncn za22) < E(z}) < Elznl,
and

'\P(minOSngN z, < _"\) <—-FEzg+ E(zNIminosnSN ::,.)—A)

< Ex§ + E(z}) < E|zo| + E|zn|.

Proof. Let us use the first hitting time technique and strong submartin-
gale property to show this theorem. Set
o=min{n<N:z,>A};0=N,if {} =¢.
Then o is a bounded stopping time. By Theorem 15
EIN 2 Eza = EzdlmuXos,.SN Ta>A + EzNImaxosy.sn Tp<A
> /\P(maxOSnSN Ty 2 ’\) + EzNImnxos,‘SN ZTa<A
Transferring the last term to the left hand side, we obtain the first in-
equality. Now set
T=min{fn < N:z, <A} 7=N,if {} =¢.
Then
Ezo < Ez, = ExrIminggpcn sn<-2 + BTN Imingen gy za>-A
< —AP(minocn<n Tn < —A) + E(EN Imingc ey zn>-A)-
Thus the second inequality is derived. ®

Corollary 17 1) Assume that {“n}n=o,1,--- s a real submartingale such
that E((z})) < oo,n =0,1,---, for some p > 1. Then for every N, and
A>0,

P(maxocnsn 7t > A) < E((z})7)/07,
end ifp>1,

B(maxogasw (o)) < (321)” B((eh)").
2) If {Tn}noo y.... i3 a real martingale such that E(|z,|?) < oo,n =0,1,---
then the conclusions in 1) hold true for =} and z}; replaced by |z,| and
{zn|, respectively.

Proof. 1): By Example 3 {z} }u=0,l.--- is a non-negative submartingale.
Using Jensen's inequality again one has that {(z¥)"}, _,, . is still a non-
negative submartingale. Hence the first inequality is obtained from Theo-
rem 16. Now if p > 1, set £ = maxg<n<n (z}}). then by Theorem 16 again
one has that

AP({ Z /\) S Ez’x[gz)‘.

Hence using Fubini’s theorem and Hélder’s inequality one derives that
E(€)=E [fpA~'dA = E [ p\P zgedA =p Joo XTIP(E > N)dA
<pfy N T2E(ef Ie>a)dA = 2 B[Pz}
< ;g_l[E(xmrll/p[EEP](p—l)/p_

Now if E(£P) = 0, then the second inequality is trivial. If E (¢°) > 0,

dividing both sides by [E€P)P~1)/P, the second inequality is also obtained.

2): If {zn},0,1,... is & real martingale, then by Jensen’s inequality we
have that {|z,.|}"=o,1,,_. is a submartingale, and |z,|* = |zn|. So by 1) the
conclusions are derived in this case. &
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In the following we will show the upcrossing inequality for a submartin-
gale, which is the basis for proving the important limit property of a sub-
martingale. First we introduce some nctations.

For a real §;— adapted process {xn}"=0,l"_. and an interval [a, b], where
b>a,let

71 =min{n > 0:z, <a},

To = min{n > 71 : T, 2 b},

Tantt = min{n > 79, : z, < a},

Tan42 = min{n 2 Tontl : Tn 2 b};
where we recall that min ¢ = +o00. Then {7,} is an increasing sequence of
stopping times. In fact, Vk > 0,

{ri=k}= {zo>aa:1>a, yTk-1 > 0, Tk < a} € Fi;

{'rz k} UJ_0 {ri=jm2= k}

=Ui {n = J,m, <a,%zj41 < b, ,zk1 < b,zk > b} € Fy;

{rs=k}=UZ{{ra=j,73= k}

Uk-—-l{‘r2—‘.7)x) b(L’_-,+1 >a, Tg-1 >0,3kSa}€3’k~
Hence 73, 79, and 73 are stopping times. The proofs for the rest are similar.
Now set

Ub[z(.), N)(w) = max {k > 1: 7q4(w) < N},

Db[z(.), N)(w) = max {k > 1: Tqk—1(w) < N}.

Obviously the first one is the number connected to the upcrossing of {m,.}ﬂ’zo
for the interval [a,b], and the second one is the number connected to the
downcrossing of {:c,.},l:;o for the interval [a,b].

Theorem 18 If {z,}.., is a submartingale, then for each N > 1,n >0
anda<b

EUlz(.), N] < 25 (El(an — o)t — (z0 — a)*),

P(U2[=(.), N] > n) < X5 El(zn — a)* Tysia(),Nj=n)s

EDbz(),N] < (El—ajE(xN b)t,

P(DY[z(.),N] 2 n+1) < gl EB(zn = b)* Ipsfa(),Nj=n-

Proof. For a submartingale {z, },., by Example 3 one sees that {y.}
{(zn — a)* }oo g is a non-negative subma.rtmgale. Clearly US*[y(.), N}(w) =
Ul{z(.), N](w). Again define 71,72, -- as above, but with z,a, and b re-
placed by 4,0, and b—a respectlvely Then if 2k > N

E(yN yO) Ez,._l(yr,./uv Yr.- U\N) EZ,._[(‘!/T;,.AN y‘rg,._lAN)

+ Zn—o E(y72n+|/\N yfzn/\N) 2 (b a)EUb—G[y( ) N]
where we have used the fact that {yn},., is a submartingale, and hence
a strong submartingale (Theorem 15), 30 E(yr,,, ;AN — ¥rzuaN) > 0; and
Yn > 0,Yn. The first inequality is proved. Now observe that

0 Z E(yT2nAN - yrzn-“/\N)

= E[(yfzn/\N - yfzn+1/\N)(IfanN<Tzn+l + I"‘auuSN)}

n=0 —
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= E[(b —a- yN)If:nSN<‘rzn+1 + (b - a)Ifznq-lSN]

= E(b-a)l;,.<N — EyNI1;n<N<rann-
Since {Ug"“[y(.),N] >n} ={N >3} and

{Tan SN < T2 +1} C {12n S N <7342} = {Ug‘“[y(.),N] = n} .
Hence we find that Eyn Iysiz()nj=n = (b — a)P(U3~*[y(.), N] > n).

For the downcrossing inequality we have to discuss {2}, itself di-
rectly, since {z, A0}, is not a submartingale. Let us set yn = z, — b.
Then {yn}pr, is still a submartingale, and

Dg(b_a)[y(')1 Nl(w) = Dz[x(')’ N](w)

Again define 75,73, - - - as above but with z, a, and b replaced by y, —(b—
a), and 0 respectively. We will now use another method to show the last
two inequalities. First, for the fourth inequality we have that asn > 1

02 E(YryuAN — Yrans1AN)

= E[(o - (zN - b))lfanNO’znn +(b- a)I‘rznuSN]'

Since

{D8le(), M 2 n+1} = {D%p_o)[u(), N 2 n +1}

={N 2> 7aa42} C{N 2 12041}
and {72, S N < Ton41} C {T2n S N < Ton42} = {Dﬂ[:c(.),N] = n} .
Hence it follows that

E(zN - b)+IDz[z(.).N]=n 2 (b - a)P(Dﬂz()aN] 2n+ 1)‘

The fourth inequality holds. Now taking the summation for n > 0 it yields

E(zy —b)* > (b~ a) 30 P(D3[z(.), N] 2 n +1)

= (b—0) 1, nP(DAz(), N] = n) = (b - a)EDA[x(.), N].

The third inequality is also established. =

Corollary 19 If {z,},-, is 6 supermartingale, then for each N > 1,n >0
anda<b

EUZ[z(),N] < g El(zn —a)7],

P(Ulz(.),N] > n+1) < 5 El(zn — a)~ Iys(z(),m=nl-

EDY[a(), N < ey Ellan — 8 — (20~ B)°],

P(D}[z(.),N] 2 n) < gtyE(zn — )" Ipsfa(),N)=n-

Proof. Let y, = —zn. Then {ya},_, is a submartingale. Hence

Ug(z(.), N} = DZ¢[y(.), Nl
and

D[a(), N] = UZ2{y(), N].
Applying Theorem 18 we arrive at the results. m

Theorem 18 and Corollary 19 are the classical crossing theorems on mar-
tingale. We can derive some other useful crossing results which are very
useful in the mathematical finance.ll611171{180) Here we apply some of
them to derive the important limit theorem on martingales.
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Theorem 20 If {z,}n., is a submartingale such that there erists a sub-
sequence of {n}, denote it by {ny}, such that

sup Bz} < oo, (1.1)

then oo = limg_.oo Tn exists a.s., and zo is integrable. In particular, if
Zn < 0,Vn, then condition (1.1) is obviously satisfied, and in this case ¥n
E[zoo|Fn] 2 Tn, a.s.

Proof. First, clearly

condition (1.1) <= sup,Ez} < 00 <> sup,E|z,| < co.

In fact, by the properties of submartingales one has that

Ez{ < Ez} , Vk.
and

FE|z,| = 2Ez} — Ex, < 2Ez} - Ex,.
Hence the equivalent relations hold. Now let U%(z(.)) = limy —.oo Ub(z(.), N).
Then by Theorem 18

EUS(z(.)) < L= supy E(zn ~ a)* < 0.
Hence U%(z(.)) < o0, a.s. Let

W= Ua,bEQ,a<bWa,b = UabeQ,a<b {li_mnxn <a<b< 1i_m_,.zn} .
Then

P(W) < Za,bEQ,a<b P(Wﬂ;b) < En,bEQ,a<b P(U:(:B()) = 00) =0.
Now we can let Zoo(w) = lim, o0 Tn(w), as w ¢ W; and z(w) = 0, as
w € W. By Fatou’s lemma

E|zs| < sup, E|z,| < co.
Hence z is integrable. In the case z,, < 0,Vn, by the definition of a
submartingale

0 > E[zy|§n) > T, a.s. Vm.
Again by Fatou’s lemma letting m — oo one reaches the final conclusion.
[ ]

14 Uniform Integrability and Martingales

It is well known in the theory of real analysis that if a sequence of measur-
able functions is dominated by an integrable function, then one can take
the limit under the integral sign for the function sequence. That is the fa-
mous Lebesgue’s dominated convergence theorem. However, sometimes it
is difficult to find such a dominated function. In this case the uniform inte-
grability of that function sequence can be a great help. Actually, in many
cases it is a powerful tool .

Definition 21 A family of functions A C LY(Q,§, P) is called uniformly
integrable, if limy_, oo Supse 4 E(f1)552) = 0, where L'(Q,F, P) is the to-
tality of random variables £, (that is, all £ are §F—measurable) such that
Ef¢| < o0.
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Lemma 22 Suppose that {z,}o, C LY(Q,§, P) is uniformly integrable,
and as n — 00,
Tn — I, in probability, :
i.e. Ve > 0, lim, oo P(|z — 2| > €) =0, then
limy, oo E|Tn ~ x| = 0. (i.e. z, — x, in LY(Q,F, P)).
In particular, lim, o, Fz, = Ezx

Proof. In fact, Ve > 0,

Elzn - 2| € E(jtn ~ 2| 1z, —gj>2) + E(|2n — 2| Iz —g1<) = P+ 13
Hence one can take a A large enough such that I f‘x < €/2, since clearly
{z,, — z},, is uniformly integrable. Then for this fixed A by using Lebesgue’s
dominated conver%ence theorem one can have a sufficiently large N such

that asn > N, ;" <¢e/2. m
For the sufficient conditions of uniform integrability of a family A we
have

Lemma 23 Suppose that A C L}(Q,, P). Any one of the following con-
ditions makes A uniformly integrable:
1) There ezists an integrable g € L*(Q, §, P) such that
|z| < g, Vz € A
2) There exists a p > 1 such that sup ¢ 4 E |z(w)|? < oo.

Proof. 1): Since as A — oo

supze4 P(|z(w)] > A) < 3 supzeq B z(w)| < 3Eg(w)| — 0.

So by the integrability of g one has that as A — oo

Ez(w)| fizw)>a < Eg(W)jzw)j>a — 0, uniformly w.r.t. z € A.

2): Since sup,¢ 4 P(Jz(w)] > A) < sup,c4 E |z(w)] — 0, as A — 0. So
as A — 0o

supzea E|z(w)l iz (w)i>a

< sup,e 4(E [2(w)I")!/P sup,e 4l P(|z(w)] > N]®-D/? - 0. m

Now we know that the uniform integrability condition is weaker than
the domination condition. Actually, it is also the neccessary condition for
the L!—convergence of the sequence of integrable random variables or, say,
integrable functions.

Theorem 24 Suppose that {z,}o., C L'(Q,§, P). Then the following two
statements are equivalent:
1) {za )22, is uniformly integrable.
2) sup,_y 5. E|za] < o0; and Ve > 0,38 > 0 such that VB € §, as
P(B)<$é

SUPp_1 2. E|Za| IB <€

Furthermore, if there ezists an x € L'(Q, §, P) such that as n — oo,
z, — x, in probability; then the following statement is also equivalent to
1):
8) Tp — x, in LY, T, P).
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Proof. Since 1) = 3) is already proved in Lemma 22, we will show that
3) = 2) = 1) =2).

1) = 2): Take a Ao large enough such that sup,,_, 5 ... Elzn| Ijz, |>x, <
1. Then

SUP,_;2,.. E|Ta|l < Ao+ 1.
On the other hand, for any B € § since

E|zq|Ig = E|za| I{jz,j>a}nB + E |Ta] I{jz,|<2}nB

< supuy ... ElZnl Iz 52y + AP(B) = I + IQ’B-
Hence Ve > 0 one can take a A > 0 large enough such that Ij* < §,
then let §, = §-f\—; For this §. > 0 one has that VB € §,P(B) < §, =
Sup,_1 2. Elza|Ip <e.

2) = 1): Ve > 0 Take § > 0 such that 2) holds. Since

P(lzn] > A) < 3 8uPp_y y,... E|Zal .
Hence one can take an N large enough such that as A > N,

P(lza| > A) <8, Vn=1,2,---.
Thus by 2) as A > N,

Elwn|II,"l>,\ <gWm=12,.--.

3) = 2): Take an Ny large enough such that as n > Ny,

Elz —z,| < 1.
Thus

SUP,_19,... E |zn| < max{l + E|z|, E|z,|, - , E|zn,|} < co.
On the other hand, observe that

Elz,|Ip < E|z, — z| + E|z| Ip.

Hence Ve > 0, one can take an N, large enough such that as n > N,,

Elz —z,.| < §.
Then take a § > 0 small enough such that VB € §, as P(B) < 4,

maxp=y,.. N, {E|2a| I} <€, and E |z|Ip < /2.
Thus as P(B) < §,E|z,|Ip <e,Vn=1,2,---. m

Now let us use uniform integrability as a tool to study the martingales.

Theorem 25 If {z.}.. is a submartingale such that {z}}.>, is uni-
formly integrable, then zo, = lim, .o T eTists, a.s., and

E[z|§n] 2 24, Vn,
i.e. {zn }"___0'1'2,___ oo 13 also a submartingale, and we call it a right-closed
submartingale.

This theorem actually tells us that a uniformly integrable submartingale
is a right-closed submartingale.

Proof. By uniform integrability one has that

SUPp_g 1 2,... BT} < 00.
Hence applying Theorem 20 one has that zo, = lim,,_, Z,, exists, a.s. Now
by the submartingale property {z}}.., is also a submartingale (Example
3). Hence for any a > 0, and B € §,, as m > n,

Jel(=a) Va,]dP < [g[(~a) V zm]dP.
Letting m — oo by the uniform integrability of {z;} },- , one has that
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Jgl(—=a) V z,]dP < [g[(—a) V zo|dP.
Now letting a T oo by Fatou’s lemma one obtains that
I} pIndP < fB ZToodP = fB El[zoo|Fn]dP, VB € Fn.
The conclusion is established. m
‘We also have the following inverse theorem.

Theorem 26 If {zn}ﬂ___o_l_z'___ o 58 submartingale, where

Zoo = limy,_,o0 T exists, a.s.,
then {z}},_o,5,... i8 uniformly integrable.

Proof. By Jensen’s inequality (¥}, 15 ... 0o 18 6ls0 a submartingale.
Now VA > 0, denote B} = {z} > A}, then by the submartingale definition
as A — 00

P(B}) < +Ez} < +Ex}, — 0, uniformly w.r.t. n.

Therefore as A — oo
I} By z}dP < [, By z}r dP — 0, uniformly w.r.t.n. ®m

Corollary 27 1) If {Tn},_0,1,2,... 0o 18 @ Tight-closed martingale, then one
has that {Zn},_g ;2. i uniformly integrable.

2) For a sequence of random variables {yn},,_q 1 2,..if there ezists a z €
LY(Q, §, P) such that [yn| < E(|2]|8n), where §n C Fns1 C §F are o—fields,
then {Yn},—0,1.2,.. i uniformly integrable.

Proof. 1): It can be derived from Theorem 26, since {Zn}, g 2.... o0 18
both a submartingale and a supermartingale.

2): In fact, let z, = E(z|§,). Then, obviously {Zn}n;-o,x,z,-.. iS a mar-
tingale, and sup,,_g ; 2 ... £ 2| < E|2] < 0o. Hence by Theorem 20 z,, =
limp_,o0 2 exXists, a.., ze € L}(,§, P), and z, = E(Zoo|n), V1. There-
fore {z2},,_0,1,2,... 00 i3 @ Fight-closed martingale. Now by 1) it is uniformly
integrable, so is {yn},_012,.- ®

Condition in 2) for the uniform integrability is weaker than the usual
Lebesgue’s dominated condition. Moreover, from the proof of 2) in Corol-
lary 27 one also can obtain the following thoerem

Theorem 28 (Levi’s theorem) If z € L}(Q,§, P), and Fn C Fnt+1 CF are
a—fields, then as n 1 00, E[z|§n] = E2|Fx), where Foo = Vn=1,2,.&n, i.e.
Foo is the smallest o—field including all §p,n=1,2,--- .

Proof. By the proof of 2) in Corollary 27 one already has that 2,
limp oo zn = limg oo Ef2|F,) exists, a.s., 200 € L}(Q,F, P), and z,
E(200|n), Vn. Let us show that zo, = E[2|§o],a.s. In fact, by limit one
has 2o, € Foo, i-€. it is Foo—measurable. Moreover, Vn,VB € §,,

Ezeolp = Ezalp = E(El[2|a)I5) = E(E{zIs|3,)) = Ezlp

= EE[2|F o) IB-

From this one also has that VB € Foo = Vp=1,2,-8n,

EZOOIB = EE[Zl;fm]IB.

I
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Since 2o and E[z|F ] both are §, —measurable. Hence zoo = E[2|§wo], a5
]

Now let us consider the discrete time {---,—k,—k+1,---,~2, 1,0}
with right-end point 0 but without the initial left—starting-time. We still call
{Tatne( —k—k+1,-,—2,-1,0) @ martingale (supermartingale, submartin-
gale), if
(i) z,, is integrable for each n = 0,-1,-2,---;

1

(i) z, is §n—adapted, i.e. foreachn = 0,-1,-2,--- , z, is §, —measurable,
where §,,n =0, -1, ~2,- -, are o—fields still with an increasing property,
ie. §n C¥myasn<m;Vame {--- ,—k,—k+1,---,-2,-1,0};

(ii) Elxm|Fs] = zn, (respectwely, <, 2)as. V0 <n<mV¥nmce

{-,-k-k+1,---,-2,-1,0}.
We have the following limit thoerem.

Theorem 29 If{Zn},c(... _k,—k+41,..,—2,-1,0) 5 & Submartingale such that
lnf,,,_o ~1,-2, . Ez, > —00,

then {zn}ne(._, \—ky—k41,,—2,~1,0) 3 uniformly integrable,
T_oo = limy oo Tp eTists a.s.,

and as n — —00, T, — T, in LY, §, P).

Proof. For each N consider the finite sequence of random variables
{xn}n__ No—N41,...—1,0- Denot by Ul[z(.),—N] the number of upcross-
ing of :c,.}n__ N,—N+41,- 1,0 for the interval {a,b]. Then by Theorem 18
EUlz(.),—N] < 2 E(zo — 2)*, and

BU(z()] < 5 E(zo — a)* < oo,
where U%[z(.)] = limpy_00 Ub[z(.), —N]. By the proof of Theorem 18 one
has that z_o, = lim,_,_ T, exists a.s. However, it still remains to be
proved that _o, is finite, a.s.. Let us show that {Zn} e (.. _k—k+1,..,-2,-1.0)
is uniformly integrable. If this can be done, then all conclusxons will be de-
rived immediately by the property of uniform integrability. Observe that
Ezxz, |, as n |}, since {:"n}ne{ \—ky—k+1,,—2,~1,0} is a submartingale.
Hence by assumption a finite limit exists:

limy,_, oo Ezp > infp—g,-1,-2,.. BT, > —00.

Note that { E[zo|§n]}ne ... —k,~k+1,- .—2,-1,0) IS & martingale and uniformly
integrable. Hence {z, — E[:r:0|3n]}"6 (- 1—k,—k+1,- ,—2,—1,0} i3 & NON-pOsitive
submartingale, and the uniform mtegra.blhty of it is the same as that of
{“’n}ne{--. \—ki—k+1,,—2,~1,0) - 50 We may assume that z, < 0. Now Ve >0,
take a —k large enough such that Ez; — lim,,_,_o Fz, < . Then by the
property of submartingales and the property that Ex, | asn |,

P(zn < =) < 1 E|za| = $(2Ez} — Ez,)

< }(2Ex{ -lim,__o Ex,) — 0, uniformly w.r.t. n, as A — oo.
andifn <k <0,

0< E[(_xn)lz..<—-,\] < -Ez, ~ E[(—xn)lxuz—,\]

< —limg_oo Ezn + Elzily,>-1)

< —-Ex + E[.’L‘klznz_,\] +e= E[("‘@:)L:,.(—AI + €.



1.5 Martingales with Continuous Time 17

From this one easily derives that {z.}, . ()b k41, —2,-1,0} With Zn <0
is uniformly integrable. m

1.5 Martingales with Continuous Time

Now let us consider the martingale (submartingale, and supermartingale)
{z¢}:e(0,00) With continuous time. First, we will still introduce the upcross-
ing numbers of a random process for an interval. Let {z:};5o = {Zt};¢(q 00)be
an adapted process, and U = {t3,%2, - ,t,} be a finite subset of R} =
[0, 00). Denote its rearrangement to the natural order by {s;,2,---,3,},
ie. s < 83 < -+ < 8. Let Ub[z(.),U] be the number of upcrossings of
{2ss } 5=y for interval [a, b], and we also call it the number of upcrossings of
{z¢},cy for interval [a, b]. For any subset D of R, define

Ut(z(.), D] = sup {U%[z(.),U] : U is a finite subset of D} .
In case D = {t;,t2, - ,tn, -}, obviously

U[z(.), D] = limp 00 U¥(2(.), Un),
where U, = {t1,t2, - ,tn}. By using the results on discrete time we have
the following theorem.

Theorem 30 If {x:},., is a submartingale, D = {t1,t3, - ,tn, -}, then
for any 0 < r < 8,a < b and A > 0 one has that

’\P(suptGDn(r,a] Ixtl > _’\) < E.’B,T + 2E(2:’),

EUZlx(), DN r,s]] < 525 (El(zs — a)* — (zr — a)*).

Proof. Set D = {r,s,t1,t3,-+ ,tn, - - } Notice that

Un= ({T,S, ty,ta,- - ,tn} nA[r, 3]) 1 (D n [7‘, 3])
So the conlusions for the set DU [r, s] are derived by applying Theorem 16
and 18 and taking the limit for n — co. However, (DN |r,s]) C (bn [r, s]).
So the two conclusions for (D N [r, s]) hold true. m

Now we can generalize the limit theorem to submartingales with contin-
uous time.

Theorem 31 Let {z:},,, be a submartingale. Then T; = lim,;req 2,
exists and finite a.5. and {Z;},5o s still a submartingale such that T, is
right continuous with left-hand limits a.s. Furthermore, z; < T, a.s. for
vt > 0.

(Recall that Q@ = the totality of real rational numbers). To establish the
above theorem we divide it into two steps. The first step can be written as
the following lemma.

Lemma 32 If {z:},,, is a submartingale, then ¥t > 0
limy1e,req T and lim, ¢ e 2,
exist and are finite a.s. (Here, we define zo_ = z¢, and Fo— = Fo).



