Yunlin Su
Song Y. Yan

Principles of Compilers

A New Approach to Compilers
Including the Algebraic Method

HiEIRIE

BERBTENFFETE (AR )

HHHHHHHHHHHHHHHHHHHH



Authars

Prof. Yunlin Su

Head of Research Center of Information
Technology Universitas Ma Chung
Villa Puncak Tidar No-01 Malang
Java Timur, Indonesia

E-mail ; su. yunlin@ machung. ac. id
Department of Computer Science
Jinan University , Guangzhou 510632,
China

E-mail : gxuwzsyl@ yahoo. com. cn

P tERR g H (CIP) £iiig

Prof. Song Y. Yan
Department of Mathematics

Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge MA 02139 ,U. S. A.
E-mail :syan@ math. mit. edu

SRl EENBONANBERTE: EOUBER, BHEE.

JbR . SEHF dimitt, 2011.6
ISBN 978 —7 —04 —030577 -7

[. O 1. OF-@F~ 1. ORFRF-RFET-FX

Iv. @QTP314

rh R R A 50 CIP S5~ (2011) 38 058306 5

WhigiE Bk PITHE MR HEmikit &

TR AR FHEEN®]  XIER

HREST S%HEEHRE WifHLIE 400 - 810 - 0598

0 i EmERXESNRE 4 S B HE hitp://www. hep. edu. cn
HRECERAY 100120 hitp.//www. hep. com. cn

2] Rl AbstRRETRIAE PR A F M 1T hitp://www. landraco. com

F & 787 x1092 1/16 http : //www. landraco. com. cn
B % 29.25 B sk 201146 BEILIR

z ¥ 769 000 En k2011 £ 6 HE 1 REIRI
ek 010 -58581118 F M 69.00 7T

A5 R BT R T S B R AR, (A FI BTG T R B A TR

FRBURE  BRUAR
¥ ¥ = 30577 -00
Not for sale outside the mainland of China

IR P EAFHRHEE



Yunlin Su
Song Y. Yan

Principles of Compilers

A New Approach to Compilers
Including the Algebraic Method



Preface

The compiler is one of the most important aspects of system software. When
any computer user develops a computer program, one must use some pro-
gramming language, rather than using a computer instruction set. This im-
plies that there must be the compiler of the programming language that
has been installed on the computer one uses, and otherwise the developed
program cannot be run.

There are some differences between a compiler and programming lan-
guage. Once language is designed, it must be kept unchanged (except when
it contains a mistake that has to be corrected), while the techniques for im-
plementing compilation might be changed over time. Hence people always
explore the more efficient and more advanced new techniques to raise the
quality of compilers.

The course similar to “The principles of Compilers” has become one of
the most important courses in computer science within higher institutes. Ac-
cording to our knowledge, the development of compilation techniques evolves
in two directions. One is towards the improvement of the compilation tech-
niques for existing languages. Another is towards the research and develop-
ment of the compilation techniques of new languages. These new languages
include object-oriented languages, distributed languages, parallel languages,
etc. This book introduces the newest knowledge in the field, and explores
the compilation techniques suitable for the languages and computation. It
associates the compilation of programming languages with the translation of
natural languages in human brains so that the reader can easier understand
the principles of compilers. Meanwhile, it introduces the algebraic method of
compilation that belongs to formal technology.

This book consists of 16 chapters. Chapter 1, Introduction, outlines the
process of compilation and associates the compilation of programming lan-
guages with the comprehension and generation of natural languages in human
brains. Chapter 2 introduces the grammar and language. The generation of
the language is based on the grammar and languages are the fundamentals
of the compilation process. Chapter 3 introduces finite automata and regu-
lar languages, together with Chapter 4, it is devoted to lexical analysis, the
first task of analysis stage. Chapter 3 may be regarded as the theoretical
preparation of lexical analysis; while Chapter 4 is the concrete practice of



vi Preface

lexical analysis. Chapters 5—7 commonly work together to discuss syntacti-
cal analysis. Chapter 5 introduces push-down automata that correspond to
context-free grammars. Chapter 6 devotes to the discussion of context-free
grammars and the context-free languages which they generate. Chapter 7
explores the second task of analytical stage— syntactical analysis. Following
this is the semantic analysis. After the analytical stage finishes, the synthetic
stage starts. The main task of the synthetic stage is to generate object code.
Chapter 8 introduces and analyzes attribute grammars. Chapter 9 introduces
a new compilation method — the formal method of compilation. Chapter 10
discusses the generation of the intermediate code. Chapter 11 expatiates the
debugging and optimization techniques for compilers. Chapter 12 explicates
the memory management that is related to compilation of programs. Chap-
ter 13 is the destination of the compilation, the generation of object code.
The chapter introduces the virtual machine MMIX that is proposed by D.E.
Knuth in his book The Art of Computer Programming. This virtual machine
is the mixture of features of 14 most popular machines in the current mar-
ket, it has rich an instruction set, and makes object codes flexible. Chapters
14 and 15 expound the compilation techniques for object-oriented program-
ming languages and parallel programming languages. Chapter 16 discusses
issues for grid computing. Though grid computing has attracted one’s atten-
tion there is no any language especially suitable for grid computing at the
present. Hence, we just focus on its features, pointing out the issues which
the compilation of the language should be tackled when the language exists.

We would like to express our sincere appreciation to Ms. Chen Hongying
of Higher Education Press. Without her encouragement, help and patience,
we could not finish the writing of this book. We also want to thank the
authors whose contributions were referred to the book. A great part of the
contents of the book is taken from them. We would like to acknowledge Tim
Lammertink and Myrte de Vos for their kind help. Finally, we would like to
express our gratitude to our family and students for their long-term support
and understanding,.

No doubt, there might be neglects or mistakes remaining in the book. We
hope that the reader would be generous with your criticism.

Yunlin Su
Song Y. Yan
March 2011



Contents

Chapter 1 Introduction - « « « « « v vt et e e e 1
1.1 La,ngua,ge and Mankind -« - -« - - c o i e e 1
1.2 Language and Computer ........................... 3
1.3 Compilation of Programming Languages - - - -« -« -+« -« 12
1.4 Number of Passes of Compiler -« -« ovvvvia e 17
1.5 An Example of Compilation of a Statement- - -« -« --.. 19
1.6 Organization of the Book + « - -+« + - v v v oot 21
PrOBLEmIS: = « » « « e = o vt v e e e e e e e e e 23
REFETEIICES « « « + = » « + oo e v et e e e e e 23
Chapter 2 Grammars and Languages- - -+ - -« -« 25
2.1 Motivation of the Chapter - ---- - .. v v o 25
2.2 Preliminary Knowledge ................ B R EEE 25
0.3 GIAININAT « < « « = v = v v et et et e et e et 27
24 LADGUAGE: -« « « v v oot r e 31
2.5 Language Generated by a Grammar « - - - - -« - oo v ol 34
2.6 Turing Machine - - « « -« v v v vmrvrnnneenae ., 37
2.7 Issues Concerning Grammars and Languages- - - -+« - 52
PrODIEINS: - « « « « = ¢« = v e e e e e e 53
REFEIEIICES - « « « +  « v v e et e e e 54

Chapter 3 Finite State Automata and Regular

LANGUAZES < « + « « « « « v vt m e 55
3.1 Motivations of the Chapter- - - - - -« v vty 55
3.2 Languages, Grammars and Automata « - - -+« -+« oo 55
3.3 Deterministic Finite Automata - -+« - -« - -+ ool 59
3.4 Nondeterministic Finite Automata - « - -« -+« - oot 64
3.5 Regular EXpressions - - « « « « v vveenenenannee o, 65
3.6 Regular GIAIIIAar « - « -« v v v v v omernennene e, 66
3.7 Kleene’s and Moore’s Theorems -+« « » « v v v v e v i oo e 68

3.8 Pumping Theorems and Closure Properties for Lrgg - - - - - - - 69



viii Contents
3.9 Applications of Finite Automata- « - -« - ov v 70
3.10 Variants of Finite Automata « - - -+« -+ v v 72
PrODBLOIMIS: « -+ = = v v oot ettt e e 77
REFEIOIICES + + - - + + v v mn ettt 78
Chapter 4 Lexical Analysis « - « -« -« covvmevreraenon.. 79
4.1 Motivation of the Chapter - - -+« -« v 79
4.2 Lexical ANalyzer « -+« oo evvre ot EEREEES 20
4.2.1 Role of Lexical Analyzer- - - - -+« - oo 81
4.2.2 Identifier Analysis - -+« c« s v c v 84
4.2.3 Handling of Constants « -+ -« - - - v oo 86
4.2.4 Structure of Lexical Analyzer - - - -+ -« - v v vnn 87
4.3 Output of Lexical Analyzer- - - -« ««« v v vvvrevneenenn. 95
44 Error Handling « <« «vvcvvvvvmmmm e 97
PrODIEIIS: « « « « « =« v vt e ettt e e 08
REFEIOIICES - - + + + =+« w oo e ettt 98

Chapter 5 Push-Down Automata and Context-Free

LangGUAGES - « + + « « « «c oo 101

5.1 Motivation of the Chapter -+« <+ o e v 101
59 Push-DoWI AULOMAata « « « « ¢« « v v e v v vme oo, 102
5.3 Context-Free Languages (Lgp) - - -« v v v v v oo 103
5.4 Pumping Theorems for Context-Free Languages: <« - -+ - - - - 105
5.5 Push-Down Automata and Context-Free Languages- - - - - - 106
5.6 Applications of Context-Free Languages - -« - -+« -« - oo v v 106
5.7 Turing Machines « « - -+« + v vvre e 107
5.8 Turing Machines as Language Accepters « « « -« « - oo e v v 108
5.9 Equivalence of Various Turing Machines - -+ - -« - -+« o oo 115
5.10 Recursively Enumerable Languages (Lgrg) <+ -« --- - 116
5.11 Context-Sensitive Languages (Lgg) « -+« v v oo oo mvees 117
5.12 Hierarchy of Machines, Grammars and Languages « - -« - - -« 119
5.12.1 Hierarchy of Machines- < - -« - -+ -+ v c v v 119
5.12.2 Hierarchy of Grammars and Languages - - - -« - - - - - 120

5.13 Relations Among Machines, Languages and Grammars- - - - - 121
PrODIEImS: « = <« « o v et e e e 124
REFETEIICEE « « « « + « ¢+ v o e et e e e 124
Chapter 6 Context-Free Grammars - - - - -+« -+ oo en 125
6.1 Motivation of the Chapter -+« -+« o v v 125
6.2 Context-Free GramInars: « « « -« « <<« v v vt e 126
6.3 Characteristics of Context-Free Grammars: - -« - -+ - -« - - 135

Problems: « « « v« v o v e e e e e e 154



Contents ix

REFOTOIICES - + + + + =+ v v v e e e et e e 155
Chapter 7 Syntax Analysis - -« -« -« o vvrreeneeasoaes 157
7.1 Motivation of the Chapter « + -+ 157
7.2 Role of Syntax Analysis in Compilers - -« - -+« oo oo v oo 158
7.3 Methods of Syntax Analysis « - < <« < - -+ - e 161
7.4 LL(1) Syntactical Analysis Method - -« -+« v oo vvvviv e 173
7.5 Bottom-Up Syntactical Analysis Method - - -+« - - v v vt vt 180
7.6 LR(1) Syntactical Analysis Method: - -+ - -+ - covveenonn 185
7.6.1 LR(0) Syntactical Analysis- - - - -+« -cc o e 185
7.6.2 SLR(1) Syntactical Analysis - -« -« -« - vvvvnn 189
7.6.3 LALR(1) Syntactical Analysig- «« -+« oo ovvvvvennn 191
7.6.4 LR(1) Syntactical Analysis- - - -« c- oo 193

7.6.5 Comparison Between LL(1) Syntactical Analysis
Method and LR(1) Syntactical Analysis Method - - - - - 202
PrODIEIMS: « « « « « v = o v v v e e e 205
REFOTEIICES - = « * + =+« « v e ettt e 206
Chapter 8 Attribute Grammars and Analysis- -« -+ -- ... 207
8.1 Motivation of the Chapter « «« - -+ v 207
8.9 ALLTIDULE GIraIlINar » « -« <+« « v v v v e r e e ae e 208
8.3 Dependence Graph and Evaluation of Attributes - - -+ - - .. 212
8.3.1 Dynamic Attribute Evaluation - - - -+« oo v oo 217
8.3.2 Loop Handling- - -« -+ v cvverrronoenennnonn. 291
8.4 L Attribute Grammas and S Attribute Grammarsg - - - - - - - - - 222
PrODIEIIIS: = « =+« =« v v o e et et e 295
References: « « -« « v o v v v v it e e e e e e e e e e e 227
Chapter 9 Algebraic Method of Compiler Design- - - -- - ... 229
9.1 Motivation of the Chapter -« -+« oo, 229
9.2 SoUrce LangUAe - « -+« + v v vt 230
9.3 Algebraic Foundation and Reasoning Language - - -« -+ - - - - - 238
9.3.1 Algebra Fundamentals - - -+« -+« - 239
9.3.2 Reasoning Language: « - -+« cvvvretrretton s 247
9.4 A Simple Compiler- « « « =+« o v v et 275
0.4.1 The Normal FOTIL « + « o v« c v v emee et 276
9.4.2 Normal Form Reduction - -+« -« vvvvian o 277
9.4.3 The Target Maching: « « « « » v v v v vveveeennonn... 281
PrODIEIIS: + + + v ¢ ¢ v ot v e e e e 9282

References .......................................... 282



X Contents

Chapter 10 Generation of Intermediate Code- - - - - - - - -+ .-+ 285
10.1 Motivation of the Chapter- - -« -« -« oo v vev e 285
10.2 Intermediate Code Languages - - - -+« - -« c v v v ver oo e e v 286

10.2.1 Graphic Representation - - - -« v o v 287
10.2.2 Postfix Representation « - - - -+« « - oo v 290
10.2.3 The Quadruple Code + -+ -+ v v v 292
PrOBLEITIS: « « » « « v+ v v v v o et n s e 311
REFETOIICER « « « + + = =t et v r e e e e et et s 312

Chapter 11 Debugging and Optimization - - -- .. ... ... 313
11.1 Motivation of the Chapter- - -+« -+« « o v v v v 313
11.2  Errors Detection and Recovery « - -« - - -« - v v v e e e 313
11.3 Debugging of Syntax Errors -« - -« v v v v vl 316

11.3.1 Error Handling of LL(1) Parser- - + - -+« -« v oo v oo ve 318
11.3.2 Error Handling in LR(1) Analysis « - - -« oo oo v v v es 319
11.4 Semantic Brror CHeck: « « « »c v o v v v o, 319
11.5 Optimization of Programs- - - -+ -+« - v oo v ot 320
11.6 Principal Ways of Optimization: - - -« -+ - -+ - o oo e oo v 324
11.6.1 Elimination of Subexpressions- -« - -+ v vt 324
11.6.2 Copy Propagation: « - -+« ««vvvvrreeaneen. 395
11.6.3 Dead-Code Elimination: - « - -« «+ v oo v v 326
11.6.4 Loop Optimization - « - « -« -« vrvveroenonon .. 397
11.6.5 Reduction of Strength- - - -+« -« v v oo e e 328
PrODLEIIIS: - =« = v oo e e et e 399
REFETOIICES - + - -+ <+« « s o v e et e 330

Chapter 12 Storage Management - - - -+ -« -« oo 331
12.1 Motivation of the Chapter- - - - « - <« « v oo e 331
12.2 Global Allocation Strategy « « « + =+ v v v e v v 332
12.3 Algorithms for Allocation - « - -+ - - v e v e v ve i i 334

12.3.1 Algorithm for Stack Allocation - - - -+« v o v v v v v e 334
12.3.2 Algorithm for Heap Allocation - - -+« -+ v v vve v 336
12.4 Reclamation of Used Space -« -+ -+ - v v oo v e 337
12.4.1 Basic Garbage Collection Algorithm - -« -« .- - - 338
12.4.2 Supports to Garbage Collector From Compilers - - - - - 340
12.4.3 Reference Counts -+« ++ v v v vem v 342
12.4.4 Tokens and SCANS « « + « « « v e v e v memmmnnnnneen. 343
12.4.5 Dual Space Copy « « « « v v v e 344
12.4.6 COMETACE « « « « + « + v et e e et 345
12.5 Parameter Passing -« « -« « o c oot 346

12.5.1 Call. by_Value .............................. 347



Contents xi

12.5.2 Call-by-References « -« « « e« vveveenenenan.o .. 347
12.5.3 Copy-Restore -« -« «-«ccuvevnnn. T 348
1254 Call-by-Name: -« -+« v v vevmrnmnennnenan.. ... 348
ProbBlems: « « « « = v e v v e e e e 349
REfErENCES -+« + » s v v v v e e e e e 351
Chapter 13 Generation of Object Code- - - - -+« - .. ... ... 353
13.1 Motivation of the Chapter- - - - - -« - .« o o oo vl 353
13.2 Issues of Design of Generators of Target Codes: + - - -« « - - - - 354
13.2.1 TInput of Code Generators« - -+~ ««v v v vvevv ot 354
13.2.2 Target Programs - -« « v v ovvnrne et .. 355
13.2.3 Storages Management- -« - -+ - - - oL 355
13.2.4 Selection of Instructions « - - -« -« o oL 356
13.2.5 Register Allocation- « -+« - vl 357
13.2.6 Selection of Order of Computation -+« -« ..., 358
13.2.7 Method of Generation of Codes- - -+« + oo oot 358
13.3 Target Machine MMIX - - - -« - oo oo ii i, 358
13.3.1 Binary Bitsand Bytes « -« -« 359
13.3.2 Memory and Registers «« - -+ oL 361
13.3.3 INSETUCLIONS « -« « « + =+ vt e v v ve e vttt et 362
1334 Load and StOre: « « « « v v e v v v e e 363
13.3.5 Arithmetic Operations «~ -« -+ vvvv il 365
13.3.6 Conditional Instructions - - - - - - v« oo ool 367
13.3.7 Bit Operations - « -+« v v v v e vt 368
13.3.8 Byte Operations: - « « « « v v vv e, 369
13.3.9 Jumps and Branches: -+ -+ - oo 373
13.3.10 Subprogram Calls« -« -+« v v v 375
13.3.11 Interruptions - -« « «« o v o e et 377
13.4 Assembly Language of MMIX « + - -« oo oo e 382
13.5 Generation of MMIXAL Target Codes- - - -+« « +«cvvvvn.. 389
13.5.1 Translation of Expressions in Reversed Polish
FOTIIL « ¢ v v vt e e e e e e e e 390
13.5.2 Translation of Triple Expressions- - - - -+« ¢+ .. 390
13.5.3 Translation of Expression Quadruples -« - -« ... .. 391
13.5.4 Translation of Expressions -« -+« - cvovven. 0. 392
13.5.5 Translation of Syntax Tree Form of Expressions - - - - - 393
13.5.6 Translation of Various Statements - - - - - - - - - - . - ... 394
ProblemS: « + ¢« v v v v vt e e e 395
REfETEICES « « + « + « v v vt e e e 397



xii Contents

Chapter 14 Compilation of Object-oriented Languages - - - - - 399
14.1 Motivation of the Chapter- -+« - -+ o v 399
14.2 Objects and Compilation « -« -« - oo 400
14.3 Characteristics of Objects « < -+« -« -« - o v e oo 403

14.3.1 TOReribamee: « « « « « v v mmmee e e 403
14.32 Method Overload - « « « + « v v v oo v v mi e 404
14.3.3 Polymorphic: » « « « e v v vt n e 405
14.3.4 Dynamic Constraint « - - - -+« - -« oe oo 406
14.3.5 Multiple Inheritances « -« +« -« - - oo 408
14.3.6 Multiple Inheritances of Inter-reliance « - -+« + - -+ - - 410
PrOBIEIMIS: « + <« « « c o s ot e e 419
S 413

Chapter 15 Compilation of Parallel Languages: --------: .. 415
15.1 Motivation of the Chapter- - - -+ - -+ -+ - - oo v 415
15.2 Rising of Parallel Computers and Parallel

COMPULALION « + + =« v v v v v et ot 415

15.3 Parallel Programming: « « « -« - e ot vevnsencnaeen.. 419
15.3.1 Shared Variables and Monitors - - - - -+ -« o - oo 420
15.3.2 Message Passing Model- - - - -+ - - o oo oo 422

15.4 Object-oriented Languages - -+« -« « - - oo v v oo 424
15.5 Linda Meta Array Space: « « -« -+« ccrcerrrmneeornno. 425
15.6 Data Parallel Languages - -« -« -« o xvvvvseerneen.. 497
15.7 Code Generation for Hidden Parallel Programs - ------- - - 428
15.7.1 Types of REGIONS « + -« + « e v vvvevenennneeaen.. 430
15.7.2 Formation of Regions « -« « « -+« - o v v oo 431
15.7.3 Schedule Algorithms for Regions - - -+ + - -+« - - oo v ot 436
ProOBIOIMIS: « « « « «  + v o v et e e e e e 437
REFETOICES - + -+ + » « o o v vt v e et e e 437

Chapter 16 Compilation of Grid Computing- - ... .- ... ... 439
16.1 Motivation of the Chapter- -+« -+ - -+ v v e i 439
16.2 Rising of Grid Computing and Intent - .-+ -+ - oo v 439
16.3 Grid Computing Model« « - -« o rr vt 449

16.3.1 Group ROULINE: <+« + « v v v rmvmen e 443
16.3.2 Routing in Linear Array - - - -« -« -« - 445
16.4 Compilation of Grid Computing - - - -« -« oo v v nn 447
PrODIEIIS: + - « « v+ + « v v e e e e e e e 450
REFETEICES - - + + + + + o+ v e e e e e 450



Chapter 1 Introduction

Language allows us to know how octopuses make love
and how to remove cherry stains and why Tad was
heartbroken, and whether the Red Sox will win the World
Series without great relief pitcher and how to build an
atom bomb in your basement and how Catherine the
Great died, among other things.

Steve Pinker

1.1 Language and Mankind

If you read the text above, you must be engaging in one of the mind’s most
enchanting process — the way one mind influences another through language.
However, we put a precondition on it that you have to know English, other-
wise the text has no influence at all to you. There are so many languages in
the world that even no one can exactly tell how many there are. Therefore,
there is the need of a bridge that connects different languages so that people
can understand each other. The bridge is the translation. And the subject
of the book is the translation between the formal language and the machine
language, or compilation.

What is the compiler or the compilation program? Simply speaking, it
is a program of which the function is to translate programs written in a
programming language into machine codes that are to be run by the same
kind of machine the codes belong to. In order to explain things behind this,
we need to discuss it further.

Language is main means of human communication and the way in which
most information is exchanged. By language, people link up each other, they
express their attentions and feelings, and they describe matters or express
their understanding [1]. It is one of the kinds of intelligence or the product
of intelligence. However, in the long process of human evolution, there was
a long period without language. Gradually, they invented oral language to
meet the need of living. Therefore, oral language can be considered as the first
breakthrough in language, it was also a breakthrough in human civilization.
From oral language to written language, it underwent even longer time. The



2 Chapter 1 Introduction

occurrence of written language represented a more significant breakthrough
of human being in terms of languages. Human thinking and problem solving
can be conceptualized as processes involving languages. Many, if not most or
all, forms of thinking and problem solving are internal, that is, done in the
absence of external stimuli. Abstraction of puzzles, for example, into verbal
symbols provides a way to think about a solution. It is not difficult to imagine
that without language the process of thinking cannot be completed, contin-
ued and deepened as if there is no language one simply cannot express his/her
ideas to other. When one wants to reminisce, he/she is unable to describe the
process that involves many objects and complicated plots. Written language
is more powerful than oral language. It not only can link up people at the
contemporary era, but also it can link up the present time and the ancient
time so that people at the present time can also know things that took place
in ancient period. By using written language, people not only can commu-
nicate with people in the vicinity, but also contact people at long distance.
Especially with the modern communication tools, e.g., computer networks,
televisions, and telephones, people may communicate with each other even
quicker, more convenient and may make sure the security and secrecy of in-
formation. That means that written languages change the extent of time and
space of communication of people.

The civilizations of the human being are divided into many branches. Each
one is symbolized by different language. Each race or nation formed each own
language due to the difference of living locations and evolution conditions.
In history, there were several thousands languages. As time passed, many
languages, especially the oral languages, that were used only by few people
had extinguished. Until now there are still some languages that have only oral
versions and have no corresponding written versions. Therefore, the languages
that have real impacts and are used by the great throng of peoples are not too
many. However, people who use these languages want to share the civilization;
they want to cooperate with each other or to do business. Obviously, each
language is so different from others that unless one has learnt it otherwise one
has no way to understand, and vice versa. Hence, if two different language
speakers want to converse with each other, they need a bridge to link them. It
is the translation. Its task is to translate a language spoken by A to another
language spoken by B and to translate the language spoken by B to a language
spoken by A. It is not only necessary to translate the oral language (the
translator of colloquial languages is a called interpreter) but also necessary, or
even more important to translate the written languages including the works in
social science, natural science, novels, etc. Without the translations, people
speaking different languages cannot converse, communicate, and exchange
their thinking or discoveries. In this sense, we may say that the world is
small but the number of languages in the world is far too many.

Today as the rapid development of science and technology and the in-
evitable tendency of economy globalization happening in almost every coun-
try around the world, language translation including colloquial and literal,



1.2 Language and Computer 3

has become a heated profession. Take as an example for the colloquial trans-
lation or interpretation, it involves three persons, i.e., two, A and B. who
want to converse with each other for some purpose, and one, C, who helps
them with the thing. Suppose that A speaks the language X and B speaks
the language Y. Obviously, in order for A and B understanding each other
the task of C is to interpret the words of X spoken by A into language Y,
meanwhile, he interprets the words of B spoken in Y spoken by B into lan-
guage X. Therefore, C must be a bilingual in this circumstance. And this
situation is shown in Fig. 1.1.

interpreter
of Aand B

Fig. 1.1 Oral translation.

The role of C sometime needs to be done by two persons, say C or D, is
in charge of the interpretation from X to Y or from Y to X.

While in the case of a literal translation, the translator mainly translates
a foreign language into his native language for the native readers, or he trans-
lates his native language into foreign language to serve the foreign readers.
No matter which case it is, the purpose is the same, i.e., to make the listener
or reader understanding each other.

1.2 Language and Computer

It is well known that computer is one of the greatest inventions of mankind
in the last century. It embodies the newest development of mankind’s science
and technology. Computer relies on its running to solve problems set by
people while the running relies on the program that is composed of a sequence
of the instructions in advance from the instruction set of the machine. The
instruction set that is used to develop programs can be considered as the
language of computer. It acts to follow the sequence of the instructions as if
it speaks the language that consists of the sequence. This kind of language
consists of the sequence of 0s and 1s.

Hence in order to make the computer running and working for peoples, one
should develop the program with the purpose of solving intended problem.
For doing so one needs to master the instruction set. We do not say that
people cannot master the instruction set and develop programs by using it.
However, it is really very tedious and cumbersome to “speak” the language to



4 Chapter 1 Introduction

computer; especially it is too much for the common users of the computers.
It is something like that one is required to understand the principles of the
television and operate the existing components of the television if one wants
to watch the television.

When the computer was just invented, there was not any other language to
use for running the computer. The instruction set of computer was the unique
language which people may use to develop programs. The historical period
is called the period of manually programming. The instruction commonly
contains the operation code that indicates the operation it performs, the
addresses of the data which the operation performs as the control codes.
At that time, only very few people were the designers or developers of the
computers. For them to build the programs using the instruction set was
not a problem though it also entailed them to work hard and spend lots
of time. As computers became more and more popular, the users were no
longer those who are very familiar with the principles inside the computers,
they are just the real user, no different from the users of televisions. They
want to freely use the computer to solve their varieties of problems. In this
circumstance, no doubt, the machine language became their stumbling block
in using computers [2]. In order to break away from the constraints of the
machine language, from soon after the invention of computer, people had
started searching the solution to the problem. The first step was to replace
the operation codes of the instructions to the notations easily mnemonic,
e.g., to use ADD to represent addition, SUB to represent subtract, MUL to
represent multiplication, and DIV to represent division, or more simply, just
to use +, —, x, and / (or +) to represent the arithmetic operators. Then, they
used symbolic addresses to take the place of real binary addresses, etc. Of
course the language transformed in this way is no longer computer language,
or original computer instruction set, although it basically corresponds to the
computer instruction set, and they are completely equivalent. This was the
first step that people broke away from computer language. Though it was a
minor step, it was crucial. It indicates that people may not be confined by the
computer instruction set, they may use more convenient language to develop
programs for computers. This kind of languages is called assembly languages.
Here the module given above was still suitable. As shown in Fig. 1.2, the left
side of the bottom edge of the triangle represents any program written in
assembly language which we call the source program, and the right side of the
bottom edge is totally equivalent program written in a computer instruction
set which was produced by the assembler on the top of the triangle and has
the name of the object program or target program. And the assembler plays
the role of the compiler of which the duty is to translate the source program
into the executable object program written in machine language. Therefore,
the assembler must also be executable on computer and by its operation it
produces the object program as its output.

Hence the assembler is the early version of the compilers. As the lan-
guage which source programs used was assembly language, it was only the



1.2 Language and Computer 5

Assembler

Source program Target program
(In assembly language) (In machine instruction set)

Fig.1.2 Translation of computer assembly language.

simple adaptation of the machine instruction set (e.g., the operation code
was the mnemonic code of the original one). Hence it is also called low-level
language. Here the word low means that it is machine-oriented (low-level)
and isn’t mankind-oriented (high-level). Assembler is also a low-level form
of the compilers as it hasn’t used much the compilation principles which we
used in the compilers for high-level programming languages.

After the success of assembly languages and their assemblers, people
started the design of the mankind-oriented high-level programming languages.
The common feature of these languages is that they broke away from the
restriction of the computer instruction set. They adopted a subset of the
commonly used language (in general it is English) and established the gram-
mar to describe the statements or elements which people used to develop the
programs. These languages are called procedure-oriented languages or sim-
ply procedural languages, or imperative languages. The earliest programming
languages include FORTRAN (stands for FORmula TRANslation, it was first
designed as early as 1954 [3]), ALGOL 60 [4], COBOL (stands for Common
Business Oriented Language, it was first designed in 1959, and its success was
strongly influenced by the United States Department of Defense). In terms of
the occurrence of the programming languages, the 1960s was stormy. It was
said that at that period over two thousand languages were developed, but
only thirteen of them ever became significant either in terms of concept or
usage. Among them, APL (stands for A Programming Language, developed
by Dr. Kenneth Iverson at IBM [5]) is an interactive language. It devises
a powerful yet compact notation for computation which incorporated many
concepts from mathematics. PL/1 (stands for Programming Language/1) is
suitable for scientific computation. With 1 in the name it probably intends
to be number one in terms of its great deal of functionality. LISP (stands
for List Processing, developed by McCarthy and his co-workers to design
a conceptually simple language for handling symbolic expressions with its
domain being artificial intelligence) [6]. PROLOG (stands for Programming
for Logic) is another effort for use in artificial intelligence. SNOBOL (devel-
oped in the mid-1960s at Bell Telephone Laboratory [7]) is a language whose
main strength is in processing string data. As the name SIMULA®7 indicated
that SIMULA was designed in 1967 and had simulation as its major appli-



6 Chapter 1 Introduction

cation domain. And it was later refined in CLU, Euclid, and MODULA [8].
GPSS or SIMSCRIPT [9] provided the example that conventional program-
ming languages can and have been augmented so that simulations can be
easily described. The later development of the programming languages was
the coming of the general-purpose language called ADA [10] in honor of Ada
Augusta, Countess of Lovelace, the daughter of the famous poet Byron. She
collaborated with Charles Babbage (1792~ 1871) who between 1820 and 1850
designed two machines for computation. One relied on the theory of finite dif-
ference and so he called it Difference Engine. The other embodied many of the
principles of a modern digital computer and he called this Analytical Engine.
Ada, as the collaborator of Charles Babbage, helped him with developing
programs for the analytical engine. Therefore she has recently been recog-
nized as the first programmer. The other language that later became very
popular is C [11]. It initially was used for writing the kernel of the operating
system UNIX.

Apart from few (if any) languages the languages aforementioned basically
all are procedure-oriented languages. After the software crisis that took place
in the late 1960s, the structured programming method was proposed, and it
hastened parturition of Pascal (in honor of French mathematician Pascal, de-
signed by Swiss computer scientist Niklaus Wirth [12]). Another methodology
that was proposed to solve the software crisis is the object-oriented software
design method, and it caused the production of the object-oriented languages.
For example, based upon the C language, C++ was developed. Soon after it
Java was also designed based upon C. In addition, SMALLTALK [13] is also
of this kind.

As hardware unceasingly develops it also puts forward the new require-
ments to software. New computer architectures like distributed systems, par-
allel computer systems, computer networks, etc. all propose new requirements
and challenges to computer programming. New languages that meet these
needs sequentially come out.

No matter how the languages change, there is one thing unchanged that
the source programs written in these languages must be compiled first before
they become executable object programs on computers. That is to say that
they obey the module as shown in Fig. 1.3.

Compiler

Source program . )
(Written in some prog- Object program in
ramming language) machine language

Fig. 1.3 A process of compilation.



