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Preface

This book presents the basic theory of fields, starting more or less from the
beginning. It is suitable for a graduate course in field theory, or independent
study. The reader is expected to have taken an undergraduate course in abstract
algebra, not so much for the material it contains but in order to gain a certain
level of mathematical maturity.

The book begins with a preliminary chapter (Chapter 0), which is designed to be
quickly scanned or skipped and used as a reference if needed. The remainder of
the book is divided into three parts.

Part 1, entitled Field Extensions, begins with a chapter on polynomials. Chapter
2 is devoted to various types of field extensions, including finite, finitely
generated, algebraic and normal. Chapter 3 takes a close look at the issue of
separability. In my classes, 1 generally cover only Sections 3.1 to 3.4 (on perfect
fields). Chapter 4 is devoted to algebraic independence, starting with the general
notion of a dependence relation and concluding with Luroth's theorem on
intermediate fields of a simple transcendental extension.

Part 2 of the book is entitled Galois Theory. Chapter 5 examines Galois theory
from an historical perspective, discussing the contributions from Lagrange,
Vandermonde, Gauss, Newton, and others that led to the development of the
theory. 1 have also included a very brief look at the very brief life of Galois
himself.

Chapter 6 begins with the notion of a Galois correspondence between two
partially ordered sets, and then specializes to the Galois correspondence of a
field extension, concluding with a brief discussion of the Krull topology. In
Chapter 7, we discuss the Galois theory of equations. In Chapter 8, we view a
field extension E of F as a vector space over F.

Chapter 9 and Chapter 10 are devoted to finite fields, although this material can
be omitted in order to reach the topic of solvability by radicals more quickly.
Mébius inversion is used in a few places, so an appendix has been included on
this subject.
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Part 3 of the book is entitled The Theory of Binomials. Chapter 11 covers the
roots of unity and Wedderburn's theorem on finite division rings. We also
briefly discuss the question of whether a given group is the Galois group of a
field extension. In Chapter 12, we characterize cyclic extensions and splitting
fields of binomials when the base field contains appropriate roots of unity.
Chapter 13 is devoted to the question of solvability of a polynomial equation by
radicals. (This chapter might make a convenient ending place in a graduate
course.) In Chapter 14, we determine conditions that characterize the
irreducibility of a binomial and describe the Galois group of a binomial. Chapter
15 briefly describes the theory of families of binomials—the so-called Kummer
theory.

Sections marked with an asterisk may be skipped without loss of continuity.
Changes for the Second Edition

Let me begin by thanking the readers of the first edition for their many helpful
comments and suggestions.

For the second edition, [ have gone over the entire book, and rewritten most of
it, including the exercises. I believe the book has benefited significantly from a
class testing at the beginning graduate level and at a more advanced graduate
level.

I have also rearranged the chapters on separability and algebraic independence,
feeling that the former is more important when time is of the essence. In my
course, | generally touch only very lightly (or skip altogether) the chapter on
algebraic independence, simply because of time constraints.

As mentioned earlier, as several readers have requested, I have added a chapter
on Galois theory from an historical perspective.

A few additional topics are sprinkled throughout, such as a proof of the
Fundamental Theorem of Algebra, a discussion of casus irreducibilis,
Berlekamp's algorithm for factoring polynomials over Z, and natural and
accessory irrationalities.

Thanks

I would like to thank my students Phong Le, Sunil Chetty, Timothy Choi and
Josh Chan, who attended lectures on essentially the entire book and offered
many helpful suggestions. I would also like to thank my editor, Mark Spencer,
who puts up with my many requests and is most amiable.
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Chapter 0
Preliminaries

The purpose of this chapter is to review some basic facts that will be needed in
the book. The discussion is not intended to be complete, nor are all proofs
supplied. We suggest that the reader quickly skim this chapter (or skip it
altogether) and use it as a reference if needed.

0.1 Lattices

Definition A partially ordered set (or poset) is a nonempty set P, together
with a binary relation < on P satisfying the following properties. For all o, (3,
y€P,

1) (reflexivity)

2) (antisymmetry)
3) (transitivity)

1f, in addition,
afBeEP>a<lforB<La

then P is said to be totally ordered. [J

Any subset of a poset P is also a poset under the restriction of the relation
defined on P. A totally ordered subset of a poset is called a chain. If S C P and
s < a for all s € S then a is called an upper bound for S. A least upper
bound for S, denoted by lub(S) or \/S, is an upper bound that is less than or
equal to any other upper bound. Similar statements hold for lower bounds and
greatest lower bounds, the latter denoted by glb(S), or A S. A maximal
element in a poset P is an element a € P such that a < 3 implies a = 3. A
minimal element in a poset P is an element v € P such that 3 < v implies
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B =". A top element 1 € P is an element with the property that a < 1 for all
a € P. Similarly, a bottom element 0 € P is an element with the property that
0 < a for all & € P. Zorn's lemma says that if every chain in a poset P has an
upper bound in P then P has a maximal element.

Definition A4 lattice is a poset L in which every pair of elements o, 3 € L has a
least upper bound, or join, denoted by oV 3 and a greatest lower bound, or
meet, denoted by o N . If every nonempty subset of L has a join and a meet
then L is called a complete lattice. [J

Note that any nonempty complete lattice has a greatest element, denoted by 1
and a smallest element, denoted by 0.

Definition A sublattice of a lattice L is a subset S of L that is closed under the
meet and join operation of L. O

It is important to note that a subset S of a lattice L can be a lattice under the
same order relation and yet not be a sublattice of L. As an example, consider the
coll

S of all subgroups of a group G, ordered by inclusion. Then § is a subset of the
power set P(G), which is a lattice under union and intersection. But S is not a
sublattice of P(G) since the union of two subgroups need not be a subgroup.
On the other hand, S is a lattice in its own right under set inclusion, where the
meet H A K of two subgroups is their intersection and the join H V K is the
smallest subgroup of G containing H and K.

In a complete lattice L, joins can be defined in terms of meets, since \/T is the
meet of all upper bounds of T'. The fact that 1 € L ensures that T has at least
one upper bound, so that the meet is not an empty one. The following theorem
exploits this idea to give conditions under which a subset of a complete lattice is
itself a complete lattice.

Theorem 0.1.1 Let L be a complete lattice. If S C L has the properties
) 1€8 :

2) (Closed under arbitrarymeets) T C S, T#0= AT € S

then S is a complete lattice under the same meet.

Proof. Let T C S. Then AT € S by assumption. Let U be the set of all upper
bounds of T that lie in S. Since 1 € S, we have U # 0. Hence, AU € S and is
VT. Thus, S is a complete lattice. (Note that S need not be a sublattice of L
since AU need not equal the meet of all upper bounds of T" in L.) O

0.2 Groups

Definition 4 group is a nonempty set G, together with a binary operation on
G, that is, a map G x G — G, denoted by juxtaposition, with the following
properties:
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I) (Associativity) (a8)y = a(Bv) forallo, 3, v € G
2) (ldentity) There exists an element ¢ € G for which ea = ae = a for all

a€eG
3) (Inverses) For each o € G, there is an element a~' € G for which
aa l=ala=¢

A group G is abelian, or commutative, if a3 = [Bq, forall o, § € G.O

The identity element is often denoted by 1. When G is abelian, the group
operation is often denoted by + and the identity by 0.
Subgroups

Definition 4 subgroup S of a group G is a subset of G that is a group in its
own right, using the restriction of the operation defined on G. We denote the
Jact that S is a subgroup of G by writing S < G.OJ

If G is a group and o € G, then the set of all powers of
(a) ={a" |n e Z}
is a subgroup of G, called the cyclic subgroup generated by a. A group G is

cyclic if it has the form G = {a), for some a € G. In this case, we say that o
generates G.

Let G be a group. Since G is a subgroup of itself and since the intersection of
subgroups of G is a subgroup of G, Theorem 0.1.1 implies that the set of
subgroups of G forms a complete laitice, where HAJ =HNJand Hv J is
the smallest subgroup of G containing both H and J.

If H and K are subgroups of G, it does not follow that the set product
HK ={hk | h € H,k € K}
is a subgroup of G. It is not hard to show that H K is a subgroup of G precisely
when HK = KH.
The center of G is the set
Z(G)={feG|aB=pPaforalla € G}
of all elements of G that commute with every element of G.

Orders and Exponents

A group G is finite if it contains only a finite number of elements. The
cardinality of a finite group G is called its order and is denoted by |G| or o(G).
If a € G, and if o* = ¢ for some integer k, we say that k is an exponent of o.
The smallest positive exponent for a € G is called the erder of a and is
denoted by o(a). An integer m for which a™ =1 for all & € G is called an
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exponent of G. (Note: Some authors use the term exponent of G to refer to the
smallest positive exponent of G.)

Theorem 0.2.1 Let G be a group and let o € G. Then k is an exponent of o if
and only if k is a multiple of o(c). Similarly, the exponents of G are precisely
the multiples of the smallest positive exponent of G. [

We next characterize the smallest positive exponent for finite abelian groups.

Theorem 0.2.2 Let G be a finite abelian group.

1) (Maximum order equals minimum exponent) If m is the maximum order
of all elements in G then o™ = 1 for all a € G. Thus, the smallest positive
exponent of G is equal to the maximum order of all elements of G.

2) The smallest positive exponent of G is equal to o(G) if and only if G is
cyclie.]

Cosets and Lagrange's Theorem

Let H < G. We may define an equivalence relation on G by saying that a ~ 3
if 87'a € H (or equivalently o~'3 € H). The equivalence classes are the left
cosets aH = {ah | h € H} of H in G. Thus, the distinct left cosets of H form
a partition of G. Similarly, the distinct right cosets Ha form a partition of G. It
is not hard to see that all cosets of H have the same cardinality and that there is
the same number of left cosets of H in G as right cosets, (This is easy when G
is finite. Otherwise, consider the map o H — Ho™!))

Definition The index of H in G, denoted by (G : H), is the cardinality of the
set G/H of all distinct left cosets of H in G. If G is finite then (G:H)=
IG|/|H|.0

Theorem 0.2.3 Let G be a finite group.

1) (Lagrange) The order of any subgroup of G divides the order of G.

2) The order of any element of G divides the order of G.

3) (Converse of Lagrange's Theorem for Finite Abelian Groups) If A is a
Jfinite abelian group and if k | o(A) then A has a subgroup of order k.OI

Normal Subgroups
If S and T are subsets of a group G, then the set product ST is defined by
ST ={st|se S,teT}

Theorem 0.2.4 Let H < G. The following are equivalent

1) The set product of any two cosets is a coset.
2) Ifa,B €Qq, then

aHBH = afH
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3) Any right coset of H is also a left coset, that is, for any o € G there is a
B € G for which Ha = BH.
4) Ifa €@, then

aH=Ha
5) af€e H=pa€ Hforalla, € G.0

Definition A subgroup H of G is normal in G, written H <G, if any of the
equivalent conditions in Theorem 0.2.4 holds. O

Definition 4 group G is simple if it has no normal subgroups other than {1}
and G. O

Here are some normal subgroups. -

Theorem 0.2.5

1) The center Z(QG) is a normal subgroup of G.

2) Any subgroup H of a group G with (G : H) = 2 is normal.

3) If G is a finite group and if p is the smallest prime dividing o(G), then any
subgroup of index p is normal in GO

With respect to the last statement in the previous theorem, it makes some
intuitive sense that if a subgroup H of a finite group G is extremely large, then
it may be normal, since there is not much room for conjugates. This is true in
the most extreme case. Namely, the largest possible proper subgroup of G has
index equal to the smallest prime number dividing o(G). This subgroup, if it
exists, is normal.

If H 4 G, then we have the set product formula
aHBH = of3H

It is not hard to see that this makes the quotient G/H into a group, called the
quotient group of H in G. The order of G/H is called the index of H in G
and is denoted by (G : H).

Theorem 0.2.6 If G is a group and {H,} is a collection of normal subgroups of
G then (\H; and \/H; are normal subgroups of G. Hence, the collection of
normal subgroups of G is a complete sublattice of the complete lattice of all
subgroups of G. O

If H < G then there is always an intermediate subgroup H < K < G for which
H <K, in fact, H is such an intermediate subgroup. The largest such subgroup
is called the normalizer of H in G. It is

Ng(H)={geG|gHg™' = H}
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Euler’s Formula
We will denote a greatest common divisor of a and 3 by (o, 8) or ged(a, 8).
If (a,8) = 1, then & and 3 are relatively prime. The Euler phi function ¢ is

defined by letting ¢(n) be the number of positive integers less than or equal ton
that are relatively prime to n,

Two integers « and 3 are congruent module n, written a = S modn, if o —
is divisible by n. Let Z, denote the ring of integers {0,... ,n — 1} under
addition and multiplication modulo n.

Theorem 0.2.7 (Properties of Euler's phi function)
1) The Euler phi function is multiplicative, that is, if m and n are relatively
prime, then

#(mn) = ¢(m)e(n)
2) Ifpisaprimeandn > Q then
¢(") =" (p-1)
These two properties completely determine ¢.[]
Since the set G ={B€Z,|(B,n)=1} is a group of order ¢(n) under
multiplication modulo n, it follows that ¢(n) is an exponent for G.
Theorem 0.2.8 (Euler's Theorem) If o, n € Z and (a,n) = 1, then
a®*™ =1 modn a

Corollary 0.2.9 (Fermat's Theorem) If p is a prime not dividing the integer o,
then

a” = amodp D

Cyclic Groups

Theorem 0.2.10

1) Every group of prime order is cyclic.

2) Every subgroup of a cyclic group is cyclic.

3) A finite abelian group G is cyclic if and only if its smallest positive
exponent is equal to o(G). O

The following theorem contains some key results about finite cyclic groups.

Theorem 0.2.11 Let G = (a) be a cyclic group of order n.
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1) Forl<k<n,

In particular, of generates G = (a) if and only if (n, k) = 1.
2) Ifd|n, then
n
d

Thus the elements of G of order d | n are the elements of the form o™/,
where 0 < r < d and r is relatively prime to d.

3) For each d | n, the group G has exactly one subgroup Hgy of order d and
¢(d) elements of order d, all of which lie in Hy.

4) (Subgroup structure charactertizes property of being cyclic) /f a finite
group G of order n has the property that it has at most one subgroup of
each order d | n, then G is cyclic..0

ola*)=d & k=r-, where(r,d) =1

Counting the elements in a cyclic group of order n gives the following
corollary.

Corollary 0.2.12 For any positive integer n,
n=>3_ ¢(d) O

din

Homomorphisms

Definition Let G and H be groups. A map :G — H is called a group
homomorphism if

P(af) = (Ya)(¥B)

A surjective homomorphism is an epimorphism, an injective homomorphism is
a monomorphism and a bijective homomorphism is an isomorphism. [f
y: G — H is an isomorphism, we say that G and H are isomorphic and write
G=~H 0O

If ¢ is a homomorphism then e = € and Ya~! = (Ya)~'. The kernel of a
homomorphism ¢: G — H,

ker(y)) = {a € G | Ya =€}

is a normal subgroup of G. Conversely, any normal subgroup H of G is the
kernel of a homomorphism. For we may define the natural projection
7:G — G/H by ma = aH. This is easily seen to be an epimorphism with
kemel H.



