HTML5 N BRI (k)

Programming

HTML5
Applications

REILLY"

K% HikRat Zachary Kessin &

HTML5 [z A R 12 o)
Programming HTML5 Applications

Zachary Kessin &

O’REILLY"

Beijing - Cambridge - Farnham - KdIn - Sebastopol - Tokyo
O’Reilly Media, Inc.# A % d X 2 h Mt iR

IREAE H R

BHBER®E (CIP) ¥R

HTMLS p F4sf2 . &/ (3€) YR (Kessin, Z.)
. —RHA . —FRE: REAKFHRE, 20126

FH 2 JE 3. Programming HTMLS5 Applications

ISBN978-7-5641-3413-6

I. OH- M. QY- I OEXFHRLES -BF
B — B IV. @ TP312

H | iR A= B 4518 CIP HdE+ (2012) % 065807 5

{LHE AR EER A FRIL
B, 10-2011-421 %

©2011 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2012. Authorized reprint of the original English edition, 2011 O’Reilly Media, Inc., the owner of all rights

to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% X R ¥ d O'Reilly Media, Inc. # 4% 2011,

EXYEl A d KPR HR 2012,;11:1!} 20 58 8% th RR Aol 4R 15 B b RR AL Ao 4R B AL B BT A & —— O’Reilly
Media, Inc. #5#% 7T,

BAHRE, ARBEHT, K4HAETRSfe BT FAEATH X EH,

HTMLS F % (R2ENRR)

HARRAT: AR K% it

o k. EREM%2S HB4w: 210096
Rk A {TEH

5] HF: http://www.seupress.com

B B34 : press@seupress.com

EN Rl: B HEIRIERAL S

F: T8TEXK X 980 &K 16 FA
k. 8.75

¥ 171 F%F

k. 201246 AE 1R
/¢

5

#r

. 201246 A5 1 KENRI
: ISBN 978-7-5641-3413-6

: 32.00¢ (#)
FHEBEFNEREFE, FEESEHTER, ®iF (fFH).: 025-83791830

ARt FHIH

Preface

This book reflects the evolution of the Web. Less and less can programming be treated
as a distinct activity shoehorned into web pages through scripts. Instead, HTML and
JavaScript are now intertwined in producing an enchanting user experience. With this
book, you can master the latest in this evolution.

How This Book Is Organized

The elements of this book are as follows:

Chapter 1, The Web As Application Platform
Introduces the reasons for programming on the new HTMLS5 platforms and what
they offer to the JavaScript programmer

Chapter 2, The Power of JavaScript
Explains some powerful features of JavaScript you may not already know, and why
you need to use them to exploit the HTMLS features and associated libraries
covered in this book

Chapter 3, Testing JavaScript Applications
Shows how to create and use tests in the unique environment provided by Java-
Script and browsers ‘

Chapter 4, Local Storage
Describes the localStorage and sessionStorage objects that permit simple data
caching in the browser

Chapter 5, IndexedDB
Shows the more powerful NoSQL database that supports local storage

Chapter 6, Files
Describes how to read and upload files from the user’s system

Chapter 7, Taking It Offline :
Describes the steps you must go through to permit a user to use your application
when the device is disconnected from the Internet

vii

Chapter 8, Splitting Up Work Through Web Workers
Shows the multithreading capabilities of HTML5 and JavaScript -

Chapter 9, Web Sockets
Shows how to transfer data between the browser and server more efficiently by
using web sockets

Chapter 10, New Tags
Summarizes tags introduced in HTMLS5 that are of particular interest to the web
programmer

Appendix, JavaScript Tools You Should Know
Describes tools used in the book, and others that can make coding easier and more
accurate

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width
“Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context

L)
s This icon signifies a tip, suggestion, or general note.

LA
‘ A}
wWas,

0
.

This icon indicates a warning or caution.

viii | Preface

Using Code Examples

This book is here to help you get.your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming HTMLS Applications by
Zachary Kessin (O’Reilly). Copyright 2012 Zachary Kessin, 978-1-449-39908-5.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Saf +»» Safari Books Online is an on-demand digital library that lets you easily
alarlch more than 7,500 technology and creative reference books and vid-
eos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | ix

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920015116.do
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http:/fwww.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

A book is a team effort, and I could not have written this book without a great team
behind me. First of all, I must thank Simon St. Laurent for giving me the chance to write
this book and supporting me through the process of putting it together. I must also
thank Andy Oram for his editorial prowess and ability to make the book better.
Also, thank you to my technical reviewers, Shelley Powers and Dionysios Synodinos,
for great feedback.

I must also thank the Israeli developer community for existing: my former coworkers
at Mytopia, who supported me in this project for more than a year, and the gang at
Sayeret Lambda, which has become the place in Tel Aviv to talk about programming,

Finally, I would like to thank my wife, Devora, for all her support in this project. I could
not have done it without you.

x | Preface

Table of Contents

4 T« Cereerees ceiireees vii
1. The Web As Application Platform Ceerereaarerereeaes Cerererens 1
Adding Power to Web Applications 1
Developing Web Applications 2
JavaScript’s Triumph 4

2. ThePowerof JavaScriptcoooviiiniiiiiiiii ittt 7
Nonblocking 1/0 and Callbacks 7
Lambda Functions Are Powerful 9
Closures 11
Functional Programming 13
Prototypes and How to Exphid-®bretrs 16
Expanding Functions with Bratbtymed; 18
Currying and Object Paramkters 21
Array Iteration Operations 22
You Can Extend Objects, Tiow*y 25

3. Testing JavaScript Applications Ceeeereeeanaes . 27
QUnit 30

A Simple Example 30
Testing with QUnit 32
Selenium 33
Selenium Commands 35
Constructing Tests with the Selenium IDE 38
Automatically Running Tests 39
Selenese Command Programming Interface 42
Running QUnit from Selenium 45

Selenium RC and a Test Farm

46

4, LoAlStOragevoiiiuiiiiii ittt rer e e eare e, 49

The localStorage and sessionStorage Objects 50
Using localStorage in Ext]S 53
Offline Loading with a Data Store 55
Storing Changes for a Later Server Sync 57

JQuery Plug-ins 58
DSt 58
jStore 59

5. IndexedDBc.ceiiiiiiiiiiiiiiiiiii i e veeend 61

Adding and Updating Records 64

Adding Indexes 65

Retrieving Data 65

Deleting Data 66

6. Filesoviiii i e 67

Blobs : 67

Working with Files 69

Uploading Files 70

Drag-and-Drop 71

Putting It All Together 71

Filesystem 73

7. TakingitOffline et resiiteeieterreaeeeeraaean 75

Introduction to the Manifest File . 75
Structure of the Manifest File 76
Updates to the Manifest File 77

Events 79

Debugging Manifest Files 81

8. Splitting Up Work Through Web Workers Ceereriines 85

Web Worker Use Cases 87
Graphics 87
Maps 88

Using Web Workers 88
The Worker Environment 88
Worker Communication 89

Web Worker Fractal Example 20

Testing and Debugging Web Workers 96

A Pattern for Reuse of Multithread Processing 97

Libraries for Web Workers 101

iv | Table of Contents

0, Web SOCKETS +\vvvrrevreurerirnneerennsssensnannssneansas PP [X

The Web Sockets Interface 105
Setting Up a Web Socket 105

Web Socket Example 106

Web Socket Protocol 108

Ruby Event Machine 108

Erlang Yaws 109

10. NewTagsccvvvvvvvviniinnnnnnnn. e eeceiiniiaa, Cereeesiiiiiaa, m
Tags for Applications ' 111
Accessibility Through WAI-ARIA 112
Microdata 113

New Form Types 114
Audio and Video 115
Canvas and SVG 115
Geolocation 116

New CSS 116
Appendix: JavaScript Tools You Should Know Ceeeiteriaieeas 117
Index ..ooviiiiiiii e tteererereieeieiieaaes 121

Table of Contents | v

CHAPTER 1
The Web As Application Platform

HTML5 makes the Web a first-class environment for creating real applications. It
reinforces JavaScript’s existing tool set with key extensions to the browser APIs that
make it easier to create applications that feel (and can be) complete in themselves, not
just views on some distant server process.

The Web began as a way to share files, stored on a web server, that changed only
occasionally. Developers quickly figured out how to generate those files on the fly,
taking the first big step toward building applications. The next big step was adding

interactivity in the browser client. JavaScript and the Document Object Model (DOM)
let developers create Dynamic HTML, as the “browser wars” raged and then suddenly
stopped. After a few years, Ajax brought these techniques back into style, adding some
tools to let pages communicate with the server in smaller chunks.

HTMLS builds on these 20 years of development, and fills in some critical gaps. On
the surface, many of HTMLS5’s changes add support for features (especially multimedia
and graphics) that had previously required plug-ins, but underneath, it gives JavaScript
programmers the tools they need to create standalone (or at least more loosely tethered)
applications using HTML for structure, CSS for presentation, and JavaScript for logic
and behavior.

Adding Power to Web Applications

HTMLS raises the bar for web applications. While it still has to work under security
constraints, it finally provides tools that desktop developers have expected for years:

Local data storage
It can store up to 5 MB of data, referenced with a key-value system.

Databases
Originally a SQLite-based API, the tide seems to have shifted to IndexedDB, a
NoSQL system that is natively JavaScript.

Files
While applications still can’t freely access the filesystem (for obvious security

reasons), they can now work with files the user specifies and are starting to be able
to create files as well. :

Taking it offline
When a laptop or phone is in airplane mode, web applications are not able to
communicate with the server. Manifest files help developers work around that by
caching files for later use.

Web Workers
Threads and forks have always been problematic, but JavaScript simply didn’t offer
them. Web Workers provide a way to put application processes into separate
spaces where they can work without blocking other code.

Web sockets
Hypertext Transfer Protocol (HTTP) has been the foundation of the Web, despite
a few updates over time. Web sockets transform the request-response approach to
create much more flexible communication systems.

There’s much more, of course—from geolocation to audio and video to Canvas graph-
ics to a wide variety of minor new tags—but these provide the foundations for building
industrial-strength applications in HTMLS.

Developing Web Applications

In the old days, a complex web application might be a catalog, which would be static
pages derived from a database, or a JavaScript loan calculator. But no one would have
dreamed of doing complex applications in JavaScript. Those required Java or maybe a
dedicated client/server application written in C or C++. Indeed, in the days before the
DOM and Ajax, developing complex applications in JavaScript would have been pretty
much impossible. However, Ajax introduced the ability to interact with the server
without reloading the page, and the DOM allowed the programmer to change HTML
on the fly.

In 2007, Google introduced Gears, a browser extension that gave the developer a lot
more power than had been there before. Gears allowed the browser to work offline, to
enable users to store more data in the browser and have a worker pool to offload long-
running tasks. Gears has since been discontinued, as most of its features have migrated
into HTMLS5 in modified forms.

The modern Web features a full range of sites, from things that are still effectively old-
style collections of documents, like Wikipedia, to sites that offer interactions with other
people, such as Facebook, YouTube, and eBay, to things that can serve as replacements
for desktop applications, such as Gmail and Google Docs. Many formerly standalone
applications, such as mail clients, have become part and parcel of the web experience.

2 | Chapter1: The Web As Application Platform

In the modern Web, the line between applications and pages has blurred. The difference
at this point is only in the intent of the site.

Running an application in the browser has some major advantages for both the user
and the developer. For the user, there is no commitment to the application: you try it
out, and if you don’t like it, you can move on to the next page with nothing left behind
to clutter up your disk. Trying new applications is also reasonably safe, in that they run
in a sandboxed environment. New versions of the application are automatically down-
loaded to the browser when the developer updates the code. Web applications rarely
have version numbers, at least public ones.

For the developer, the case is even stronger. First of all, the things that are an advantage
to the users are also good for the developers. There is no installation program to write,
and new versions can automatically be sent to the users, making small, incremental
updates not only possible but practical. However, there are other bonuses as well.

The Web is cross-platform. It is possible to write a web page that will work on
Windows XP, Windows Vista, Windows 7, Mac OS X, Linux, the iPhone/iPad, and
Android. Doing that with a conventional development tool would be a monumental
task. But with the Web and some forethought it almost comes for free. A web appli--
cation built on standards with a library like jQuery will be able to run on major browsers
on all those platforms and a few others. While at one point Sun hoped that its Java
applets would define the Web as a platform, JavaScript has turned out to become the
default web platform.

You can even run web applications on mobile devices, at least the ones that today are
called smartphones. With a wrapper like PhoneGap, you can create an HTMLS app
and package it for sale in the App Store, the Android Market, and more. You might
create an application that interacts heavily with a web server, or you might create a
completely self-contained application. Both options are available.

The real place that the Web, prior to HTMLS5, traditionally falls short is that a web
application, running on a computer with gigabytes of memory and disk space, acts
almost like it is running on an old VT320 terminal. All data storage must be done on a
server, all files must be loaded from the server, and every interaction pretty much
requires a round-trip to the server. This can cause the user experience to feel slow,
especially if the server is far away from the user. If every time the user wishes to look
up something there is a minimum response time of 400 milliseconds before any actions
can be taken, the application will feel slow. From my office in Tel Aviv to a server in
California, the round-trip time for an ICMP ping is about 250 ms. Any action on the
server would be extra and slow that down even more. Mobile device communications
can, of course, be even slower.

Developing Web Applications | 3

JavaScript’s Triumph

Though JavaScript has been a key component of web development since it first
appeared in 1995, it spent a decade or so with a bad reputation. It offered weak
performance, was saddled with a quirky syntax that led to mysterious bugs, and
suffered from its dependence on the DOM. Browsers kept it locked in a “sandbox,”
easing users’ security concerns but making it very difficult for developers to provide
features that seemed trivial in more traditional desktop application development.

Scripting culture created its own problems. Although providing a very low barrier to
entry is a good thing, it does come with costs. One of those costs is that such a language
often allows inexperienced programmers to do some very ill-advised things. Beginning
programmers could easily find JavaScript examples on the Web, cut and paste them,
change a few things, and have something that mostly worked. Unfortunately,
maintaining such code becomes more and more difficult over time.

With the Ajax revival, developers took a new look at JavaScript. Some have worked on
improving the engines interpreting and running JavaScript code, leading to substantial
speed improvements. Others focused on the language itself, realizing that it had some
very nice features, and consequently developing best practices like those outlined in
JavaScript: The Good Parts by Douglas Crockford (O’Reilly, 2008).

Beyond the core language, developers built tools that made debugging JavaScript much
easier. Although Venkman, an early debugger, had appeared in 1998, the 2006 release
of Firebug became the gold standard of JavaScript debuggers. It allows the developer
to track Ajax calls, view the state of the DOM and CSS, single-step through code, and
much more. Browsers built on WebKit, notably Apple’s Safari and Google Chrome,
offer similar functionality built in, and Opera Dragonfly provides support for Opera.
Even developers working in the confined spaces of mobile devices can now get Firebug-
like debugging with weinre (WEb INspector REmote).

The final key component in this massive recent investment in JavaScript was libraries.
Developers still might not understand all the code they were using, but organizing that
code into readily upgradeable and sometimes even interchangeable libraries simplified
code management.

JQuery

If anything can be described as the gold standard of JavaScript libraries, it would
have to be John Resig’s jQuery library, which forms a wrapper around the DOM
and other JavaScript objects such as the XMLHttpRequest object, and makes doing
all sorts of things in JavaScript a lot easier and a lot more fun. In many ways, jQuery
is the essential JavaScript library that every JavaScript programmer should know.
To learn jQuery, see the jQuery website (http://jquery.org) or a number of good
books on the subject, such as Head First jQuery by Ryan Benedetti and Ronan
Cranley or jQuery Cookbook by Cody Lindley, both published by O’Reilly. Many
examples in this book are written using jQuery.

4 | Chapter1: The Web As Application Platform

Ext]S

Whereas jQuery forms a wrapper around the DOM, Sencha’s (http://sencha.com)
ExtJS tries to abstract it away as much as possible. ExtJS features a rich widget set
that can live in a web page and provide many of the widgets, such as trees, grids,
forms, buttons, and so on, that desktop developers are familar with. The entire
system is very well thought out, fits together well, and makes developing many
kinds of applications a joy. Although the ExtJS library takes up a lot of space, the
expenditure is worthwhile for some kinds of application development.

One nice feature of Ext]S is that many of its objects know how to save their state.
So if a user takes a grid and reorganizes the columns, the state can be saved so that
the same order appears the next time the user views that grid. “Using localStorage
in ExtJS” on page 53 will show how to use the HTMLS5 localStorage facility with
this feature.
Google Web Toolkit, etc.

Tools such as GWT allow the programmer to write Java code, which is then
compiled down to JavaScript and can be run on the browser.

JavaScript’s Triumph | 5

CHAPTER 2
The Power of JavaScript

Although JavaScript is not a difficult language to program, it can be challenging to rise
to the level of a true expert. There are several key factors to becoming a skilled JavaScript
programmer. The techniques in this chapter will appear repeatedly in the libraries and
programming practices taught in the rest of this book, so you should familiarize yourself
with these techniques before continuing with those chapters.

There are a number of excellent tools for JavaScript programming, some of them listed
in the Appendix. These tools can provide you with a lot of assistance. Specifically,
JSLint will catch a large number of errors that a programmer might miss. Sites such as
StackOverflow (http://stackoverflow.com/) and O’Reilly Answers (http://answers.oreilly
.com) will be a good source of other tools.

This chapter is not a full introduction to the power of JavaScript. O’Reilly publishes a
number of excellent books on Javscript, including:

* JavaScript, The Good Parts by Douglas Crockford

* JavaScript: The Definitive Guide by David Flanagan
* High Performance JavaScript by Nicholas C. Zakas
* JavaScript Patterns by Stoyan Stefanov

Nonblocking I/0 and Callbacks

The first key to JavaScript, after learning the language itself, is to understand event-
driven programming. In the environment where JavaScript runs, operations tend to be
asynchronous, which is to say that they are set up in one place and will execute later
after some external event happens.

This can represent a major change from the way I/O happens in traditional languages.
Take Example 2-1 as a typical case of I/O in a traditional language, in this case PHP.
The line $db->getAl1($query); requires the database to access the disk, and therefore
will take orders of magnitude more time to run than the rest of the function. While the
program is waiting for the server to execute, the query statement is blocked and the

