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Introduction

The higher infinite refers to the lofty reaches of the infinite cardinalities of set the-
ory as charted out by large cardinal hypotheses. These hypotheses posit cardinals
that prescribe their own transcendence over smaller cardinals and provide a super-
structure for the analysis of strong propositions. As such they are the rightful heirs
to the two main legacies of Georg Cantor, founder of set theory: the extension
of number into the infinite and the investigation of definable sets of reals. The
investigation of large cardinal hypotheses is indeed a mainstream of modern set
theory, and they have been found to play a crucial role in the study of definable
sets of reals, in particular their Lebesgue measurability. Although formulated at
various stages in the development of set theory and with different incentives, the
hypotheses were found to form a linear hierarchy reaching up to an inconsistent
extension of motivating concepts. All known set-theoretic propositions have been
gauged in this hierarchy in terms of consistency strength, and the emerging struc-
ture of implications provides a remarkably rich, detailed and coherent picture of
the strongest propositions of mathematics as embedded in set theory.

The first of a projected multi-volume series, this text provides a compre-
hensive account of the theory of large cardinals from its beginnings through the
developments of the early 1970’s and several of the direct outgrowths leading to
the frontiers of current research. A further volume will round out the picture of
those frontiers with a wide range of forcing consistency results and aspects of
inner model theory. A genetic account through historical progression is adopted,
both because it provides the most coherent exposition of the mathematics and
because it holds the key to any epistemological concerns. With hindsight how-
ever the exposition is inevitably Whiggish, in that the consequential avenues are
pursued and the most elegant or accessible expositions given. Each section is a
modular unit, and later sections often describe how concepts discussed in earlier
sections inspired the next advance. With speculations and open questions pro-
vided throughout, the reader should not only come to appreciate the scope and
significance of the overall enterprise but also become prepared to pursue research
in several specific areas.

In what follows a historical and conceptual overview is given, one that serves
to embed the sections of the text into a larger framework. In an appendix larger and
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more discursive issues that may be raised by the investigation of large cardinals
are taken up. See Hallett [84], Lavine [94], Moore [82], and Fraenkel-Bar-Hillel-
Levy [73] for more on the development of set theory; several themes that are only
broached here are substantiated in at least one of these sources.

The Beginnings of Set Theory

Set theory had its beginnings in the great 19th Century transformation of math-
ematics that featured the arithmetization of analysis and a new engagement with
abstraction and generalization. Very much new mathematics growing out of old,
the subject did not spring Athena-like from the head of Cantor but in a gradual
process out of problems in mathematical analysis. In the wake of the founding of
the calculus by Isaac Newton and Gottfried Leibniz the function concept had been
steadily extended from analytic expressions toward arbitrary correspondences, in
the course of which the emphasis had shifted away from the continuum taken as a
whole to its construal as a collection of points, the real numbers. The first major
expansion had been inspired by the explorations of Leonhard Euler and featured
the infusion of infinite series methods and the analysis of physical phenomena,
particularly the vibrating string.

Working out of this tradition the young Cantor in the early 1870’s established
uniqueness theorems for trigonometric series in terms of their points of conver-
gence, theorems based on collections of reals defined through a limit operation
iterable into the infinite. In a crucial conceptual move Cantor began to investigate
such collections and infinitary enumerations for their own sake, and this led first
1o basic concepts in the study of sets of reals and then to the formulation of the
transfinite numbers. Set theory was born on that December 1873 day when Cantor
established that the reals are uncountable, i.e. there is no one-to-one correspon-
dence between the reals and the natural numbers, and in the next decades was to
blossom through the prodigious progress made by him in the theory of ordinal
and cardinal numbers. But a synthesis of the reals as representing the continuum
and the new numbers as representing well-orderings eluded him: Cantor could not
establish the Continuum Hypothesis, that the cardinality 2™ of the set of reals is
the least uncountable cardinality R, part of his problem being that he could not
define a well-ordering of the reals.

Cantor came to view the finite and the transfinite as all of a piece, simi-
larly comprehendable within mathematics, and delimited by what he termed the
“Absolute” which he associated mathematically with the class of all ordinals and
metaphysically with God. As part of this realist picture Cantor viewed sets, at least
until the early 1890’s, as inherently structured with a well-ordering of their mem-
bers. Ordinal and cardinal numbers resulted from successive abstraction, from a
set x to its ordertype X and then to its cardinality X.

But such a structured view served to accentuate a growing stress among
mathematicians, who were already exercised by two related issues: whether in-
finite collections can be investigated within mathematics at all and how far the
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function concept is to be extended. The positive use of an arbitrary function having
been made explicit, there was open controversy after Ernst Zermelo [04] formu-
lated what he soon called the Axiom of Choice and established his Well-Ordering
Theorem, that the axiom implies every set can be well-ordered.

With axiomatization assuming a general methodological role in mathematics
Zermelo [08a] soon published the first axiomatization of set theory. But as with
Cantor’s work the move was in response to mathematical pressure for a new
context: Beyond the stated purpose of securing set theory from paradox Zermelo’s
main motive was apparently to buttress his Well-Ordering Theorem by making
explicit its underlying set existence assumptions. In the process, he shifted the
focus away from the transfinite numbers to an abstract view of sets structured
solely by € and simple operations. Extracted from a specific proof (for the Weli-
Ordering Theorem in his [08]) Zermelo’s axioms had the advantages of simplicity
and open-endedness. The generative set formation axioms, especially Power Set,
were to lead to Zermelo’s later adumbration [30] of the cumulative hierarchy view
of sets, and the vagueness of the definit property in the Separation Axiom was to
invite Thoralf Skolem’s [23] proposal to base it on first-order logic.

Skolem’s move was in the wake of a mounting initiative, one that was to
expand set theory with new viewpoints and techniques as well as to invest it
with a larger foundational significance. Gottlob Frege is regarded as the greatest
philosopher of logic since Aristotle for developing his 1879 Begriffsschrift (quan-
tificational logic), establishing a logical foundation for arithmetic, and generally
stimulating the analytic tradition in philosophy. The architect of that tradition
is Bertrand Russell who in his early years, influenced by Frege and Giuseppe
Peano, wanted to found all of mathematics on the certainty of logic. The vaulting
expression of that ambition was the 1910-3 three volume Principia Mathematica
by Alfred Whitehead and Russell. But Russeli was exercised by his well-known
paradox, one which led to the tottering of Frege’s mature formal system. As a
result Principia was encased in a complex logical system of different types and
intensional predications ultimately breaking under his Axiom of Reducibility, a
fearful symmetry imposed by an artful dodger.

It remained for David Hilbert to shift the ground and establish mathematical
logic as a field of mathematics. Russell’s philosophical disposition precluded his
axiomatizing logic, but Hilbert brought it under scrutiny as he did Euclidean geom-
etry by establishing an axiomatic context and raising the crucial questions of con-
sistency and later, completeness. This largely syntactic approach was soon given
a superstructure when in response to intuitionistic criticism by Luitzen Brouwer
and Hermann Weyl, Hilbert developed proof theory and proposed his program of
establishing the consistency of classical mathematics with his metamathematics.
These issues gained currency because of Hilbert’s preeminence, just as mathe-
matics in the large was expanded by his reliance on non-constructive proofs and
transcendental methods. Through this expansion the Axiom of Choice became a
mathematical necessity, particularly because of maximality arguments in algebra,
and arbitrary functions became implicitly accepted in the growing investigation of
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higher function spaces. With the increasing emphasis on frameworks and struc-
tures, the power set operation became incorporated into mathematics.

Throughout, Zermelian set theory grew as the mathematical repository of
foundational concerns and initiatives. As the first result of his axiomatic set
theory Zermelo [08a] himself put the Russell paradox argument to use to show
that for any set x there is a set y € x such that y ¢ x (so that there is no universal
set). Friedrich Hartogs [15] in effect converted the Burali-Forti paradox into the
existence for any set x of a well-orderable set y not injectible into x. Analyzing
the Zermelo [08] proof Kazimierz Kuratowski [21] provided that definition of
the ordered pair, antithetical to Russell’s type-ridden theory, which became the
standard way to reduce the theory of relations to sets. And then Skolem [23]
made his proposal of rendering Zermelo’s Separation Axiom in terms of properties
expressible in first-order logic.

More than that, Skolem intended for set theory to be based on first-order
logic with € construed syntactically and without a privileged interpretation. This
becomes clear in his application of the Lowenheim-Skolem theorem to get the
Skolem paradox: the existence of countable models of set theory although it entails
the existence of uncountable sets. Ironically, Skolem intended by this means to
deflate the possibility of set theory becoming a foundation for mathematics, but
following Kurt Godel’s work Skolem’s syntactical approach to set theory came
to be accepted. And again the ways of paradox were absorbed into set theory,
as the Lowenheim-Skolem theorem came to play an important internal role when
semantic methods were ushered in by Alfred Tarski.

Skolem [23] also and Abraham Fraenkel [21,22] independently proposed the
addition of the Replacement Axiom to Zermelo’s list, and this axiom soon figured
in a counter-reformation of sorts. John von Neumann [23] introduced the ordinals
(transitive sets well-ordered by €) and showed that every well-ordering is iso-
morphic to an ordinal, thereby restoring Cantor’s transfinite numbers as sets. No
longer were the numbers abstractions, but in the new formulation became incor-
porated into the Zermelian framework of sets built up by € and simple operations.
Von Neumann’s particular approach to axiomatization fostered the liberal use of
proper classes in set theory and brought Replacement into prominence through its
role in definitions by transfinite recursion.

With these developments before him Zermelo [30] presented his final ax-
iomatization of set theory, incorporating Replacement and also Foundation. This
axiomatization was in second-order terms, allowed urelements, and eschewed the
Axiom of Infinity, but shorn of these features it became the standard Zermelo-
Fraenkel (ZFC) one when recast in the soon to emerge terms of first-order logic.
The Foundation Axiom had been prefigured as a restricting possibility by Dmitry
Mirimanov [17], Skolem [23], and von Neumann [25]. Zermelo offered a syn-
thetic view of a succession of natural models for set theory, each a member of
a next, essentially realizing that Foundation ranks the sets in these models into a
cumulative hierarchy. In current terms the axiom stratifies the formal universe V
of sets as |, Vo, where Vp is @, V4, is the power set of V,, and V; for limit
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ordinals & is the union of the V,’s for &« < 8. In a notable inversion this iterative
conception came to be accepted after Godel’s later advocacy as a heuristic for
motivating the axioms of set theory generally, its open-endedness moreover pro-
moting a principle of tolerance for motivating new hypotheses mediating toward
Cantor’s Absolute. Foundation is the one axiom unnecessary for the recasting
of mathematics in set-theoretic terms, but it came to be the salient feature that
distinguishes structural investigations specific to set theory. Indeed, it can be
fairly said that modern set theory is the study of well-foundedness, the Cantorian
well-ordering doctrines adapted to the Zermelian combinatorial conception of sets.

In the 1930’s Gdédel’s incisive analyses brought about a transformation of
mathematical logic based on new initiatives for mathematical elucidation. The
main source was of course his Incompleteness Theorem [31], which led to the
undecidability of validity for first-order logic and the development of recursion
theory. But starting an undercurrent, the earlier Completeness Theorem {30] clar-
ified the distinction between the semantics and syntax of first-order logic and
secured its key instrumental property, compactness. Then Tarski [33, 35] set out
his schematic definition of truth in set-theoretic terms, exercising philosophers to a
surprising extent ever since. The groundwork had been laid for the development of
model theory, and set theory was to be considerably enriched since the 1950°s by
model-theoretic techniques. First-order logic came to be accepted as the canonical
language because of its mathematical possibilities, Skolem’s earlier suggestion for
set theory taken up generally, and higher-order logics became downgraded as the
workings of the power set operation in disguise.

So enriched and fortified by axioms, results, and techniques axiomatic set the-
ory was launched on its independent course by Godel’s construction of L [38,39]
leading to the relative consistency of the Axiom of Choice and the Continuum
Hypothesis. Synthesizing what came before, Gédel built on the von Neumann
ordinals as sustained by Replacement to formulate a relative Zermelian universe
of sets based on logical definability, a universe imbued with a Cantorian sense of
order.

Large Cardinals

If the foregoing in brief (and with interpretative twists) is the high tradition of set
theory from Cantor to Godel, large cardinals are the trustees of older traditions in
direct line from Cantor’s original investigations of definable sets of reals and of
the transfinite numbers. Before taking up the more continuous tradition having to
do directly with the transfinite the other tradition is described, one that was to be
revitalized in the 1960’s by major new initiatives.

Descriptive set theory is the definability theory of the continuum, the study of
the structural properties of definable sets of reals. In his most substantive approach
to the Continuum Hypothesis Cantor had structured the problem via perfect sets
and established that the closed sets have the perfect set property (11.3). Related
were his contributions to measure theory, a theory that led to the Borel sets and
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of course to Lebesgue measure. The major incentives of descriptive set theory
have been to approach sets of reals through definability as Cantor had done, and to
investigate the extent of the regularity properties, of which Lebesgue measurability
and Cantor’s perfect set property are two. In a seminal paper Henri Lebesgue [05]
provided the first hierarchy for the Borel sets and applied Cantor’s diagonalization
argument to show that the hierarchy is both proper and does not exhaust the
definable sets of reals. The subject really began with Mikhail Suslin’s discovery
[17] of the analytic sets and fundamental results about this first level of the later
projective hierarchy. The subsequent development by Nikolai Luzin, Wactaw
Sierpinski, and their collaborators featured tree representations of sets of reals,
and it was through this opening that well-founded relations entered mathematical
practice, the later tradition leading to Foundation and the iterative conception being
quite separate and motivated by heuristics. The transfinite numbers, at least the
countable ones, gained a further legitimacy through their necessary involvement in
this work, contributing to the mathematical pressure for their general acceptance.
Pressing upward in the projective hierarchy, by the early 1930°s the descriptive
set theorists had reached an impasse, one that was to be later explained by Gédel’s
delimitative results with L. (These matters are taken up in §§12,13.)

The other, more primal Cantorian initiative, the mathematical investigation of
the transfinite, was vigorously advanced into the higher infinite by Felix Hausdorff
[08]. Dismissive of foundational issues, he pursued the structure of transfinite
ordertypes for its own sake and was first to consider a large cardinal, a weakly
inaccessible cardinal, as a natural limit point. Paul Mahlo [11, 12, 13] then studied
stronger limit points, the Mahlo cardinals. Closure under the power set operation,
intrinsic to the Zermelian set concept, was later incorporated in the concept of
a (strongly) inaccessible cardinal by Sierpinski-Tarski [30] and Zermelo [30]. In
the early semantic investigations before the general acceptance of first-order logic
these cardinals provided the natural models for set theory, i.e. the corresponding
initial segments of the cumulative hierarchy. (These topics are developed in §1.)

Measurability, the most prominent of all large cardinal hypotheses, embodied
the first confluence of the Cantorian initiatives. Isolated by Stanistaw Ulam [30]
from measure-theoretic considerations related to Lebesgue measure, the concept
also entailed inaccessibility in the transfinite. Moreover, the initial airing generated
an open problem that was to keep the spark of large cardinals alight for the next
three decades: Can the least inaccessible cardinal be measurable? (Measurability
is discussed in §2.)

The further development of the higher infinite was to depend on model-
theoretic techniques brought into set theory in the course of its larger develop-
ment. Godel’s L was the first example of an inner model, a class (definable by a
formula of first-order logic) including all the ordinals, which with € restricted to
it is a model of the axioms. Godel with L had in fact established the minimum
possibility for the set-theoretic universe, and large cardinals were to provide the
counterweight first in reaction and then for generalization. Gddel’s realist specula-
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tions, especially about Cantor’s Continuum Problem, contained the seeds of later
heuristic arguments for large cardinal hypotheses:

The set-theoretic universe V viewed as the cumulative hierarchy Ua V, 1is
open-ended and under-determined by the set-theoretic axioms, and invites fur-
ther postulations based on reflection and generalization. In 1946 remarks Godel
[90: 151] suggested reflection in terms of a set-theoretic proposition being prov-
able in “the next higher system above set theory”, which proof being replaceable
by one from “an axiom of infinity”. This ties in with V cast as Cantor’s Abso-
lute being mathematically incomprehendable, so that any property ascribable to it
must already hold in some sufficiently large V,, some properties leading directly
to large cardinal hypotheses. In a 1966 footnote Godel [90: 260ff] acknowledged
“strong axioms of infinity of an entirely new kind”, generalizations of properties
of 8¢ “supported by strong arguments from analogy”. This ties in with Cantor’s
unitary view of the finite and transfinite, with properties like inaccessibility and
measurability technically satisfied by Ry being too accidental were they not also
ascribable to higher cardinals. Both reflection and generalization are latent in the
eternal return of successive domains as envisioned by Zermelo [30]. Whatever
the heuristics, the theory of large cardinals like other mathematical investigations
was to be driven by open problems and growing structural elucidations. (These
matters are taken up in §3. Other heuristic arguments are described in Maddy
(88, 88a].)

The generalization of first-order logic allowing infinitary logical operations
was to lead to the solution of that problem of whether the least inaccessible cardinal
can be measurable. Tarski [62] defined the strongly compact and weakly compact
cardinals by ascribing natural generalizations of the key compactness property of
first-order logic to the corresponding infinitary languages. A strongly compact
cardinal is measurable, and a measurable cardinal is weakly compact. Tarski’s
student William Hanf [64] then established (4.7) that there are many inaccessible
cardinals (and Mahlo cardinals) below a weakly compact cardinal. In particular,
the least inaccessible cardinal is not measurable. Hanf’s work radically altered
size intuitions about properties coming to be understood in terms of large cardinals.
(These topics are developed in §4.)

In the early 1960’s set theory was veritably transformed by structural initia-
tives based on new possibilities for constructing well-founded models and estab-
lishing relative consistency results. This was due largely to the creation of forcing
by Paul Cohen [63,64], who happened upon a remarkably fertile technique for
producing extensions of models of set theory. In a different vein, a seminal result
of Dana Scott [61] stimulated the investigation of elementary embeddings of inner
models. The ultraproduct construction of model theory was just gaining currency
when Scott took an ultrapower of V itself to establish (5.5) that if there is a mea-
surable cardinal, then V # L. Large cardinal hypotheses thus assumed a new
significance as a means for maximizing possibilities away from Gédel’s delimi-
tative construction. And Cantor’s Absolute notwithstanding, Scott’s construction
began the liberal use of manipulative inner model constructions in set theory. It
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was in this richer setting that measurable cardinals came to play a central structural
role, being necessary for securing well-founded ultrapowers (see 5.6 and before):
There is an elementary embedding j: V — M for some inner model M iff there is
a measurable cardinal. (These matters are taken up in §5.)

With refiection arguments emerging in the model-theoretic approaches taken
in set theory, Azriel Levy [60a] established their broader significance and the
close involvement of Mahlo cardinals. Then Hanf-Scott [61] formulated the inde-
scribable cardinals, directly positing reflection properties in terms of higher-order
languages, and showed that these cardinals provide a schematic approach to com-
paring large cardinals by size. Levy [71] then provided a systematic analysis,
features of which were to occur in later contexts. (Indescribability is described
in §6.)

Scott’s result that if there is a measurable cardinal then V # L naturally led
to refinements both weakening the hypothesis and strengthening the conclusion.
Notably, the first moves were made in the context of the infinitary combinatorics
then being developed by Paul Erdos and his collaborators, the study of partition
properties, which are transfinite generalizations of a resuit of Frank Ramsey [30].
Frederick Rowbottom [64, 71] then established a partition property for measurable
cardinals (7.17), and using model-theoretic methods showed that such properties
already imply that there are only countably many reals in L (8.3). This blending
of model theory and infinitary combinatorics led to a spectrum of large cardinals
positing strong versions of the Lowénheim-Skolem theorem, the Rowbottom and
Jonsson cardinals in particular generating intriguing questions. Weaving in the
crucial model-theoretic concept of a set of indiscernibles Jack Silver [66,71] then
analyzed what came to be regarded as the essence of transcendence over L, encap-
sulated by him and Robert Solovay [67] as a set 0% of integers coding a collection
of sentences uniquely specified by indiscernibility conditions. Beyond a web of
implications encircling the merely negative conclusion V # L, the existence of
0% is a strikingly informative assertion about just how starkly L is generated in a
transcendent V. Subsequent results have buttressed the existence of 0% as a piv-
otal hypothesis, and its isolation is the first real triumph for large cardinals in the
elucidation of set-theoretic structure. (These matters are taken up in Chapter 2.)

Returning to the early 1960’s, if Gddel’s construction of L had launched
axiomatic set theory as a distinctive field of mathematics, then Cohen’s technique
of forcing began its transformation into a modern, sophisticated one. Starting with
his work on the Continuum Hypothesis many problems that had been left unre-
solved were shown to be independent, as set theorists were presented a remarkably
general and flexible scheme with intuitive underpinnings for constructing models
of set theory. The thrust of research gradually deflated the Cantor-Godel real-
ist view with an onrush of new models, and shedding some of its foundational
burden set theory became an intriguing mathematical subject where formalized
versions of truth and consistency became matters for combinatorial manipulation
as in algebra. From Skolem relativism to Cohen relativism the role of set theory
for mathematics became even more evidently one of an open-ended framework
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rather than an elucidating foundation. From this point of view, that the ZFC ax-
ioms do not determine the cardinality 2% of the set of reals seems an entirely
satisfactory state of affairs. With the richness of possibility for arbitrary reals
and mappings, no axioms that do not directly impose structure from above should
constrain a set as open-ended as the collection of reals or its various possibilities
for well-ordering.

Inaccessible cardinals figured from the beginning in this sea-change, first
in the concept of the Levy collapse and then in its use in Solovay’s inspiring
result [65b, 70] that if there is an inaccessible cardinal, then in a submodel of a
Jforcing extension every set of reals is Lebesgue measurable and has the perfect set
property. {The Axiom of Choice necessarily fails in this submodel.) As Cohen’s
independence of the Continuum Hypothesis did for the transfinite, this result on the
regularity of sets of reals not only resolved old axiomatic issues but reinvigorated
the Cantorian initiatives by suggesting new mathematical possibilities. Solovay
[69] soon applied the ideas of his proof to show that measurable cardinals directly
imply the regularity properties at the level of Gédel’s delimitative results with L,
revitalizing the classical program of descriptive set theory. Then Donald Martin
and Solovay (cf. their [69]) applied large cardinal hypotheses at the level of 0
to push forward the old tree representation ideas, with the hypotheses cast in the
new role of securing well-foundedness in this context. (These matters are taken
up in Chapter 3.)

The perfect set property led to the first instance of a new phenomenon in
set theory: the derivation of equiconsistency results based on the complementary
methods of forcing and inner models. A large cardinal hypothesis is typically
transformed into a proposition about sets of reals by forcing that “collapses” the
cardinal to R, or “enlarges” the power of the continuum to the cardinal. Con-
versely, the proposition entails the same large cardinal hypothesis in the clarity of
an inner model. Solovay’s result provided the forcing direction from an inacces-
sible cardinal to the proposition that every set of reals has the perfect set property.
But Ernst Specker [57] had in effect established that if every set of reals has the
perfect set property (and R, is regular), then R, is inaccessible in L (11.6). Thus,
Solovay’s use of an inaccessible cardinal was necessary, and its collapse to Ry
complemented Specker’s observation. Years later, Saharon Shelah [84] was able
to establish the necessity of Solovay’s inaccessible also for the proposition that
every set of reals is Lebesgue measurable.

The emergence of such equiconsistency results is a subtle transformation of
earlier hopes of Gddel: Propositions can indeed be resolved if there are enough
ordinals, how many being specified by positing a large cardinal. But the resolution
is in terms of the Hilbertian concept of consistency, the methods of forcing and
inner models being the operative modes of argument. In a new synthesis of the two
Cantorian initiatives, hypotheses of length concerning the extent of the transfinite
are correlated with hypotheses of width concerning sets of reals. There is a telling
antecedent in the result of Gerhard Gentzen [36,43] that the consistency strength
of arithmetic can be exactly gauged by an ordinal &g, i.e. transfinite induction up
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to that ordinal in a formal system of notations. Although Hilbert’s program of
establishing consistency by finitary means cannot be realized, Gentzen provided
an exact analysis in terms of ordinal length. Proof theory blossomed in the 1960’s
with the analysis of other theories in terms of such lengths, the proof theoretic
ordinals.

In the late 1960°s a wide-ranging investigation of measurability was carried
out with forcing and inner models. These developments not only provided an illu-
minating structural analysis, but suggested new questions and provided paradigms
for the subsequent investigation of stronger hypotheses. Solovay [66, 71] brought
the concept of saturated ideal to the forefront, establishing an equiconsistency
result about real-valued measurability. Subsequent work showed that saturated
ideals are a flexibie generalization of measurability that can occur low in the cu-
mulative hierarchy. Exploiting the technique of iterated ultrapowers developed by
Haim Gaifman [64], Kenneth Kunen [70] established the main structure theorems
for inner models of measurability. Not only do these models have the minimal
structure of Godel’s L, but they turn out to be exactly the ultrapowers of each
other, and such coherence amounts to strong evidence for the consistency of the
concept of measurability. Kunen also established a characterization of the exis-
tence of 0% in terms of the non-rigidity of L: 0% exists iff there is an elementary
embedding j: L — L. Solovay isolated a set 0 that plays an analogous role
for inner models of measurability that 0¥ does for L, and its existence has a
similar characterization in terms of non-rigidity. (These topics are developed in
Chapter 4.)

Even as measurability was being methodically investigated, Solovay and
William Reinhardt were charting out stronger hypotheses. Taking the concept
of elementary embedding as basic they independently formulated the concept of
supercompact cardinal as a generalization of both measurability and strong com-
pactness, and Reinhardt formulated the stronger concept of extendible cardinal
with motivating ideas based directly on reflection. Reinhardt briefly considered
an ultimate reflection property along these lines, but in a dramatic turn of events
Kunen [71b] established that this prima facie extension is inconsistent: There is
no elementary embedding j: V — V. Kunen’s argument turned on what seemed
to be a combinatorial contingency, but his particular formulation has stood as the
upper bound for large cardinal hypotheses. The initial guiding ideas shaped and
delimited by a mathematical result, hypotheses just on the verge of this incon-
sistency were subsequently analyzed, as well as the weaker n-huge cardinals and
Vopénka’s Principle, to chart the terrain down to the extendible cardinals. The
supercompact cardinals in particular became prominent as a source of new com-
binatorics and relative consistency results. Also, when refinements of elementary
embedding in the form of extenders were formulated, weakenings of supercom-
pactness in the form of strong, Woodin, and superstrong cardinals came to play
crucial roles in later developments. (These topics are developed in Chapter 5.)

With this charting out of the higher infinite, the extensive research through
the 1970’s and 1980’s considerably strengthened the view that the emerging hi-



