wows

Hcﬂﬁﬁ

))

TR

(=HxH)

[
Mo Il AR A

China Machine Press

Peter S. Pacheco -
[BH&XEF

(%)

An Introductlon to)
RALL E
RAMMING

Peter S. Pacheco

[0 S rlvocticlion Lo

St ff/,{-/‘/z/(?’/ B ~C)’"/;f}f‘K?Q/‘K/;/FZ/?Z/XZQ’
& Ve,

Peter S. Pacheco
=

(%) Bglix=z

Mo T b HORR A

China Machine Press

Peter S. Pacheco: An Introduction to Parallel Programming (ISBN 978-0-12-374260-5).

Original English language edition copyright © 2011 by Elsevier Inc. All rights reserved.

Authorized English language reprint edition published by the Proprietor.

Copyright © 2011 by Elsevier (Singapore) Pte Ltd.

Printed in China by China Machine Press under special arrangement with Elsevier (Singapore)
Pte Ltd. This edition is authorized for sale in China only, excluding Hong Kong SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law
is subject to Civil and Criminal Penalties.

453 CR ENAR B Elsevier (Singapore) Pte Ltd. SARYUA Tk HBUHEAE A B K RESE P R
RAT. FBUREFEEN (FREFHREINTERELEGEHBE) BRI #HE, REVFT
ZHD, SChEREERE, BRERZHIE,

TRt AR
KERUERE, AR
FHEEMHE ARTRARIDESH

AHIRINEICE. EF. 01-2011-4800
EBHERBE (CIP) #iE

FFEAERIF R (ESR) / (%) a5 (Pacheco, P. S.) &, —Jbai: HLEW ki
. 20119

(2 HIFR B E)

454 830 . An Introduction to Parallel Programming

ISBN 978-7-111-35828-2

L3 ILgp- UL 85 -BEFEE—3%3r V. TP311.11
b ER A EBECIPEIEZE (2011) F1818045

BLBE Tolk AR FE Gestlimismx g7 k222 WEE&HS 100037)
FRILgEE . BiRE

JERGEUTEN %A PR 2 S1E R

20114510 A LAREE 1R EN R

170mm x 242mm » 24.25E13%

FRifES52 . ISBN 978-7-111-35828-2

ZHr. 65.005¢

A, i, ME. B, ARk RTEHRSR
ZARiAsk: (010) 88378991; 88361066

WAtk . (010) 68326294, 88379649, 68995259
R . (010) 88379604

BF1EH : hzjsi@hzbook.com

LIREENS

XEE MU, BEEKOBERMMEDSHRAZERNE, FHTERESR
FHER & GRE T 20 Y, hESXHMES, EEEAEGERBBREREMN
ATEERAREL ., RORAE, E@libi#Rd, ZEN> LR S5EF RERE
w4, HENER TS RIS RS AR R BT, Bk
HER2BRFEEE, TOER THRNERE, RERTFANEE, REBEZEAR
i, XBARFEME, KMEFASEE ARAmRR.

W, ELWRESAREHS T, REMTEIERRBE, $E kAR
FTRHZAY, XXM UFEIEF FMEBRSEREIE . WEMK, WE LBHmgE
REHFRE LEEF¥ERE. EREFRRARLRMAREMIRT, XEFRE
ERAHTENBERRLTERBRE RS BEH AT ZEBHEEZL.
EHik, SI#E—REIMEFHHEIBEM X RE T ELET LR R RSB AR
R, hESHAENR. BIREENERF —RRFEILH ZH,

PUB Tk MR E A R REEIRE “HIREAEFRS™ . B19RERA,
BB CEEABRAE T #E, BREIMMBEES L, 2LLEHLWE H, R
5Pearson, McGraw-Hill, Elsevier, MIT, John Wiley & Sons, Cengage% it R &
ZHB AR TREMEGERR, NENIEREE MEM F L H Andrew S.
Tanenbaum, Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie, Jim Gray,
Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz, William
Stallings, Donald E. Knuth, John L. Hennessy, Larry L. Peterson%¥ JUfi &5) —4it
SEES, LI “UREILBEART HBRHR, #ikE$S]. HARSRE, KEAL
BHETE, WiEED TXEABR g,

“UREILBHEAR R ITIERS TERNSIMEZENR D RE, BERNNERAX
AT ERESTE R, AR E AT TEIEMER I, mEBREE L
LREHEREPEAEE, FOLSTRALBOHERERERF. &4, “UHELBS
M7 CEURTIEWEA SR, XeBEERE PR T REFIIOM, HHired
BRANEXRFEMFSEBE. LR “SRFERBE" MEABKEHEMRRS
LR IEBFERIFRT R,

iv

BERIEER ., LA . —AEFEE. MHRIER. BHENSRE, XEREE
BMEBE TREMRIE. BEHREILMZ55R T LZEREIR T T &Mt
BCERREEIL, EEAMEISN BB TR REBEDS A —AFHORE, &
M BARRRERE, MRMAOBELERRITEIX—AM BN ERERE. 2L
AR 2 IR AR E MR TR RIS TRIE, BITRIBRRGTEMT

S {Tbop
B3 T B 44 -
KRB,
EX A it
R 4R 4 -

www.hzbook.com

hzjsj@hzbook.com

(010) 88379604

AEXTHRE T T A HHLS REHBE B b RF
100037

In Praise of An Introduction to Parallel Programming

With the coming of multicore processors and the cloud, parallel computing is most cer-
tainly not a niche area off in a corner of the computing world. Parallelism has become
central to the efficient use of resources, and this new textbook by Peter Pacheco will go a
long way toward introducing students early in their academic careers to both the art and
practice of parallel computing.

Duncan Buell
Department of Computer Science and Engineering
University of South Carolina

An Introduction to Parallel Programming illustrates fundamental programming principles
in the increasingly important area of shared-memory programming using Pthreads and
OpenMP and distributed-memory programming using MPI. More important, it empha-
sizes good programming practices by indicating potential performance pitfalls. These
topics are presented in the context of a variety of disciplines, including computer science,
physics, and mathematics. The chapters include numerous programming exercises that
range from easy to very challenging. This is an ideal book for students or professionals
looking to learn parallel programming skills or to refresh their knowledge.

Leigh Little
Department of Computational Science
The College at Brockport, The State University of New York

An Introduction to Parallel Programming is a well-written, comprehensive book on the
field of parallel computing. Students and practitioners alike will appreciate the rele-
vant, up-to-date information. Peter Pacheco’s very accessible writing style, combined
with numerous interesting examples, keeps the reader’s attention. In a field that races
forward at a dizzying pace, this book hangs on for the wild ride covering the ins and outs
of parallel hardware and software.

Kathy J. Liszka
Department of Computer Science
University of Akron

FParallel computing is the future and this book really helps introduce this complicated
subject with practical and useful examples.

Andrew N. Sloss, FBCS
Consultant Engineer, ARM
Author of ARM System Developer’s Guide

Preface

Parallel hardware has been ubiquitous for some time now. It’s difficult to find a lap-
top, desktop, or server that doesn’t use a multicore processor. Beowulf clusters are
nearly as common today as high-powered workstations were during the 1990s, and
cloud computing could make distributed-memory systems as accessible as desktops.
In spite of this, most computer science majors graduate with little or no experience in
parallel programming. Many colleges and universities offer upper-division elective
courses in paralle] computing, but since most computer science majors have to take
numerous required courses, many graduate without ever writing a multithreaded or
multiprocess program.

It seems clear that this state of affairs needs to change. Although many programs
can obtain satisfactory performance on a single core, computer scientists should be
made aware of the potentially vast performance improvements that can be obtained
with parallelism, and they should be able to exploit this potential when the need
arises.

An Introduction to Parallel Programming was written to partially address this
problem. It provides an introduction to writing parallel programs using MPI,
Pthreads, and OpenMP—three of the most widely used application programming
interfaces (APIs) for parallel programming. The intended audience is students and
professionals who need to write parallel programs. The prerequisites are mini-
mal: a college-level course in mathematics and the ability to write serial programs
in C. They are minimal because we believe that students should be able to start
programming parallel systems as early as possible.

At the University of San Francisco, computer science students can fulfill a
requirement for the major by taking the course, on which this text is based, immedi-
ately after taking the “Introduction to Computer Science I” course that most majors
take in the first semester of their freshman year. We’ve been offering this course
in parallel computing for six years now, and it has been our experience that there
really is no reason for students to defer writing parallel programs until their junior
or senior year. To the contrary, the course is popular, and students have found that
using concurrency in other courses is much easier after having taken the Introduction
course.

If second-semester freshmen can learn to write parallel programs by taking a
class, then motivated computing professionals should be able to learn to write paral-
lel programs through self-study. We hope this book will prove to be a useful resource
for them.

About This Book

As we noted earlier, the main purpose of the book is to teach parallel programming in
MPI, Pthreads, and OpenMP to an audience with a limited background in computer
science and no previous experience with parallelism. We also wanted to make it as

Preface

flexible as possible so that readers who have no interest in learning one or two of
the APIs can still read the remaining material with little effort. Thus, the chapters on
the three APIs are largely independent of each other: they can be read in any order,
and one or two of these chapters can be bypass. This independence has a cost: It
was necessary to repeat some of the material in these chapters. Of course, repeated
material can be simply scanned or skipped.

Readers with no prior experience with parallel computing should read Chapter 1
first. It attempts to provide a relatively nontechnical explanation of why parallel sys-
tems have come to dominate the computer landscape. The chapter also provides a
short introduction to parallel systems and parallel programming.

Chapter 2 provides some technical background in computer hardware and soft-
ware. Much of the material on hardware can be scanned before proceeding to the
API chapters. Chapters 3, 4, and 5 are the introductions to programming with MPI,
Pthreads, and OpenMP, respectively.

In Chapter 6 we develop two longer programs: a parallel n-body solver and a
parallel tree search. Both programs are developed using all three APIs. Chapter 7
provides a brief list of pointers to additional information on various aspects of parallel
computing. o

We use the C programming language for developing our programs because all
three APIs have C-language interfaces, and, since C is such a small language, it is
a relatively easy language to learn—especially for C+ and Java programmers, since
they are already familiar with C’s control structures.

Classroom Use

This text grew out of a lower-division undergraduate course at the University of San
Francisco. The course fulfills a requirement for the computer science major, and it

also fulfills a prerequisite for the undergraduate operating systems course. The only

" prerequisites for the course are either a grade of “B” or better in a one-semester
introduction to computer science or a “C” or better in a two-semester introduction
to computer science. The course begins with a four-week introduction to C program-
ming. Since most students have already written Java programs, the bulk of what is
covered is devoted to the use pointers in C.! The remainder of the course provides
introductions to programming in MPI, Pthreads, and OpenMP.

We cover most of the material in Chapters 1, 3, 4, and 5, and parts of the material
in Chapters 2 and 6. The background in Chapter 2 is introduced as the need arises.
For example, before discussing cache coherence issues in OpenMP (Chapter 5), we
cover the material on caches in Chapter 2.

The coursework consists of weekly homework assignments, five programming
assignments, a couple of midterms, and a final exam. The homework usually involves

'Interestingly, a number of students have said that they found the use of C pointers more difficult than
MPI programming.

vii

viit

Preface

writing a very short program or making a small modification to an existing program.
Their purpose is to insure that students stay current with the course work and to give
them hands-on experience with the ideas introduced in class. It seems likely that the
existence of the assignments has been one of the principle reasons for the course’s
success. Most of the exercises in the text are suitable for these brief assignments.

The programming assignments are larger than the programs written for home-
work, but we typically give students a good deal of guidance: We’ll frequently
include pseudocode in the assignment and discuss some of the more difficult aspects
in class. This extra guidance is often crucial: It’s not difficult to give programming
assignments that will take far too long for the students to complete. The results of the
midterms and finals, and the enthusiastic reports of the professor who teaches oper-
ating systems, suggest that the course is actually very successful in teaching students
how to write parallel programs.

For more advanced courses in parallel computing, the text and its online support
materials can serve as a supplement so that much of the information on the syntax
and semantics of the three APIs can be assigned as outside reading. The text can also
be used as a supplement for project-based courses and courses outside of computer
science that make use of parallel computation.

Support Materials

The book’s website is located at http://www.mkp.com/pacheco. It will include
errata and links to sites with related materials. Faculty will be able to download
complete lecture notes, figures from the text, and solutions to the exercises and the
programming assignments. All users will be able to download the longer programs
discussed in the text.

We would greatly appreciate readers letting us know of any errors they find.
Please send an email to peter@usfca.edu if you do find a mistake.

Acknowledgments

In the course of working on this book, I’ve received considerable help from many
individuals. Among them I'd like to thank the reviewers who read and commented on
the initial proposal: Fikret Ercal (Missouri University of Science and Technology),
Dan Harvey (Southern Oregon University), Joel Hollingsworth (Elon University),
Jens Mache (Lewis and Clark College), Don McLaughlin (West Virginia Uni-
versity), Manish Parashar (Rutgers University), Charlie Peck (Earlham College),
Stephen C. Renk (North Central College), Rolfe Josef Sassenfeld (The University
of Texas at El Paso), Joseph Sloan (Wofford College), Michela Taufer (University
of Delaware), Pearl Wang (George Mason University), Bob Weems (University of
Texas at Arlington), and Cheng-Zhong Xu (Wayne State University).

I’'m also deeply grateful to the following individuals for their reviews of vari-
ous chapters of the book: Duncan Buell (University of Scuth Carolina), Matthias
Gobbert (University of Maryland, Baltimore County), Krishna Kavi (University of
North Texas), Hong Lin (University of Houston—-Downtown), Kathy Liszka (Univer-
sity of Akron), Leigh Little (The State University of New York), Xinlian Liu (Hood
College), Henry Tufo (University of Colorado at Boulder), Andrew Sloss (Consul-
tant Engineer, ARM), and Gengbin Zheng (University of Illinois). Their comments
and suggestions have made the book immeasurably better. Of course, I’'m solely
responsible for remaining errors and omissions.

Kathy Liszka is also preparing slides that can be used by faculty who adopt
the text, and a former student, Jinyoung Choi, is working on preparing a solutions
manual. Thanks to both of them.

The staff of Morgan Kaufmann has been very helpful throughout this project, I'm
especially grateful to the developmental editor, Nate McFadden. He gave me much
valuable advice, and he did a terrific job arranging for the reviews. He’s also been
tremendously patient with all the problems I've encountered over the past few years.
Thanks also to Marilyn Rash and Megan Guiney, who have been very prompt and
efficient during the production process.

My colleagues in the computer science and mathematics departments at USF have
been extremely helpful during my work on the book. I'd like to single out Professor
Gregory Benson for particular thanks: his understanding of parallel computing—
especially Pthreads and semaphores—has been an invaluable resource for me. I'm
also very grateful to our system administrators, ‘Alexey Fedosov and Colin Bean.
They’ve patiently and efficiently dealt with all of the “emergencies” that cropped up
while I was working on programs for the book.

I would never have been able to finish this book without the encouragement and
moral support of my friends Holly Cohn, John Dean, and Robert Miller. They helped
me through some very difficult times, and I’ll be eternally grateful to them.

My biggest debt is to my students. They showed me what was too easy, and what
was far too difficult. In short, they taught me how to teach parallel computing. My
deepest thanks to all of them.

About the Author

Peter Pacheco received a PhD in mathematics from Florida State University. After
completing graduate school, he became one of the first professors in UCLA’s “Pro-
gram in Computing,” which teaches basic computer science to students at the College
of Letters and Sciences there. Since leaving UCLA, he has been on the faculty of
the University of San Francisco. At USF Peter has served as chair of the computer
science department and is currently chair of the mathematics department.

His research is in parallel scientific computing. He has worked on the develop-
ment of parallel software for circuit simulation, speech recognition, and the simu-
lation of large networks of biologically accurate neurons. Peter has been teaching
parallel computing at both the undergraduate and graduate levels for nearly twenty
years. He is the author of Parallel Programming with MPI, published by Morgan
Kaufmann Publishers.

Contents

s =) ;[vi
ACKNOWIEAZMENES v ittt et reat et ee e re i eanaaee s antaeannaees ix
AbOUt the AUINOL . ..o et raer e iitinateneens X
CHAPTER 1 Why Parallel Computing?.......cccevveerirernncrincrnnenns 1
1.1 Why We Need Ever-Increasing Performance 2

1.2 Why We're Building Paralle] Systemscccooveuennes 3

1.3 Why We Need to Write Parallel Programs 3

1.4 How Do We Write Parallel Programs?oc.u0. 6

15 WhatWe'llBeDoing....covvvviiiiiiniiniieniiiiciinnns 8

1.6 Concurrent, Parallel, Distributedccoeeiiiveennnnes 9

1.7 TheRest of the BOOK ..cuvuiuiniinininaniineeaneeeieieenaanene 10

1.8 A Word of Waringcccvviuiiiinreciinenacnearaenennenens 10

1.9 Typographical COnVentionsvcevuieniiniiiiniiiiiinnn, 11

1.10 SUMIMNATY ..ovevenini i 12

111 EXEICISES +.viuvninreniarieeteteieieeaereentnneraeanaeresseneans 12

CHAPTER 2 Parallel Hardware and Parallel Software.................... 15
2.1 Some Background............ooviiiiiiiiiiiiii 15

2.1.1 The von Neumann architecture 15

2.1.2 Processes, multitasking, and threads 17

2.2 Modifications to the von Neumann Model...................... 18

2.2.1 The basics of caching...................coonn, 19

2.2.2 Cache mappingscovrviiirmiiiiiiiiniiiniiienn.. 20

2.2.3 Caches and programs: an example 22

224 Virtual Mmemoryoovviiinniiiiiiiiiiiiiiiiineeaeen. 23

2.2.5 Instruction-level parallelisme0s 25

2.2.6 Hardware multithreading..................ooeeiniinii. 28

2.3 Parallel Hardwarec.cocevvnveininiiiniiiiiii e 29

2.3.1 SIMD SYSIEIMNS +oouvvvirreciiesnnriineriianesneoiianeness 29

2.3.2 MIMD SYSIEINS . ..coureirieviniirinieinntonsesrneirnees 32

2.3.3 Interconnection networksooeviiiiiinnee, 35

2.3.4 Cachecoherence...........ccovevvviiiiiiieiiiinnnninn.n. 43

2.3.5 Shared-memory versus distributed-memory 46

2.4 Parallel SOftWArec.ovvieiiniirimiiiiie i, 47

24,1 Cavemls c.viviieiiiiriniiniirieii i eaanas 47

2.4.2 Coordinating the processes/threads.................... 48

2.4.3 Shared-memoryooevivivrieieinmeiiinranecann. 49

xii

Contents

2.5
2,6

2.7

2.8
2.9
2.10

2.11

CHAPTER 3
3.1

3.2

2.4.4 Distributed-memorycooeiiiiiiiii 53
2.4.5 Programming hybrid systems.......................... 56
Input and OUtputovvviiniiiiii i 56
Performancec.o.ooiiiiiiii 58
2.6.1 Speedup and efficiency..............ccceeiiiiannll, 58
262 AmdahlU'slawccooiiiiiiiiiiiiii 61
263 Scalabilitycooiiiiiiiiii e 62
2.64 Taking timingsooeeeeineinniierieinieiaiieaiinen, 63
Parallel Program Designcocovveiiiiiiiiiininninnns, 65
27.1 Apexamplecoiiiiiiiiiiiiiiiiieii 66
Writing and Running Parallel Programs........................ 70
ASSUMPLIONS «..viiit it e e e, 70
SUIMIMATY ...t e e eee e eaeaees 71
2.10.1 Serial SyStemS ...o.vvviiiiiiiiiiiieiiianire i, 71
2.10.2 Parallel hardwareooceiiviiiiiiiin e, 73
2.10.3 Parallel softwarec.ccovvviiiiniinaiieanninn.n, 74
2.10.4 Input and OULPULcveeiiieniaiareairereeiieainnnns 75
2.10.5 Performance.cvveuveeiiiiiiiiieiaiaeirienrinenns 75
2.10.6 Paralle] program designcoooeeiiiiiiiiiia., 76
2.10.7 ASSUMPLONS - ..einrtinetiitciieeiriinaeneenneeannenns 76
EXBICISES evviiiiinii i iiiiiieiisi s in et eea e e 71
Distributed-Memory Programming with MPI.................. 83
Getting Started.oooiiiiiiiiiiiii e, 84
3.1.1 Compilation and €XeCUtiOn.........vovarreiiieiininn.. 84
3.1.2 MPIpPrograms.......coveerieieiientineeiiieanennnn, 86
313 MPIInitandMPIFinalize....cooovivviiiiiiinnnnn, 86
3.1.4 Communicators, MPI_Comm_size

and MPI_Comm_rank...evcasiisanininnnensnsineinneas 87
3.1.5 SPMD PIOSIamsccovoviineriiniiiiinecennerannenns 88
3.1.6 Communication............cooouvirriiiniinniaeninenn, 88
317 MPISend oo e 88
318 MPIRECV tiiiiiiitiieiii e et ra e aiee s 90
3.1.9 Messagematching.............ccoooiiiiiiiiiiiii, 91
3.1.10 The status_pargument...........c.coceevaereannnnens 92
3.1.11 Semantics of MPI_Send and MPI_Recv 93
3.1.12 Some potential pitfallsooociiiilL 94
The Trapezoidal Rulein MPI.............ccooiiiriiiiiiiinnnn, 94
3.2.1 Thetrapezoidalrulecooiiiiiiiiiiinn. .. 94

3.2.2 Parallelizing the trapezoidalmulec0v0ee 96

3.3

3.4

3.5
3.6

3.7

3.8
3.9
3.10

CHAPTER 4
4.1
4.2

43
4.4

Contents

Dealing with /O ..., 97
331 OUPUL e e e 97
332 INPUb ..o e 100
Collective Communication...........ccccvveiiiieinenneineannne. 101
34.1 Tree-structured communication............ocevvunee... 102
342 MPI_REAUCE tiiiimiiii it ieaeie e eeeaianss 103
3.4.3 Collective vs. point-to-point communications........ 105
344 MPIATIredUCe coeeiiiiiii it e 106
345 Broadcast......ooeeeiiiiiiiiiiiiiii i 106
34.6 Datadistributions...........c.coooiiiiiiiiiiiiiien, 109
347 Scatterooiiiiiiii e 110
348 Gatherooiiiiiiiiiiiiiiiiiiii e 112
349 Allgatheroccoviiiiiiiiiiiiiii i 113
MPI Derived Datatypesccveieeiivieiniiiiviiiniinneenn, 116
Performance Evaluation of MPI Programs..................... 119
3.6.1 TaKing timings «..covervvieiniiiiiiieiiininiiiiinee. 119
362 ResUltS.....coiiieiiiiiiiiiiiii i 122
3.6.3 Speedup and efficiency..........coooiiiiiiiii 125
3.6.4 Scalabilityccoiiiiiiii 126
A Parallel Sorting Algorithmooooiviviiieriiinine, 127
3.7.1 Some simple serial sorting algorithms 127
3.7.2 Parallel odd-even transposition sort 129
3.7.3 Safety in MPI programs............. e 132
3.7.4 Final details of parallel odd-even sort................. 134
SUIMMAIY <ottt e e 136
EXEITISES «otentitiiniret ettt aeenes 140
Programming ASSIZNIMENLSvovevriieineininiceiniisiineins, 147
Shared-Memory Programming with Pthreads................ 151
Processes, Threads, and Pthreads 151
Hello, Worldoocvviiiiiiiieiii i 153
421 EXECULOM. ... eirtnrnrnaneiieeeeeeeaaeansiaaanaeainaasess 153
422 Preliminariesocvciiemuernieeniainiiiiicieinin.. 155
423 Starting the threadsc.ccooiiiiviiiiiiii., 156
424 Runmningthethreadscoooviiiii 157
4.2.5 Stoppingthethreads...................ooiiiiii. 158
426 Errorcheckingcooiviiiiiiiiiiiiiiiiiiiian 158
4.2.7 Other approaches to thread startup 159
Matrix-Vector Multiplicationoooonn 159

Critical SeCHOMNS «..vv vttt eaeeriereisiereieerannaneene 162

Xiii

Xiv

Contents

4.5
4.6
4.7
4.8

4.9

4.10
4.11

4.12
4.13
4.14

CHAPTER 5
5.1

5.2

5.3
54
5.5

5.6

5.7

Busy-Waitingc.oooiiiiiiiiiiii 165
MULEXES . .oonniiiiiiii e e 168
Producer-Consumer Synchronization and Semaphores....... 171
Barriers and Condition Variables.................oocveeienine. 176
4.8.1 Busy-waitingandamutexooiiiniiiiiann. 177
4.8.2 Semaphoresccoeeviiiiiiciiiiniiiiiieiiiniin, 177
4.8.3 Condition variablesccoviviiiiiiiiiin, 179
484 Pthreadsbarriers.........coooiiiiiiiiiiiin. 181
Read-Write LOCKSccvviiiiiiciiiiicii e, 181
4.9.1 Lioked list functions.............cooeveiiiiniiiniiin. 181
4.9.2 A multi-threaded linked list.................cooon. 183
4.9.3 Pthreads read-write lockscoooiiiiiinn. 187
4.9.4 Performance of the various implementations 188
4.9.5 Implementing read-write locksooiiiis 190
Caches, Cache Coherence, and False Sharing 190
Thread-Safety........cocoieiiiiiiiiii 195
4.11.1 Incorrect programs can produce correct output....... 198
SUMMALY .. .oviiiii i aaes 198
| 25 G (o L N 200
Programming ASSINMENtScovevuviriiinieiniiiaeininn 206
Shared-Memory Programming with OpenMP 209
Getting Started.........coooiiiiiiiiiiii e 210
5.1.1 Compiling and running OpenMP programs........... 211
5.1.2 The programcceviumeiriniecaieiiiiranniecnns 212
5.1.3 Errorcheckingccooiiieiiieiiiiiiiiiinniniannnn 215
The Trapezoidal Rule.............oooiiiiiiiiiiiiiii . 216
5.2.1 A first OpenMP versioncoovvviviiiniiiiininns 216
Scope of Variablesc.cooeviiiiiiiiiiinii 220
The Reduction Clausecoiriiieiiinimiiiiiiieinan, 221
The parallel for DIrectivecocoveiniiiiiiieniinianaenn, 224
551 Caveats ...covivreiiiiiintiiiiiiiiniireiiiiiii e 225
5.5.2 Datadependences.............oooeereiiniiiiiiiiiinnnn. 227
5.5.3 Finding loop-carried dependences..................... 228
554 Estimating icoovvinrieiiereeiiniiiiniiiieiens 229
5.5.5 MOIE OI SCOPE tovrvrvnnrnernininiiinneinanteiinreeanens 231
More About Loops in OpenMP: Sortingccceeniens 232
5.6.1 Bubblesort.......ccooiiiiiiiiiiiiiiii 232
5.6.2 Odd-even tranSpoSition SOTt......oevviveivnienninnnens 233
Scheduling Loopsoovviiiiiiiiiiiiie e 236

57.1 Thescheduleclause........oovviiviiiaeriiieeneinnes 237

5.8

59
5.10

5.11
5.12
5.13

CHAPTER 6
6.1

6.2

Contents

5.7.2 The static scheduletype....................cuvnn.... 238
5.7.3 The dynamic and guided schedule types............. 239
5.74 The runtime schedule type............................ 239
5.7.5 Whichschedule?...........cc.ccoeeiiiiiiiiiiien. . 241
Producers and Consumers.............cc.ccoveviveieniniennnnnens, 241
581 QUEUES..coiitiiitiiiti ettt it it eiearrraneenn 241
5.8.2 Message-passing.......ooeveiaeireiieinninnnininninnnns 242
5.8.3 Sending messagesc.cceeiiiiiiiiiiiinininn... 243
5.8.4 Receiving messagesc.vvveriirvineiniininnnnnnns 243
5.8.5 Termination detectionoceveivinnnn.. 244
58.6 StArtUPoviiiiiiiinie e 244
5.8.7 The atomicdirective...........covvveiniinniininnn..s 245
5.8.8 Critical sections and 10CKScoeveueninnnnens 246
5.8.9 Using locks in the message-passing program......... 248
5.8.10 critical directives, atomic directives,

OrJOCKS?. .ot 249
5.8.11 SOME CAVEALS. . uivvirinieniinenreitieevieeieeiannians 249
Caches, Cache Coherence, and False Sharing 251
Thread-Safety..........ccooviiiiiiii 256
5.10.1 Incorrect programs can produce correct output....... 258
Summaryc.coiiiii e 259
EXEICISES .ovuviiiiiieiniicit vttt eee e e, 263
Programming ASSignmentsc....oovieieiieninenennnns 267
Parallel Program Development..................cvvevnnvennns 271
Two n-Body SOIVerscccocoviviiiiiiiiiiiieici e 21
6.1.1 Theproblem.........coooiiiiiiiiiiiiiii i 271
6.1.2 Two serial programsc.cccvivvivineeniinninnnn. 273
6.1.3 Parallelizing the n-body solvers 277
6.14 AwordaboutIl/O..............ociiiiiiiiiiiiiinn, 280
6.1.5 Parallelizing the basic solver using OpenMP 281
6.1.6 Parallelizing the reduced solver using OpenMP...... 284
6.1.7 Evaluating the OpenMP codes......................... 288
6.1.8 Parallelizing the solvers using pthreads 289
6.1.9 Parallelizing the basic solver using MPI.............. 290
6.1.10 Parallelizing the reduced solver using MPI........... 292
6.1.11 Performance of the MPI solvers 297
Tree Searchcoooiiiiiiiiiiii e 299
6.2.1 Recursive depth-first search............................ 302
6.2.2 Nonrecursive depth-first search........................ 303

6.2.3 Data structures for the serial implementations........ 305

Xvi

Contents

CHAPTER

References

6.2.4 Performance of the serial implementations
6.2.5 Parallelizing tre¢ search..........oeoviveviiiinniiiinnas
6.2.6 A static parallelization of tree search using
pthreadscoeiiiiiiii
6.2.7 A dynamic parallelization of tree search using
pthreadsoviiiiiiiiii i
6.2.8 Evaluating the pthreads tree-search programs
6.2.9 Parallelizing the tree-search programs
using OpenMP ...
6.2.10 Performance of the OpenMP implementations
6.2.11 Implementation of tree search using MPI
and static partitioningc.cocciiiniiiiinn.
6.2.12 Implementation of tree search using MPI
and dynamic partitioningccooeevieeineiinanns
6.3 A Wordof Caution.........coooeieiiiiiiiiiiniiniii
6.4 Which API7 ..o oot e,
B.5 SUMMAryccoiiiiiiiiii e

B.6 EXEICISES cvavvneervrreietrenrirnenerrenrnernanenearaneneenans
6.7 Programming ASSigNmentscc.cocevverneenrrernennnenenens

7 Whereto Go from HEreocevevernerernncrnrsecnsnarsasnes

335

