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In Praise of An Introduction to Parallel Programming

With the coming of multicore processors and the cloud, parallel computing is most cer-
tainly not a niche area off in a corner of the computing world. Parallelism has become
central to the efficient use of resources, and this new textbook by Peter Pacheco will go a
long way toward introducing students early in their academic careers to both the art and
practice of parallel computing.

Duncan Buell
Department of Computer Science and Engineering
University of South Carolina

An Introduction to Parallel Programming illustrates fundamental programming principles
in the increasingly important area of shared-memory programming using Pthreads and
OpenMP and distributed-memory programming using MPI. More important, it empha-
sizes good programming practices by indicating potential performance pitfalls. These
topics are presented in the context of a variety of disciplines, including computer science,
physics, and mathematics. The chapters include numerous programming exercises that
range from easy to very challenging. This is an ideal book for students or professionals
looking to learn parallel programming skills or to refresh their knowledge.

Leigh Little
Department of Computational Science
The College at Brockport, The State University of New York

An Introduction to Parallel Programming is a well-written, comprehensive book on the
field of parallel computing. Students and practitioners alike will appreciate the rele-
vant, up-to-date information. Peter Pacheco’s very accessible writing style, combined
with numerous interesting examples, keeps the reader’s attention. In a field that races
forward at a dizzying pace, this book hangs on for the wild ride covering the ins and outs
of parallel hardware and software.

Kathy J. Liszka
Department of Computer Science
University of Akron

FParallel computing is the future and this book really helps introduce this complicated
subject with practical and useful examples.

Andrew N. Sloss, FBCS
Consultant Engineer, ARM
Author of ARM System Developer’s Guide



Preface

Parallel hardware has been ubiquitous for some time now. It’s difficult to find a lap-
top, desktop, or server that doesn’t use a multicore processor. Beowulf clusters are
nearly as common today as high-powered workstations were during the 1990s, and
cloud computing could make distributed-memory systems as accessible as desktops.
In spite of this, most computer science majors graduate with little or no experience in
parallel programming. Many colleges and universities offer upper-division elective
courses in paralle] computing, but since most computer science majors have to take
numerous required courses, many graduate without ever writing a multithreaded or
multiprocess program.

It seems clear that this state of affairs needs to change. Although many programs
can obtain satisfactory performance on a single core, computer scientists should be
made aware of the potentially vast performance improvements that can be obtained
with parallelism, and they should be able to exploit this potential when the need
arises.

An Introduction to Parallel Programming was written to partially address this
problem. It provides an introduction to writing parallel programs using MPI,
Pthreads, and OpenMP—three of the most widely used application programming
interfaces (APIs) for parallel programming. The intended audience is students and
professionals who need to write parallel programs. The prerequisites are mini-
mal: a college-level course in mathematics and the ability to write serial programs
in C. They are minimal because we believe that students should be able to start
programming parallel systems as early as possible.

At the University of San Francisco, computer science students can fulfill a
requirement for the major by taking the course, on which this text is based, immedi-
ately after taking the “Introduction to Computer Science I” course that most majors
take in the first semester of their freshman year. We’ve been offering this course
in parallel computing for six years now, and it has been our experience that there
really is no reason for students to defer writing parallel programs until their junior
or senior year. To the contrary, the course is popular, and students have found that
using concurrency in other courses is much easier after having taken the Introduction
course.

If second-semester freshmen can learn to write parallel programs by taking a
class, then motivated computing professionals should be able to learn to write paral-
lel programs through self-study. We hope this book will prove to be a useful resource
for them.

About This Book

As we noted earlier, the main purpose of the book is to teach parallel programming in
MPI, Pthreads, and OpenMP to an audience with a limited background in computer
science and no previous experience with parallelism. We also wanted to make it as
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flexible as possible so that readers who have no interest in learning one or two of
the APIs can still read the remaining material with little effort. Thus, the chapters on
the three APIs are largely independent of each other: they can be read in any order,
and one or two of these chapters can be bypass. This independence has a cost: It
was necessary to repeat some of the material in these chapters. Of course, repeated
material can be simply scanned or skipped.

Readers with no prior experience with parallel computing should read Chapter 1
first. It attempts to provide a relatively nontechnical explanation of why parallel sys-
tems have come to dominate the computer landscape. The chapter also provides a
short introduction to parallel systems and parallel programming.

Chapter 2 provides some technical background in computer hardware and soft-
ware. Much of the material on hardware can be scanned before proceeding to the
API chapters. Chapters 3, 4, and 5 are the introductions to programming with MPI,
Pthreads, and OpenMP, respectively.

In Chapter 6 we develop two longer programs: a parallel n-body solver and a
parallel tree search. Both programs are developed using all three APIs. Chapter 7
provides a brief list of pointers to additional information on various aspects of parallel
computing. o

We use the C programming language for developing our programs because all
three APIs have C-language interfaces, and, since C is such a small language, it is
a relatively easy language to learn—especially for C+ and Java programmers, since
they are already familiar with C’s control structures.

Classroom Use

This text grew out of a lower-division undergraduate course at the University of San
Francisco. The course fulfills a requirement for the computer science major, and it

also fulfills a prerequisite for the undergraduate operating systems course. The only

" prerequisites for the course are either a grade of “B” or better in a one-semester
introduction to computer science or a “C” or better in a two-semester introduction
to computer science. The course begins with a four-week introduction to C program-
ming. Since most students have already written Java programs, the bulk of what is
covered is devoted to the use pointers in C.! The remainder of the course provides
introductions to programming in MPI, Pthreads, and OpenMP.

We cover most of the material in Chapters 1, 3, 4, and 5, and parts of the material
in Chapters 2 and 6. The background in Chapter 2 is introduced as the need arises.
For example, before discussing cache coherence issues in OpenMP (Chapter 5), we
cover the material on caches in Chapter 2.

The coursework consists of weekly homework assignments, five programming
assignments, a couple of midterms, and a final exam. The homework usually involves

'Interestingly, a number of students have said that they found the use of C pointers more difficult than
MPI programming.

vii
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writing a very short program or making a small modification to an existing program.
Their purpose is to insure that students stay current with the course work and to give
them hands-on experience with the ideas introduced in class. It seems likely that the
existence of the assignments has been one of the principle reasons for the course’s
success. Most of the exercises in the text are suitable for these brief assignments.

The programming assignments are larger than the programs written for home-
work, but we typically give students a good deal of guidance: We’ll frequently
include pseudocode in the assignment and discuss some of the more difficult aspects
in class. This extra guidance is often crucial: It’s not difficult to give programming
assignments that will take far too long for the students to complete. The results of the
midterms and finals, and the enthusiastic reports of the professor who teaches oper-
ating systems, suggest that the course is actually very successful in teaching students
how to write parallel programs.

For more advanced courses in parallel computing, the text and its online support
materials can serve as a supplement so that much of the information on the syntax
and semantics of the three APIs can be assigned as outside reading. The text can also
be used as a supplement for project-based courses and courses outside of computer
science that make use of parallel computation.

Support Materials

The book’s website is located at http://www.mkp.com/pacheco. It will include
errata and links to sites with related materials. Faculty will be able to download
complete lecture notes, figures from the text, and solutions to the exercises and the
programming assignments. All users will be able to download the longer programs
discussed in the text.

We would greatly appreciate readers letting us know of any errors they find.
Please send an email to peter@usfca.edu if you do find a mistake.
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