B SN BB ¥ 5 R 2 S B R 3

Data Structures and
Other Objects Using C++

(Fourth Edition)

——C++hR)

Michael Main .
Walter Savitch

(BESCHRENAR)

11) 44 %g P ﬁ ‘}‘

M BB FERARZHEH R

Iz 54

CH++hR (Exzem)

(B IRR)

Data Structures and Other Objects
Using C++
(Fourth Edition)

Michael Main Walter Savitch

a4 4 8 M @

Pt =

E=F: 01-2012-4732
A AN

AR KT CH B BRI AP H . CERAEARER 2 A [K A T S 45k SRR 1 Sl
Btf. ABU CHHBSERIBET, FINM R RIY ik, M ST, 8] al B K ADRRR R Sk H i
iHE . PR EEAREORE: KITARENNBL MR G RE CH, a8, R aiAEE, #R R
B IEARARR STL BEATEMIT A, Hikk, BAFU, VA, &, Pk, Ardk, i, IRAERSA0R, R, did)
A4, nEEE X EHBIRRRMNGES, FRRHE RO SRR, LU A B AT .

A AR TSN R AR RS BRI Bh, o fE TR A0 5%
Original edition, entitled Data Structures and Other Objects Using C++4E, 978-0-13-212948-0 by Main,Michael; Savitch, Water,
published by Pearson Education, Inc, publishing as Pearson, Copyright © 2011 by Pearson Education,Inc.
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage retrieval system, without permission from Pearson Education,
Inc.
China edition published by PEARSON EDUCATION ASIA LTD., and CHINA SCIENCE PUBLISHING & MEDIA
LTD.(SCIENCE PRESS) Copyright © 2012
Authorized for sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and Macau
SAR). AMAN AT HMX (BREE. FESERID SR,
A A5 3TN A7 Pearson Education(H5 AL B H R B BOGHI thbrE. ThriE#E AR

EH 4% B (CIP) #iiE

B G : C++hit= Data Structures and Other Objects Using C++: 4 Jit: 5 32/(%) HE[K(Main, M.),
(3R) BEYERFAT(Savitch, W), —RLENA. —bnt: BREHARAL, 2012

(EAME BRFEE SRR MK H R 5)

ISBN 978-7-03-035024-4

1. O% 11.OH @FF - Il O¥ILEH-C K LOC i F-FF &L V. OTP3I1.12
@312

o E R A E 5 1E CIP 4% 7 (2011) 55 133346 '
TiERE: BN E A/ TEfrEl: 3 &/ Hakit HERBE

“4 % & B B HK
EFREIRR A 165
HRB AT : 100717

http: //www.sciencep.com

RETE &L WA A28 BRI
RREMBRAERAT SHOBTEAEL R

*
201246 S — R JFA: 787X1092 1/16
20124F 6 HE —REDRI Epgk: 53
FH: 1160 000
Effr: 108.00 7T
CAnA ERE T Bt) 8, oAt B B2 I 480

Preface

T;lis book is written for a second course in computer science,
the CS 2 course at many universities. The text’s emphasis is on the
specification, design, implementation, and use of the basic data types that
normally are covered in a second-semester course. In addition, we cover a
range of important programming techniques and provide self-contained cov-
erage of abstraction techniques, object-oriented programming, big-O time
analysis of algorithms, and sorting.

We assume that the student has already had an introductory computer sci-
ence and programming class, but we do include coverage of those topics (such
as recursion and pointers) that are not always covered completely in a first
course. The text uses C++, but our coverage of C++ classes begins from
scratch, so the text may be used by students whose introduction to program-
ming was in C rather than C++. In our experience, such students need a brief
coverage of C++ input and output techniques (such as those provided in Appen-
dix F) and some coverage of C++ parameter types (which we provide in Chap-
ter 2). When C programmers are over the input/output hurdle and the parameter
hurdle (and perhaps a small “fear” hurdle), they can step readily into classes
and other object-oriented features of C++. As this indicates, there are several
pathways through the text that can be tailored to different backgrounds, includ-
ing some optional features for the student who comes to the class with a stron-
ger than usual background.

New to This Edition

The C++ Standard Template Library (STL) plays a larger role in our curricu-
lum than past editions, and we have added selected new material to support
this. For us, it’s important that our students understand both how to use the
STL classes in an application program and the possible approaches to imple-

4 Preface

menting these (or similar) classes. With this in mind, the primary changes that
you’ll find for this edition are:

* A new Section 2.6 that gives an early introduction to the Standard Tem-
plate Library using the pair class. We have been able to introduce students
to the STL here even before they have a full understanding of templates.

* An earlier introduction of the multiset class and STL iterators in Section
3.4. This is a good location for the material because the students have just
seen how to implement their first collection class (the bag), which is
based on the multiset.

* We continue to introduce the STL string class in Section 4.5, where it’s
appropriate for the students to implement their own string class with a
dynamic array.

* A new Section 5.6 that compares three similar STL classes: the vector, the
list, and the deque. At this point, the students have enough knowledge to
understand typical vector and list implementations.

* A first introduction to the STL algorithms appears in Section 6.3, and this
is now expanded on in Sections 11.2 (the heap algorithms) and 13.4
(expanded coverage of sorting and binary search in the STL).

* A new Section 8.4 provides typical implementation details for the STL
deque class using an interesting combination of dynamic arrays and point-
ers.

* A discussion of hash tables in the proposed TR1 expansions for the STL
is now given in Section 12.6.

Most chapters also include new programming projects, and you may also keep
an eye on our project web site, www.cs.colorado.edu/~main/dsoc.html, for new
projects as we develop them.

The Steps for Each Data Type

Overall, the fourth edition remains committed to the data types: sets, bags (or
multisets), sequential lists, ordered lists (with ordering from a “less than” opera-
tor), stacks, queues, tables, and graphs. There are also additional supplemental
data types such as a priority queue. Each of these data types is introduced fol-
lowing a consistent pattern:

Step 1: Understand the data type abstractly. At this level, a student gains an
understanding of the data type and its operations at the level of concepts and
pictures. For example, a student can visualize a stack and its operations of push-
ing and popping elements. Simple applications are understood and can be car-
ried out by hand, such as using a stack to reverse the order of letters in a word.

Step 2: Write a specification of the data type as a C++ class. In this step,
the student sees and learns how to write a specification for a C++ class that can
implement the data type. The specification includes prototypes for the construc-

tors, public member functions, and sometimes other public features (such as an
underlying constant that determines the maximum size of a stack). The prototype
of each member function is presented along with a precondition/postcondition
contract that completely specifies the behavior of the function. At this level, it’s
important for the students to realize that the specification is not tied to any par-
ticular choice of implementation techniques. In fact, this same specification may
be used several times for several different implementations of the same data type.

Step 3: Use the data type. With the specification in place, students can write
small applications or demonstration programs to show the data type in use.
These applications are based solely on the data type’s specification, as we still
have not tied down the implementation.

Step 4: Select appropriate data structures, and proceed to design and
implement the data type. With a good abstract understanding of the data
type, we can select an appropriate data structure, such as a fixed-sized array, a
dynamic array, a linked list of nodes, or a binary tree of nodes. For many of our
data types, a first design and implementation will select a simple approach, such
as a fixed-sized array. Later, we will redesign and reimplement the same data
type with a more complicated underlying structure.

Since we are using C++ classes, an implementation of a data type will have
the selected data structures (arrays, pointers, etc.) as private member variables of
the class. With each implemented class, we stress the necessity for a clear under-
standing of the rules that relate the private member variables to an abstract notion
of the data type. We require each student to write these rules in clear English sen-
tences that we call the invariant of the abstract data type. Once the invariant is
written, students can proceed to implementing various member functions. The
invariant helps in writing correct functions because of two facts: (a) Each func-
tion (except constructors) knows that the invariant is true when the function
begins its work; and (b) each function (except the destructor) is responsible for
ensuring that the invariant is again true when the function finishes.

Step 5: Analyze the implementation. Each implementation can be analyzed
for correctness, flexibility (such as a fixed size versus dynamic size), and time
analysis of the operations (using big-O notation). Students have a particularly
strong opportunity for these analyses when the same data type has been imple-
mented in several different ways.

Where Will the Students Be at the End of the Course?

At the end of our course, students understand the data types inside out. They
know how to use the data types, they know how to implement them several
ways, and they know the practical effects of the different implementation
choices. The students can reason about efficiency with a big-O analysis and

Preface

5

6 Preface

argue for the correctness of their implementations by referring to the invariant
of the class.

One of the important lasting effects of the course is the specification, design,
and implementation experience. The improved ability to reason about programs
is also important. But perhaps most important of all is the exposure to classes that
are easily used in many situations. The students no longer have to write every-
thing from scratch. We tell our students that someday they will be thinking about
a problem, and they will suddenly realize that a large chunk of the work can be
done with a bag, or a stack, or a queue, or some such. And this large chunk of
work is work that they won’t have to do. Instead, they will pull out the bag or
stack or queue or some such that they wrote this semester—using it with no mod-
ifications. Or, more likely, they will use the familiar data type from a library of
standard data types, such as the C++ Standard Template Library. In fact, the
behavior of the data types in this text is a cut-down version of the Standard Tem-
plate Library, so when students take the step to the real STL, they will be on
familiar ground. And at that point of realization, knowing that a certain data type
is the exact solution he or she needs, the student becomes a real programmer.

Other Foundational Topics

Throughout the course, we also lay a foundation for other aspects of “real pro-
gramming,” with coverage of the following topics beyond the basic data struc-
tures material:

Object-oriented programming. The foundations of object-oriented program-
ming (OOP) are laid by giving students a strong understanding of C++ classes.
The important aspects of classes are covered early: the notion of a member
function, the separation into private and public members, the purpose of con-
structors, and a small exposure to operator overloading. This is enough to get
students going and excited about classes.

Further major aspects of classes are introduced when the students first use
dynamic memory (Chapter 4). At this point, the need for three additional items
is explained: the copy constructor, the overloaded assignment operator, and the
destructor. Teaching these OOP aspects with the first use of dynamic memory
has the effect of giving the students a concrete picture of dynamic memory as a
resource that can be taken and must later be returned.

Conceptually, the largest innovation of OOP is the software reuse that occurs
via inheritance. And there are certainly opportunities for introducing inheritance
right from the start of a data structures course (such as implementing a set class
as a descendant of a bag class). However, an early introduction may also result
in juggling too many new concepts at once, resulting in a weaker understanding
of the fundamental data structures. Therefore, in our own course we introduce
inheritance at the end as a vision of things to come. But the introduction to inher-
itance (Sections 14.1 and 14.2) could be covered as soon as copy constructors are

understood. With this in mind, some instructors may wish to cover Chapter 14
earlier, just before stacks and queues.

Another alternative is to identify students who already know the basics of
classes. These students can carry out an inheritance project (such as the ecosys-
tem of Section 14.2 or the game engine in Section 14.3) while the rest of the stu-
dents first learn about classes.

Templates. Template functions and template classes are an important part of
the proposed Standard Template Library, allowing a programmer to easily
change the type of the underlying item in a container class. Template classes
also allow the use of several different instantiations of a class in a single pro-
gram. As such, we think it’s important to learn about and use templates (Chapter
6) prior to stacks (Chapter 7), since expression evaluation is an important appli-
cation that uses two kinds of stacks.

Iterators. Iterators are another important part of the proposed Standard Tem-
plate Library, allowing a programmer to easily step through the items in a con-
tainer object (such as the elements of a set or bag). Such iterators may be
internal (implemented with member functions of the container class) or external
(implemented by a separate class that is a friend of the container class). We
introduce internal iterators with one of the first container classes (a sequential
list in Section 3.2). An internal iterator is added to the bag class when it is
needed in Chapter 6. At that point, the more complex external iterators also are
discussed, and students should be aware of the advantages of an external itera-
tor. Throughout the text, iterators provide a good opportunity for programming
projects, such as implementing an external bag iterator (Chapter 6) or using a
stack to implement an internal iterator of a binary search tree (Chapter 10).

Recursion. First-semester courses sometimes introduce students to recursion.
But many of the first-semester examples are tail recursion, where the final act of
the function is the recursive call. This may have given students a misleading
impression that recursion is nothing more than a loop. Because of this, we prefer
to avoid early use of tail recursion in a second-semester course. For example,
list traversal and other operations on linked lists can be implemented with tail
recursion, but the effect may reinforce wrong impressions about recursion (and
the tail recursive list operations may need to be unlearned when the students
work with lists of thousands of items, running into potential run-time stack
overflow).

So, in our second-semester course, we emphasize recursive solutions that use
more than tail recursion. The recursion chapter provides three examples along
these lines. Two of the examples—generating random fractals and traversing a
maze—are big hits with the students. In our class, we teach recursion (Chapter
9) just before trees (Chapter 10), since it is in recursive tree algorithms that recur-
sion becomes vital. However, instructors who desire more emphasis on recursion
can move that topic forward, even before Chapter 2.

Preface 7

8 Preface

In a course that has time for advanced tree projects (Chapter 11), we analyze
the recursive tree algorithms, explaining the importance of keeping the trees
balanced—both to improve worst-case performance, and to avoid potential run-
time stack overflow.

Searching and sorting. Chapters 12 and 13 provide fundamental coverage of
searching and sorting algorithms. The searching chapter reviews binary search
of an ordered array, which many students will have seen before. Hash tables
also are introduced in the search chapter. The sorting chapter reviews simple
quadratic sorting methods, but the majority of the chapter focuses on faster
algorithms: the recursive merge sort (with worst-case time of O(n log r)), Tony
Hoare’s recursive quicksort (with average-time O(n log »)), and the tree-based
heap sort (with worst-case time of O(# log »)). There is also a new introduction
to the C++ Standard Library sorting functions.

Advanced Projects

The text offers good opportunities for optional projects that can be undertaken
by a more advanced class or by students with a stronger background in a large
class. Particular advanced projects include the following:

* A polynomial class using dynamic memory (Section 4.6).

* An introduction to Standard Library iterators, culminating in an imple-
mentation of an iterator for the student’s bag class (Sections 6.3 through
6.5).

* An iterator for the binary search tree (Programming Projects in Chapter
10).

* A priority queue, implemented with a linked list (Chapter 8 projects), or
implemented using a heap (Section 11.1).

* A set class, implemented with B-trees (Section 11.3). We have made a
particular effort on this project to provide information that is sufficient for
students to implement the class without need of another text. In our
courses, we have successfully directed advanced students to do this
project as independent work.

* An inheritance project, such as the ecosystem of Section 14.2.

* An inheritance project using an abstract base class such as the game base
class in Section 14.3 (which allows easy implementation of two-player
games such as Othello or Connect Four).

* A graph class and associated graph algorithms from Chapter 15. This is
another case where advanced students may do work on their own.

C++ Language Features

C++ is a complex language with many advanced features that will not be
touched in a second-semester course. But we endeavor to provide complete
coverage for those features that we do touch. In the first edition of the text, we
included coverage of two features that were new to C++ at the time: the new
bool data type (Figure2.l on page 67) and static member constants (see
page 134). The requirements for using static member constants were changed in
the 1998 Standard, and we have incorporated this change into the text (the
constant must now be declared both inside and outside the class definition). The
other primary new feature from the 1998 Standard is the use of namespaces,
which were incorporated in the second edition. In each of these cases, these
features might not be supported in older compilers. We provide some assistance
in dealing with this (see Appendix E, “Dealing with Older Compilers™), and
some assistance in downloading and installing the GNU g++ compiler (see
Appendix K).

Flexibility of Topic Ordering

This book was written to allow instructors latitude in reordering the material to
meet the specific background of students or to add early emphasis to selected
topics. The dependencies among the chapters are shown on page 11. A line join-
ing two boxes indicates that the upper box should be covered before the lower
box.

Here are some suggested orderings of the material:

Typical course. Start with Chapters 1-10, skipping parts of Chapter 2 if the
students have a prior background in C++ classes. Most chapters can be covered
in a week, but you may want more time for Chapter 5 (linked lists), Chapter 6
(templates), Chapter 9 (recursion), or Chapter 10 (trees). Typically, we cover the
material in 13 weeks, including time for exams and extra time for linked lists
and trees. Remaining weeks can be spent on a tree project from Chapter 11, or
on binary search (Section 12.1) and sorting (Chapter 13).

Heavy OOP emphasis. If students cover sorting and searching elsewhere,
there will be time for a heavier emphasis on object-oriented programming. The
first four chapters are covered in detail, and then derived classes (Section 14.1)
are introduced. At this point, students can do an interesting OOP project, based
on the ecosystem of Section 14.2 or the games in Section 14.3. The basic data
structures are then covered (Chapters 5-8), with the queue implemented as a
derived class (Section 14.3). Finish up with recursion (Chapter 9) and trees
(Chapter 10), placing special emphasis on recursive member functions.

Accelerated course. Assign the first three chapters as independent reading in
the first week, and start with Chapter 4 (pointers). This will leave two to three

Preface 9

10 Preface

extra weeks at the end of the term, so that students may spend more time on
searching, sorting, and the advanced topics (shaded on page 11.)

We also have taught the course with further acceleration by spending no lec-
ture time on stacks and queues (but assigning those chapters as reading).

Early recursion / early sorting. One to three weeks may be spent at the start
of class on recursive thinking. The first reading will then be Chapters 1 and 9,
perhaps supplemented by additional recursive projects.

If recursion is covered early, you may also proceed to cover binary search
(Section 12.1) and most of the sorting algorithms (Chapter 13) before introduc-
ing C++ classes.

Supplements via the Internet

The following supplemental materials for this text are available to all readers at
www.aw-bc.com/cssupport:

* Source code. All the C++ classes, functions, and programs that appear in
the book are available to readers.

* Errata. We have tried not to make mistakes, but sometimes they are
inevitable. A list of detected errors is available and updated as necessary.
You are invited to contribute any errors you find.

In addition, the following supplements are available to qualified instructors at
www.pearsonhighered.com/irc. Please contact your Addison-Wesley sales rep-
resentative, or send email to computing@aw.com, for information on how to
access them:

* PowerPoint lecture slides

* Exam questions

* Solutions to selected programming projects

» Sample assignments and lab exercises

* Suggested syllabi

Chapter Dependencies

Preface

At the start of the course, students should be comfortable writing functions and using
arrays in C++ or C. Those who have used only C should read Appendix F and pay
particular attention to the discussion of reference parameters in Section 2.4.

Chapter 1
Introduction
Chapters 2, 3, and 4.1-44
Classes
Container Classes ch 9
Pointers and Dynamic Memory aptgr
Recursion
Chapter 2 may be skipped by students
with a good background in C++ classes.

[
/ / Chapter 5
Linked Lists

Section 12.1
Binary Search

Sec. 12.2-12.3
Hash Tables
(Also requires
6.1-6.2)

Chapter 13
Sorting
(Heapsort also
needs Sec. 11.1)

Sections 4.5-4.6]
Projects: =
String Class Sections 6.1-6.2
Polynomial Templates
Chapter 7
Sections 6.3—6.6 Stacks
More Templates
and lterators
Cgapter 8 Chapter 10
ueues Trees
Sections 14.1-14.2
Derived Classes Z
el Section 11.3
Baps B-Trees
Section 14.3
Virtual Methods Section 11.4

Detailed Tree Analysis

The shaded boxes provide
good opportunities for
advanced work.

Chapter 15
Graphs

11

12 Preface

_ Acknowledgments

We started this book while Walter was visiting Michael at the Computer Science
Department of the University of Colorado in Boulder. The work was completed
after Walter moved back to the Department of Engineering and Computer Sci-
ence at the University of California, San Diego. We are grateful to these institu-
tions for providing facilities, wonderful students, and interaction with congenial
colleagues.

Our students have been particularly helpful—nearly 5000 of our students
worked through the material, making suggestions, showing us how they learned.
We thank the reviewers and instructors who used the material in their data struc-
tures courses and provided feedback: Zachary Bergen, Cathy Bishop, Martin
Burtscher, Gina Cherry, Courtney Comstock, Stephen Davies, Robert Frohardt,
John Gillett, Mike Hendricks, Ralph Hollingsworth, Yingdan Huang, Patrick
Lynn, Ron McCarty, Shivakant Mishra, Evi Nemeth, Rick Osborne, Rachelle
Reese, and Nicholas Tran. The book was also extensively reviewed by Wolfgang
W. Bein, Bill Hankley, Michael Milligan, Paul Nagin, Jeff Parker, Andrew L.
Wright, John R. Rose, and Evan Zweifel. We thank these colleagues for their
excellent critique and their encouragement.

Thank you to Lesley McDowell and Chris Schenk, who are pleasant and
enthusiastic every day in the computer science department at the University of
Colorado. Our thanks also go to the editors and staff at Addison-Wesley. Heather
McNally’s work has encouraged us and provided us with smooth interaction on
a daily basis and eased every step of the production. Karin Dejamaer and Jessica
Hector provided friendly encouragement in Boulder, and we offer our thanks to
them. We welcome and appreciate Michael Hirsch in the role of editor, where he
has shown amazing energy, enthusiasm, and encouragement. Finally, our origi-
nal editor, Susan Hartman, has provided continual support, encouragement, and
direction—the book wouldn’t be here without you!

In addition to the work and support from those who put the book together, we
thank those who offered us daily interest and encouragement. Our deepest thanks
go to Holly Arnold, Vanessa Crittenden, Meredith Boyles, Suzanne Church, Erika
Civils, Lynne Conklin, Andrzej Ehrenfeucht, Paul Eisenbrey, Skip Ellis, John
Kennedy, Rick Lowell, George Main, Mickey Main, Jesse Nuzzi, Ben Powell,
Marga Powell, Megan Powell, Grzegorz Rozenberg, Hannah, Timothy, and
Janet.

Michael Main Walter Savitch
main@colorado.edu wsavitch@ucsd.edu
Boulder, Colorado San Diego, California

13

Chapter List

CHAPTER 1 THE PHASES OF SOFTWARE DEVELOPMENT 31

CHAPTER 2 ABSTRACT DATA TYPES AND C++ CLASSES 63

CHAPTER 3 CONTAINER CLASSES 126
CHAPTER 4 POINTERS AND DYNAMIC ARRAYS
CHAPTER 5 LINKED LiIsTS 250

184

CHAPTER 6 SOFTWARE DEVELOPMENT WITH TEMPLATES, ITERATORS, AND THE STL 320

CHAPTER 7 STACKS 382

CHAPTER 8 QUEUES 423

CHAPTER 9 RECURSIVE THINKING 466
CHAPTER 10 TRees 504

CHAPTER 11 BALANCED TREES 569

CHAPTER 12 SEARCHING 613

CHAPTER 13 SORTING 659

CHAPTER 14 DERIVED CLASSES AND INHERITANCE
CHAPTER 15 GRAPHS 762

APPENDIXES 811

INDEX 841

713

Contents 15

Contents

CHAPTER 1 THE PHASES OF SOFTWARE DEVELOPMENT

1.1 Specification, Design, Implementation 33

Design Concept: Decomposing the Problem 34
Preconditions and Postconditions 36
Using Functions Provided by Other Programmers 38
Implementation Issues for the ANSI/ISO C++ Standard 38
C++ Feature: The Standard Library and the Standard Namespace 39
Programming Tip: Use Declared Constants 41
Clarifying the Const Keyword

Part 1: Declared Constants 42
Programming Tip: Use Assert to Check a Precondition 42
Programming Tip: Use EXIT_SUCCESS in a Main Program 44
C++ Feature: Exception Handling 44
Self-Test Exercises for Section 1.1 44

12 Running Time Analysis 45

The Stair-Counting Problem 45

Big-O Notation 51

Time Analysis of C++ Functions 53

Worst-Case, Average-Case, and Best-Case Analyses 55
Self-Test Exercises for Section 1.2 55

1.3 Testing and Debugging 56

Chapter Summary 60

Choosing Test Data 56

Boundary Values 57

Fully Exercising Code 58

Debugging 58

Programming Tip: How to Debug 58
Self-Test Exercises for Section 1.3 59

Solutions to Self-Test Exercises 61

CHAPTER 2 ABSTRACT DATA TYPES AND C++ CLASSES

21 Classes and Members 64

Programming Example: The Throttle Class 64
Clarifying the Const Keyword

Part 2: Constant Member Functions 68
Using a Class 69
A Small Demonstration Program for the Throttle Class 70
Implementing Member Functions 72
Member Functions May Activate Other Members 74
Programming Tip: Style for Boolean Variables 74
Self-Test Exercises for Section 2.1 75

