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Preface

The Fourier transform and the Laplace transform of a positive measure share,
together with its moment sequence, a positive definiteness property which
under certain regularity assumptions is characteristic for such expressions.
This is formulated in exact terms in the famous theorems of Bochner,
Bernstein-Widder and Hamburger. All three theorems can be viewed as
special cases of a general theorem about functions ¢ on abelian semigroups
with involution (S, +, *#) which are positive definite in the sense that the
matrix (@(s} + s,)) is positive definite for all finite choices of elements
" 8§, ..., 38, from S. The three basic results mentioned above correspond to
(R, +,x* = —x), ({0, of, 4+, x* = x)and (Ny, +,n* = n).

The purpose of this book is to provide a treatment of these positive
definite functions on abelian semigroups with involution. In doing so we also
discuss related topics such as negative definite functions, completely mono-
tone functions and Hoeflfding-type inequalities. We view these subjects as
important ingredients of harmonic analysis on semigroups. It has been our
aim, simultaneously, to write a book which can serve as a textbook for an
advanced graduate course, because we feel that the notion of positive
definiteness is an important and basic notion which occurs in mathematics
as often as the notion of a Hilbert space. The already mentioned Laplace and
Fourier transformations, as well as the generating functions for integer-
valued random variables, belong to the most important analytical tools in
probability theory and its applications. Only recently it turned out that
positive (resp. negative) definite functions allow a probabilistic characteriza-
tion in terms of so-called Hoeflding-type inequalities.

As prerequisites for the reading of this book we assume the reader to be
familiar with the fundamental principles of algebra, analysis and probability,
including the basic notions from vector spaces, general topology and abstract
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measure theory and integration. On this basis we have included Chapter 1
about locally convex topological vector spaces with the main objective of
proving the Hahn-Banach theorem in different versions which will be used
later, in particular, in proving the Krein—-Milman theorem. We also present
a short introduction to the idea of integral representations in compact
convex sets, mainly without proofs because the only version of Choquet’s
theorem which we use later is derived directly from the Krein—Milman
theorem. For later use, however, we need an integration theory for measures
on Hausdorff spaces, which are not necessarily locally compact. Chapter 2
contains a treatment of Radon measures, which are inner regular with respect
to the family of compact sets on which they are assumed finite. The existence
of Radon product measures is based on a general theorem about Radon
bimeasures on a product of two Hausdorff spaces being induced by a Radon
measure on the product space. Topics like the Riesz representation theorem,
adapted spaces, and weak and vague convergence of measures are likewise
treated.

Many results on positive and negative definite functions are not really
dependent on the semigroup structure and are, in fact, true for general
positive and negative definite matrices and kernels, and such results are
placed in Chapter 3.

Chapters 4-8 contain the harmonic analysis on semigroups as well as a
study of many concrete examples of semigroups. We will not go into detail
with the content here but refer to the Contents for a quick survey. Much
work is centered around the representation of positive definite functions
on an abelian semigroup (S, +, *) with involution as an integral of semi-
characters with respect to a positive measure. It should be emphasized that
most of the theory is developed without topology on the semigroup S. The
reason for this is simply that a satisfactory general representation theorem for
continuous positive definite functions on topological semigroups does not
seem to be known. There is, of course, the classical theory of harmonic
analysis on locally compact abelian groups, but we have decided not to
include this in the exposition in order to keep it within reasonable bounds
and because it can be found in many books.

As described we have tried to make the book essentially self-contained.
However, we have broken this principle in a few places in order to obtain
special results, but have never done it if the results were essential for later
development. Most of the exercises should be easy to solve, a few are more
involved and sometimes require consultations in the literature referred to.
Atthe end of each chapter is a section called Notes and Remarks. Our aim has
not been to write an encyclopedia but we hope that the historical comments
are fair, :

Within each chapter sections, propositions, lemmas, definitions, etc. are
numbered consecutively as 1.1, 1.2, 1.3, . . . in §1,as 2.1,2.2, 2.3, .. .in §2,
and so on. When making a reference to another chapter we always add the
number of that chapter, e.g. 3.1.1.
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We have been fascinated by the present subject since our 1976 paper and
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CHAPTER 1|
Introduction to Locally Convex
Topological Vector Spaces and Dual Pairs

§1. Locally Convex Vector Spaces

The purpose of this chapter is to provide a quick introduction to some of the
basic aspects of the theory of topological vector spaces. Various versions of
the Hahn-Banach theorem will be used later in the book and the exposition
therefore centers around a fairly detailed treatment of these fundamental
results. Other parts of the theory are only sketched, and we suggest that the
reader consult one of the many books on the subject for further information,
see e.g. Robertson and Robertson (1964), Rudin (1973) and Schaefer (1971).

1.1. We assume that the reader is familiar with the concept of a vector space
E over a field I, which is always either K = R or K = C, and of a topology
O on a set X, where @ means the system of open subsets of X.

Generally speaking, whenever a set is equipped with both an algebraic
and a topological structure, we will require that the structures match in the
sense that the algebraic operations become continuous mappings.

To be precise, a vector space E equipped with a topology ¢ is called a
topological vector space if the mappings (x, y)— x + y of E x E into E and
(4, x)— Ax of I x E into E are continuous. Here it is tacitly assumed that
E x E and K x E are equipped with the product topology and K = R or
K = C with its usual topology. A topological vector space E is, in particular,
a topological group in the sense that the mappings (x, y)—x + yof E x E
into E and x+» —x of E into E are continuous.

For each u € E the translation t,: x +— x + u is a homeomorphism of E,
so if 48 is a base for the filter  of neighbourhoods of zero, then yu + @ is a
base for the filter of neighbourhoods of u. Therefore the whole topological
structure of E is determined by a base of neighbourhoods of the origin.
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A subset A4 of a vector space E is called absorbing if for each x € E there
exists some M > 0 such that x € A4 for all 1€ K with |1| = M; and it is
called balanced, if AA < A for all Ae K with |A| < 1. Finally, 4 is called
absolutely convex, if it is convex and balanced.

1.2. Proposition. Let E be a topological vector space and let U be the filter
of neighbourhoods of zero. Then:

(i) every U € % is absorbing;
(ii) for every U € % there exists Ve U withV + V < U;
(iii) for every U € %, b(U) = (),,121 #U is a balanced neighbourhood of zero
contained in U.

ProOF. For a € E the mapping A+ Ag of K into E is continuous at A =0
and this implies (i). Similarly the continuity at (0, 0) of the mapping (x, y) —
x + y implies (ii). Finally, by the continuity of the mapping (4, x) —» Ax at
(0,0) e K x E we can associate with a given U € % a number &€ > 0 and
V € % such that AV < U for || £ & Therefore

eVebhU)ycU
so U contains the balanced set b(U) which is a neighbourhood of zero
because gV is s0, x +— £x being a homeomorphism of E. O

From Proposition 1.2 it follows that in every topological vector space the
filter 4 has a base of balanced neighbourhoods.

A topological vector space need not have a base for 4 consisting of
convex sets, but the spaces we will discuss always have such a base.

1.3. Defimition. A topological vector space E over I is called locally convex
if the filter of neighbourhoods of zero has a base of convex neighbourhoods.

1.4. Propeosition. In a locally convex topological vector space E the filter of
neighbourhoods of zero has a base # with the following properties:

(i) Every U € @ is absorbing and absolutely convex.
(i) If Ue®Band A £ 0, then AU € R.

Conversely, given a base # for a filter on E with the properties (i) and (ii),
there is a unique topology on E such that E is a (locally convex) topological
vector space with # as a base for the filter of neighbourhoods of zero.

Proor. If U is a convex neighbourhood of zero then b(U) is absolutely convex.
If #, is a base of convex neighbourhoods, then the family # =
{AB(U)|U € B, A + 0} is a base satisfying (i) and (ii).

Conversely, suppose that & is a base for a filter # on E and satisfies (i)
and (ii). Then every set U € # contains zero. The only possible topology on
E which makes E to a topological vector space, and which has # as the
filter of neighbourhoods of zero, has the filter a + & as filter of neigh-



§1. Locally Convex Vector Spaces 3

bourhoods of a € E. Calling a nonempty subset G < E “open” if for every
a € G there exists U e @ such that a + U < G, it is easy to see that these
“open” sets form a topology with a + # as the filter of neighbourhoods
of a, and that E is a topological vector space. a

In applications of the theory of locally convex vector spaces the topology
on a given vector space E is often defined by a family of seminorms.

1.5. Definition. A function p: E — [0, oo[ is called a seminorm if it has the
following properties:

(i) homogeneity: p(Ax) = |A|p(x)for Ae K, x € E;
(ii) subadditivity: p(x + y) < p(x) + p(y) for x, y € E.

If, in addition, p~ }({0}) = {0}, then p is called a norm.

If pis a seminorm and « > 0 then the sets {x € E|p(x) < a} are absolutely
convex and absorbing.
For a nonempty set 4 = E, we define a mapping p,: E — [0, oo] by

pa(x) = inf{d > O|x € 14}

(where p(x) = oo, if the set in question is empty).
The following lemma is easy to prove.

1.6. Lemma. [f A c Eis

(i) absorbing, then p ,(x) < o for x € E;
(i) convex, then p , is subadditive;
(iii) balanced, then p, is homogeneous, and

{x€Elpx) <1} c A< {xeE|psx) = 1}.

If A satisfies (i)-(iii) then p, is called the seminorm determined by A.

A seminorm p satisfies |p(x) — p(»)} < p(x — ). In particular, if E is a
topological vector space then p is continuous if and only if it is continuous
at 0 and this is equivalent with {x|p(x) < a} being a neighbourhood of zero
for one (and hence for all) « > 0.

We will now see how a family (p,);.; of seminorms on a vector space E
induces a topology on E.

1.7. Proposition. There exists a coarsest topology on E with the properties
that E is a topological vector space and each p; is continuous. Under this
topology E is locally convex and the family of sets

{x€ E|p;(x) <& ...,p(x) <E}, i,-..,in€l, neN, &>0,

is a base for the filter of neighbourhoods of zero.
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PRrOOF. Let # denote the above family of sets. Then 4 is a base for a filter on
E having the properties (i) and (ii) of Proposition 1.4, and the unique topology
asserted there is the coarsest topology on E making E to a topological vector
space in which each p, is continuous.

The above topology is called the topology induced by the family (p)ic: of
seminorms.

Note that in this topology a net (x,) from E converges to x if and only if
lim, p(x — x,) =0foralliel.

The topology of an arbitrary locally convex topological vector space E is
always induced by a family of seminorms, e.g. by the family of all continuous
seminorms as is easily seen by 1.4 and 1.6.

1.8. Proposition. Let E be a locally convex topological vector space, where the
topology is induced by a family (p));.; of seminorms. Then E is a Hausdorff
space if and only if for every x € E\{0} there exists i € I such that p(x) ¥ 0.

PrOOF. Suppose x + y and that (p,);.; has the above separation property.
Then there exist i € I and ¢ > 0 such that p(x — y) = 2¢. The sets

{ulpix — u) < €}, {ulply — ) <&}
are open disjoint neighbourhoods of x and y.
For the converse we prove the apparently stronger statement that the
separation property of (p;);; is a consequence of E being a Ty-space (i.e. the

one point sets are closed). In fact, if x 0 and {x} is closed there exists a
neighbourhood U of zero such that x ¢ U. By Proposition 1.7 there exist

¢ > 0 and finitely many indices i,, . .., i, € I such that
i <&....,p (M <et U,
so for some i € {iy, ..., i,} we have p(x) = O

1.9. Finest Locally Convex Topology. Let E be a vector space over K. Among
the topologies on E, which make E into a locally convex topological vec-
tor space, there is a finest one, namely the topology induced by the family
of all seminorms on E. This topology is called the finest locally convex
topology on E. An alternative way of describing this topology is by saying
that the system of all absorbing absolutely convex sets is a base for the filter
of neighbourhoods of zero, cf. 1.4,

The finest locally convex topology is Hausdorfl. In fact, let e € E\ {0} be
given. We choose an algebraic basis for E containing e and let ¢ be the linear
functional determined by ¢(e) = 1 and ¢ being zero on the other vectors
of the basis. Then p = |¢| is a seminorm with p(e) = 1, and the result follows
from 1.8.

Notice that every linear functional is continuous in the finest locally
convex topology.

In Chapter 6 the finest locally convex topology will be used on the vector
space of polynomials in one or more variables.
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1.10. Exercise. Let E be a topological vector space, and let A, B,C, F < E.

(a) Show that A + B is open in E if A is open and B is arbitrary.
(b) Show that F + Cis closed in E if F is closed and C is compact.

1.11. Exercise. Let E be a topological vector space. Show that the interior
of a convex set is convex, Show that if U is an absolutely convex neighbour-
hood of 0 in E then its interior is absolutely convex. It follows that a locally
convex topological vector space has a base for the filter of neighbourhoods
of 0 consisting of open absolutely convex sets,

1.12. Exercise. Show that a Hausdorff topological vector space is a regular
topological space. (It is actually completely regular, but that is more difficult
to prove.)

1.13. Exercise. Let E be a topological vector space and A < E a nonempty
and balanced subset. Then:

(i) if Aisopen, A = {x € E{p,(x) < 1};
(i) if Aisclosed, 4 = {x e E|p,(x) £ 1}.

1.14. Exercise. Let p, g be two seminorms on a vector space E. Then if
{xe Elp(x) = 1} = {x € E|q(x) < 1} it follows that p = q.

1.15. Exercise. Let the topology of the locally convex vector space E be
induced by the family (p;);; of seminorms, and let f be a linear functional
on E. Then f is continuous if and only if there exist ¢ € ]0, oo[ and some
finite subset J < I such that | f(x)| £ ¢ - max{p(x)|i e J} for all x € E.

§2. Hahn-Banach Theorems

One main result in the theory of locally convex topological vector spaces is
the Hahn-Banach theorem about extensions of linear functionals. In the
following we treat this and closely related results under the name of Hahn-
Banach theorems.

We recall that a hyperplane H in a vector space E over K is a maximal
proper linear subspace of E or, equivalently, a linear subspace of codimension
one (ie. dim E/H = 1). Another equivalent formulation is that a hyper-
plane is a set of the form ¢~ !({0}) for a linear functional ¢: E - K not
identically zero.

Neither local convexity nor the Hausdorff separation property is needed
in our first version of the Hahn-Banach theorem. However the existence of
a nonempty open convex set A 3 E is a strong implicit assumption on E,
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2.1. Theorem (Geometric Version). Let E be a topological vector space over
I and let A be a nonempty open convex subset of E. If M is a linear subspace of
E with A " M = (&, there exists a closed hyperplane H containing M with
AnH=.

ProoF. We first consider the case K = R. By Zorn’s lemma there exists a
maximal linear subspace H of E such that M « Hand An H = . Let
C = H + U A>0 ;.A. .

The sum of an open set and an arbitrary set is open, hence C is open,
cf. Exercise 1.10. We now derive four properties of C and H by contradiction:

@ Cn(-0O)=¢g.
In fact, if we assume xe C N (—C),we havex = h, + d,a, = h, — 4,4,
withh;e H,a;€ A, A; > 0,i = 1, 2. By the convexity of A

Lr LAt a e e medAnH

which is impossible.

) HuCu(~-C)=E.
In fact, if there exists x € EN\(H v C u (—C)) we define A = H + Rx, so
H is a proper subspace of A. Furthermore 4 n I = & because ye A n H
can be written y =h + Ax with he H and A % 0 (4 n H = &), and then
= (1/A)y — (1/A)h e C u (—C), which is incompatible with the choice of
x. Finally the existence of A is inconsistent with the maximality of H so (b)
hoids.

© Hn(Cu(-O)=g.

In fact, if xe Hn C then x = h 4+ Aa with he H, ae 4 and A > 0, but
then a = (1/A)(x — h) € A n H, which is a contradiction.

From (b) and (c) follows that H is the complement of the open set
C u (=), hence closed.

(d) H is a hyperplane.

If H is not a hyperplane there exists x € E\H suchthat f = H + Rx # E.
Without loss of generality we may assume xe C and we can choose
y € (—CN\A. The function f: [0, 1] — E defined by f(2) = (1 — A)x + iy
is continuous, so f~!(C) and f ~'(—C) are disjoint open subsets of [0, 1]
containing, respectively. 0 and 1. Since [0, 1] is connected there exists
« € ]0, 1[ such that f(«) € H. But this implies y = (1/a)(f(a) — (1 — a)x) e A,
which is a contradiction.

This finishes the proof of the real case.

A complex vector space can be considered as a real vector space, and if H
denotes a real closed hyperplane containing M and such that A n H = ¥,
then H n (iH) is a complex hyperplane with the desired properties. O
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The following important criterion for continuity of a linear functional
will be used several times.

2.2. Proposition. Let E be a topological vector space over K, let ¢: E - K
be a nonzero linear functional and let H = ¢~ '({0}) be the corresponding
hyperplane. Then precisely one of the following two statements is true:

(i) @ is continuous and H is closed;
(i1) o is discontinuous and H is dense.

PrOOF. The closure H is a linear subspace of E. By the maximality of H we
therefore have either H = H or H = E.If g is continuous then H = ¢~ 1({0})
is closed. Suppose next that H is closed. Let a € E\ H be chosen such that
¢(a) = 1. By Proposition 1.2 there exists a balanced neighbourhood V of
zero such that (a + V) n H = &, and therefore ¢(V) is a balanced subset
of K such that 0 ¢ 1 + @(V), hence (V) < {x e IK||x| < 1}. It follows that
|e(x)] < e for all x € eV, ¢ > 0, so ¢ is continuous at zero, and hence con-
tinuous. (]

2.3. Theorem of Separation. Let E be a locally convex topological vector space
over K. Suppose F and C are disjoint nonempty convex subsets of E such that F
is closed and C is compact. Then there exists a continuous linear functional
@: E — K such that

sup Re ¢(x) < inf Re ¢(x).

xeC xeF
ProoOF. Let us first suppose I = R, and consider the set B=F — C.
Obviously B is convex, and using the compactness of C it may be seen that
B is closed, cf. Exercise 1.10. Since F n C = ¥ we have 0 ¢ B, so by 1.4
there exists an absolutely convex neighbourhood U of Osuchthat U A B = .
The interior ¥ of U is an open absolutely convex neighbourhood (cf. Exercise
1.11)so A= B + V = B ~ V is a nonempty open convex set (1.10) such
that 0 ¢ A. Since {0} is a linear subspace not intersecting A, there exists by
Theorem 2.1 a closed hyperplane H with 4 ~ H = (. Let ¢ be a linear
functional on E with H = ¢~ ({0}). By 2.2, ¢ is continuous. Now @(4) is a
convex subset of R, hence an interval, and since 0 ¢ ¢(4) we may assume
¢(4) € 10, cof. (If this is not the case we replace ¢ by — ¢). We next claim

inf ¢(x) > 0,
xeB

which is equivalent to the assertion. If the contrary was true there exists a
sequence (x,) from B such that ¢(x,) — 0. Since V is absorbing there exists
ueV with g(u) <0, but x, + ue 4 so that ¢(x,) + @(u) > 0 for all n,
which is in contradiction with ¢(x,) — 0.

In the case Ik = C we consider E as a real vector space and find a R-linear
functional ¢: E — R as above. To finish the proof we notice that there exists
precisely one C-linear functional y: E — € with Re ¢y = ¢ namely y(x) =
o(x) — ip(ix), which is continuous since ¢ is so.
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Applying the theorem to two one-point sets we find

24. Corollary. Let E be a locally convex Hausdorff topological vector space.
Fora,be E,a + b, there exists a continuous linear functional f on E such that

fl@) + f(b)

We shall now treat the versions of the Hahn-Banach theorem which are
called extension theorems. Although they may be derived from the geometric
version, we give a direct proof using Zorn’s lemma.

The first extension theorem is purely algebraic and very useful in the
theory of integral representations. It uses the following weakened form of
the concept of a seminorm.

2.5. Definition. Let E be a vector space. A function p: E — R is called sub-
linear if it has the following properties:

(i) positive homogeneity: p(Ax) = Ap(x)for A 2 0,xe E;
(ii) subadditivity: p(x + y) < p(x) + p(y) for x, y e E.

A function f: E — R is called dominated by p if f(x) < p(x) for all x € E.

2.6. Theorem (Extension Version). Let M be a linear subspace of a real vector
space E and let p: E — R be a sublinear function. If f: M — R is linear and
dominated by p on M, there exists a linear extension f: E — R of f, which is
dominated by p.

PrROOF. We first show that it is always possible to perform one-dimensional
extensions assuming M + E.

Let ee E\M and define M’ = span(M u {e}). Every element x’ € M’ has
a unique representation as x’ = x + te with xe M, re R. For every a e R
the functional f,: M’ — R defined by f.(x + te) = f(x) + ta is a linear
extension of f. We shall see that « may be chosen such that f, is dominated
by p.

By the subadditivity of p we get for all x, ye M

SO+ f()=fx+y) Sp(x+y) Sp(x~e) + ple+y),

or
S(x) — p(x —e) < ple + y) — f(y).
Defining
k = sup{f(x) — p(x — e)|x e M},
K = inf{p(e + y) — f(¥)|y e M},
we have

—w<kZfK< o



