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Finding Near-Optimal Policies for Multi-Echelon Inventory Systems
A Branch and Bound Approach’
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ABSTRACT

Inventory coordination among supply chain members is very
important for effective supply chain management. In this
paper, a supply chain with a supplier and several retailers is
considered, where each facility incurs a fixed cost as well as a
variable cost when it places an order. The problem is to find an
optimal echelon inventory policy for the system so that its
expected total cost, which consists of echelon inventory
holding costs, echelon backorder penalty costs, fixed and
variable order costs of all the facilities, i1s minimized. For such
a problem, the optimal policy is not known. As an alternative,
we develop a stochastic branch and bound approach to find
near-optimal echelon (s, S) polices. In the approach, a lower
bound of the expected cost for a partial solution in which some
parameters of a policy are given is obtained by Lagrangian
relaxation that relaxes inter-facility constraints of the system.
The relaxed problem can be decomposed into a set of
subproblems, one for each facility. Each subproblem is a
single location inventory problem which can be efficiently
solved by using an existing approach. Numerical experiments
show that the approach can obtain near optimal policies in a
reasonable computation time.

1. INTRODUCTION

In recent years, supply chain management has attracted much
attention of both academic and industrial communities. Driven
by extensive global competitions, many companies have
recognized that the coordination of operations across supply
chains is critical for them to further reduce costs while
improving the responsiveness to changes in the market place.

One important issue of supply chain management is inventory
coordination among supply chain members. In the past, stocks
at different members are managed individually based on their
own demands and supply data. Each member optimizes its
own inventory policy independently without coordination with
other members. This may lead to undesired results since all
members in a supply chain are interconnected, an output from
one member may be an input to another member. Therefore,
inventory policies across a supply chain should be well
coordinated to achieve the global optimization that minimizes
a system-wide cost.

Theoretically, supply chains can be modeled as multi-echelon
inventory systems at inventory planning level. For a special
class of multi-echelon inventory systems with facilities-in-
series structure, if fixed order costs are only charged at the
most upstream facility (stock) of the systems, Clark and Scarf

([4]) have shown that optimal inventory policies for the
systems are an echelon inventory policy that determines order
placement for each stock based on its echelon inventory
position. The optimal policy can be computed by decomposing
a multi-echelon problem into a set of separate single-location
problems, one for each facility, which can be recursively
solved. Rosling ([9]) and Chen ([3]) extend this result to
assembly systems and systems with batch ordering policies,
respectively. However, because of stochastic nature and
inherent complexity, no efficient algorithm exists for
determining fully optimal inventory policies for most of the
multi-echelon inventory systems, especially for those with
order costs charged in each facility ([5]).

Since it is very difficult to find full optimal policies,
researchers turned to finding close-to-optimal, but not
necessarily full optimal polices with a relatively simple
structure in recent years. A good review of the research results
in this aspect was written by Federgruen ([5]). Most
approximation approaches start with an exact formulation of
an inventory planning problem as a dynamic program or
Markov decision problem. The exact model is then replaced
by an approximate one through relaxations, restrictions,
projections, or cost approximations. For arborescence
distribution systems in which every facility has a unique
supplier, approximation approaches by relaxing the
nonnegativity constraints of shipments from the supplier to its
retail outlets or by restricting inventory polices to a class of
regular-interval critical-number polices or the class of (s, S)-
policies have been proposed ([5]). However, these
approximation approaches are still very complicated in
computation.

In literature, some researches also use simulation optimization
methods to optimize the parameters of a given inventory
policy ([2]). One method is the perturbation analysis method
([7]), but it can only find a policy of local optimum because of
its gradient-based nature. Others combine simulation
evaluation with meta-heuristics such as genetic algorithms,
tabu search, and simulated annealing. However, they cannot
tell us whether an optimal policy is obtained and how good a
policy found is. The branch and bound approach has been
widely used for solving combinatorial optimization problems.
Although it is time consuming for large problems, but a clever
implementation of the method can solve many realistic
problems in a reasonable computation time. Moreover, a well-
designed time-truncated branch and bound approach can
obtain near-optimal solutions in a short time and a solution
obtained can be evaluated by comparing its cost with a lower
bound. Recently, a stochastic version of the branch and bound
approach is proposed and applied to various stochastic

* This work is partly supported by the National Science Foundation of China under grant No. 79931000
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optimization problems ([8)).

In this paper, we consider a supply chain with a supplier and
several retailers, where each facility incurs a fixed cost as well
as a variable cost when it places an order. The problem is to
find an optimal echelon inventory policy for the system so that
its expected total cost, which consists of echelon inventory
holding costs, echelon backorder penalty costs, fixed and
variable order costs of all the facilities, is minimized. For such
a problem, the optimal policy is not known, let alone an
efficient algorithm to find it. As an alternative, we develop a
stochastic branch and bound approach to find near-optimal
echelon (s, S) polices. In the approach, a lower bound of the
expected cost for a partial solution in which some parameters
of a policy are given is obtained by Lagrangian relaxation that
relaxes inter-facility constraints of the system. The relaxed
problem can be decomposed into a set of subproblems, one for
each facility. Each subproblem is a single location inventory
problem which can be efficiently solved by using an existing
approach. Numerical experiments show that the approach can
obtain near optimal policies in a reasonable computation time.

2. MODEL

We consider a two echelon supply chain consisting of a
supplier, N retailers, and a single product. The demand of
each retailer is stationary subject to a normal distribution. It is
assumed that the demands for any two retailers and in any two
periods are independent. The delivery time from the supplier
to retailer ¢ (i = 1, 2, ..., N) is a constant /; and the
replenishment lead time from an outside source to the supplier
(or the production lead time of the supplier) is a constant L.
The outside source has an ample capacity, an order placed by
the supplier is always received L periods after it is placed.
Excess demand at each retailer is backordered. The cost of the
supplier consists of echelon inventory holding cost, echelon
backorder penalty cost, fixed and variable order costs, while
the cost of each retailer consists of inventory holding cost,
backorder penalty cost, fixed and variable costs for receiving
shipments from the supplier. It is assumed that all cost
coefficients are constant over time for both the supplier and
the retailers, but the following model and results can be
extended to a supply chain with variable cost coefficients. It is
assumed that the supplier has timely access to the inventory
levels and demands of the retailers, so that an echelon
inventory policy, which determines order placement for each
facility (stock) based on its inventory position, can be applied
to the supply chain.

The inventory position of each facility is reviewed
periodically. For each facility, the sequence of events occurred
in each period is defined as follows: 1) orders and shipments
arrive, 2) order decision and placement, 3) demand occurs, 4)
demand is fulfilled or backordered, 5) inventory holding and
backorder penalty costs are charged. The index ¢ will be used
to represent the period currently considered. The cost data of
the supply chain are listed in the following:

K’ fixed cost for the supplier to place an order to the outside
source;

K[ : fixed cost for retailer i to receive a shipment from the

supplier;
¢’ variable cost rate for the supplier to place an order to the
outside source;

¢; : variable cost rate for retailer i to receive a shipment from

the supplier;

h*:  echelon inventory holding cost rate of the supplier per
period;

h! : inventory holding cost rate of retailer i per period;

p":  echelon backorder penalty cost rate of the supplier per
period, p° 2 ¢}

p{ : backorder penalty cost rate of retailer i per period,

r r
Pi Zci N

Other parameters include:

I delivery lead time for a shipment from the supplier to
retailer i;
L: lead time for inventory replenishment of the supplier;

d;, : demand of retailer i in period ¢, d; ,i=1, ..., N,
t =1, 2, ... are independent identical random variables
with normal distribution;

4 © mean value of demand d;, u4 does not depend on 1,

r

2 .
o/ : variance of demand d]

it

o/ does not depend on ¢.
The state and decision variables are defined as:

I : inventory level of retailer i at the end of period
I7: echelon inventory level of the supplier at the end of
period ¢;

z;: shipment from the supplier to retailer i, initiated in period
L

: 0-1 variable for a shipment to retailer i, §;, = 1ifz,>0,
otherwise &, =0;

v order size of the supplier in period ¢,

6, 0-1 variable for order placement of the supplier, §; = 1

if y,> 0, otherwise & = 0.

For all inventory variables / defined above, I" = max(0, /)
denotes the on-hand inventory and /- = max(0, -/) denotes the
backorder level.

Let T denote the time horizon (the number of periods)
considered for inventory planning, with the above notations,
an echelon inventory model of the supplier can be formulated
as:

.
F= Zl(h’lf*+p‘1,‘" +K* 55 + Ey )T, (1)
=
N
st. IP =1, +y..- ZI d,t=1,2,.,T, ()
(1-87)y,=0, t=1,2,.., T, (2b)
y,20,8 € (0,1}, t=1,2,..,T, (2¢)

where S is the average cost of the supplier per period,
constraints (2a) are echelon inventory equilibrium equations,

and (2b) imposes the constraints that 5, = 1if y, > 0 and §;
= 0 otherwise.

Similarly, an (echelon) inventory model of retailer / can be
formulated as:

T
JI = Z(hl I+ pl I+ K] Sh+cl )T, 3)

=1



st. T =l 4% —dy, 1=51,2,..,T, (4a)

(l_(s,’:)zi/=0r ’=1' 2!"'v T; (4b)
220, &€ (0,1}, 1=1,2,.., T, (4c)

i = 5.2 000N

where J] is the average cost of retailer i per period,
constraints (4a) are inventory equilibrium equations, and (4b)
imposes the constraints that & = 1 if z; > 0, otherwise &, =
0.

The inter-facility constraints between the supplier and the
retailers are:

/ I
L+ 22z, S 4y, t=12.,T (5

1 s =0

i

Constraints (3) imply that when the supplier ships goods to the
retailers, the total size of shipments must not exceed its on-
hand inventory.

The inventory planning problem of the supply chain we
consider in this paper can now be formulated as:

P;
N
MinEJ=EF+ L EJ!,
i=1
s.t. (2),(4) fori=1,2,.., N, and (5),

where £ denotes the mathematical expectation operator. The
objective of the problem is to minimize the expected total cost
of the supply chain per period in terms of echelon inventory
holding cost, echelon backorder penalty cost, fixed and
variable order and shipment cost subject to physical flow
equilibrium constraints.

3. BRANCH AND BOUND APPROACH

A stochastic version of the branch and bound (SBB) method is
proposed by Norkin, Pflug and Ruszczynski for stochastic
global optimization ([8]). It adopts the idea of the branch and
bound method for deterministic optimization, but instead of
deterministic bounds, it uses stochastic upper and lower bound
estimates of the optimal value of subproblems to guide the
partitioning (branch) process. In this section, we briefly
introduce the method.

Consider a stochastic optimization problem of the following
form:

min_ (F(x) = Ex &), (©)

where X is a compact set in an n-dimensional Euclidean space
R", D is a closed subset of R" implicitly defined by some
constraints, & ®) is an m-dimensional random variable defined
on a probability space (Q, Z, P), f: X x R™ — R is continuous
in the first argument and measurable in the second argument,
flx,&w)) < f_(a)) for all x € X, and Ef_ < o, F(x) is an
objective to be minimized.

In SBB, the original compact set X is sequentially subdivided

into compact subsets Z X generating a partition /7 of X, such

that Uz. 7 Z = X. The original problem is then subdivided into
subproblems:

min [F(x) = Eftx,Q@))], Z € TT @)

SBB iteratively performs the following three operations:

e  partitioning a set into smaller subsets,
e  stochastic estimation of the objective within the subsets
e removal of some subsets.

Let F'(ZAD) denote the optimal value of subproblem (7), a
real-value function L and U defined on a collection of compact
subsets Z ¢ X with ZnD # & provide a lower bound and a
upper bound, respectively, if the following conditions hold:

1. For every compact subset Z < X with ZnD # &,
L(Z) < F'(ZnD) < U(Z),

and for every singleton z € Xn\D,
L({z}) = U({z}) = F({z}).

2. There are random variables &(Z, w), nd(Z, w), k=1,2, ..,
defined on some probability space (Q, Z, P) such that for
all compact subsets Z < X with Zn\D # & and for every &

E&(Z, w) = L(2),
EndZ, w)=U(2),

and &(Z, w), m(Z, w) satisfy a generalized Lipschitz
property ([8]).

3. There exists a selection mapping s which assigns to each
compact subset Z ¢ X with ZnD # & a point
s(Z) € ZnD

such that

F(s(2)) s U(2).

With random variables &(Z, w), n(Z, w) for the estimation of
the lower and upper bounds, the stochastic branch and bound
algorithm can be described in the following. For brevity, the
argument @ for random variables is skipped.

Algorithm SBB ([8]):

Initialization. Form an initial partition as /7; = {X}. Observe
independent random variables &(X), 7,(X) and put L,(X) =
Si(X), Ui(X) = mi(X). Set k= 1.

Partitioning. Select a record subset
Yyeargmin { L(Z): Zell}

and an approximate solution x* = s(.X;) € X,~\D
Xy earg min { UW(Z): Zell, ).

il

Construct a partition of the record set, ¥(Y) = { ¥/, i =

1,2, ...} such that Y, = U, ¥{ . Define a new full partition
1T =(T1\Y) O Y(Yy.
Deletion. Clean partition /7,' of non-feasible subsets by

defining
= 1I)\{Zell,',ZnD=3}



Bound estimation. For all Z €/7,,, observe random variable
&1(2), independently observe 7:.,(Z) and recalculate
stochastic estimates

L2 = (1-—— )L Z )+
k+1

k+1

(D), (8)

(e Ty e
Ueni(Z2)=(1 k+l)Uk(Z)+k+l’7M(Z)’ 9)

where Z is such that Zc Z e/l
Set k: = k+1 and go to Partitioning

When a uniform bound ¢ is known for the variances of all
random variables &(Z, w) and n(Z, w) for all subsets obtained
from X by partition, £ = 1, 2, ..., another deletion rule is also
proposed for SBB ([8]). That is, after M steps (M is a large
number), the algorithm is terminated, M independent
observations 77y (XA ®)) are made for the subset Xy{w) taken

from the final partition /\{w), i = 1, ..., M, and a new
estimate for U(Xy(w)) is calculated:
— 1 M
Uy (o)) = yrl 21w, (X y (@) - (10)
i=l

Then, for some accuracy ¢ €(0, 1), all sets Z € /T,{w) such
that

LidZ) > Uy (Xad @) + 2¢u (11)
are deleted, where ¢y, = O’z/(ME) .

The almost sure convergence of algorithm SBB is proved and
its random accuracy estimates derived ([8]).

4. STOCHASTIC BOUNDS

In the branch and bound method, stochastic lower bound
estimates and upper bound estimates are used for branching,
deleting non-prospective sets, and for estimating the cost of
the current solution. In this section, the bound estimates are
derived for our problem.

Lower Bound

Lagrangian relaxation has been frequently used to obtain a
lower bound for deterministic mixed integer programming
problems ([6]). It is also used for deriving a lower bound for
our stochastic inventory planning problem.

In order to do so, the inter-facility constraints (5) are first
relaxed by

N N
E{;I;+22z

i=l r=0

WVTSE{IF +y }IT. (12

=

The constraints (12) are then relaxed by using Lagrange
multipliers {1, t=1,2, .., T}.

ly 2: ey T}) zZi = {zfl't

Let A={4,t=1,2,.., T}, y={y,t=
, T}. The relaxed problem is:

=1,2, ., Thz={z,i=1,2, ..

RP:

= E{L] + yeT) (13)

st.(2)and (4) fori=1,2,.., N.

Notice that /7 = I;” - 17  and I} = I*" = I*", L can be

)
written as:

¥ ix
L(A,{y, z}) = E{ Z. (=) I+ (p+A) [T+ K 8!

N T
(A y T+ L E(L (K] +A) 1]

it

lr
+ (Pl AV +KSi+ (] + L Ay ) zlM/T
N
=LA+ L L4z,
where
T . )
L(A,y) = Ef Z. (K =A) I+ @ +A) [+ K 8°
t=
+ (' =AnVIMT,

T
L (=)= ELZ (K +2) I+ (p ~A) I + K] &

/
(el + 2 A ) zdVT.

+T

The relaxed problem can be decomposed into N+1
subproblems, one for each facility:

RP.
Min L'(4, y), (14)
s.:. ).

RP’:
Min ] (4, 2), (15)
St (4).

These subproblems are single location, multi-period inventory
problems with positive set-up cost. The optimal solutions for
them have been proved to be (s, S) policies, which can be
computed by using a dynamic programming algorithm ([5]).
The reorder point s and the order-up-to level S of these
policies may change over time (period).

Let fA) = l(\mr)l L(A, {y, z}) be the optimal value of RP. The
Y.z
Lagrangian dual problem of P is:

DP:
Vs a9

where
O={ {A} 1420,k =2,20,p" +4,2 ¢ ~Apus,

II
pi 420, p/-A> ¢ + ZO Aer

The dual function is concave, which can be maximized by
using the subgradient method ([6]). The optimal value of the
dual problem provides a lower bound for the optimal cost of
the original problem P.



Because the dynamic programming algorithm for solving the
relaxed subproblems with finite time horizon is time-
consuming somehow, in the rest of this paper, we confine
ourselves to an infinite horizon model of the above inventory
planning problem, i.e, we take T = +w. In this case, all
Lagrange multipliers A4, ¢ = 1, ... can be taken identical, and
an (s, S) policy with parameters s and S constant over period is
optimal for the relaxed subproblems. The policy can be
efficiently computed by using an algorithm of Zheng and
Federgruen ([11]).

Let 4, = A, t=1, ... (here, we abuse the symbol A to represent
a scalar). The dual problem becomes a single-dimensional
concave maximization problem, which can be solved by
simply using dichotomy search.

The above discussion has developed a method for computing a
lower bound for our problem at the root node of SBB. At other
nodes, the lower bound can be computed similarly except that
for some relaxed subproblems either one parameter or two
parameters of their (s, S) policy is given. For the first case,
Zheng and Federgruen’s algorithm can still be used to
optimize the other parameter to minimize the cost of the
subproblem after a slight modification. For the second case,
the cost of the subproblem can be analytically evaluated ([1]).

To reduce the time spending on the computation of the lower
bound in SBB, optimal multipliers and subproblem solutions
at a parent node are used as a starting point for the
computation of the lower bound at its son nodes.

Upper Bound

In industry, for a multi-echelon inventory system, its echelon
(s, S) policy is usually designed stock-by-stock, whose
parameters for each stock are computed based on the
corresponding single location model and the echelon lead-time
of the stock. The derived policy usually provides a good
solution ([10]). In view of this, one initial upper bound of our
problem (i.e., an upper bound at the root node of SBB) is
calculated in the following way:

sT= ul x(L+V)+z] xol xJl, +1, (17)

where z[ is the z-value for the stock of retailer i determined
r r r

C=C; T —c
p,r ‘, ,l.e, Prob{x <z} = p,’ >
pi +hi pi +hi
a normal distribution random variable with mean value 0 and
standard deviation 1.

S) =max(Q], u x(L+1)+z[ xo xJl,+1, (18)

2K xu . . v
where Q] = 'h—’#l is the economic order quantity for
v !

retailer / calculated based on its mean demand.

N N
=Sl x(L+l,+1)+Zx /20{2(L+1,.+l), (19)
i=1 i=l

where z* is the z-value for the echelon stock of the supplier

5

r

by the ratio

, where x is

determined by the ratio ———.

p +

N N
S=max(Q’, Y pul x (L+1; +1) )+ x ’Zcr,’z(l, + 41y,
i=1 =1

(20)

where Q" = .&-TL

is the economic order quantity for

N
the supplier calculated based on its mean demand &/ = )" 4/ .
i=1

Another way to design an echelon (s, §) policy for an
industrial supply chain is to set the order-up-to-level S as the
sum of the reorder point s and the economic order quantity Q
for each stock ([10]). That is, S = s + Q. Applying to our
problem, we have

S =0/ +s/,i=1,..,N, S=5+0" 21

We evaluate the cost of the supply chain for both policies. The
lower cost is taken as the initial upper bound for our branch
and bound algorithm.

5. THE ALGORITHM

In our implementation of the branch and bound algorithm,
rather than estimating the lower and upper bounds according
to (8) and (9), we calculate or estimate the bounds in the
following way: For each partial solution, the lower bound
proposed in last section is analytically calculated based on
theoretical results for single location infinite horizon inventory
models ([1]). As for the upper bound, as soon as a complete
solution is found, M independent simulations (M is a given
number) are performed to evaluate its cost for original
problem P. We use a finite horizon model of T periods to
approximate the infinite horizon model of the problem at each
simulation, where T is taken sufficiently large. The deletion
rule (11) of SBB is then accordingly modified to

L(Z)> Uy (X)+e(T) + e D), (22)

where Z is a partial solution corresponding to a compact
subset in the solution space of problem P, L(Z) is the lower
bound analytically calculated for the partial solution, X is the

best solution of problem P found so far, UA, (X) is the average

cost of the problem at solution X for the M simulations, e(7T)
=|EJT) — EJ(0)|, (T) and J(=0) are the costs of problem P
with finite horizon of T periods and with infinite horizon,

respectively, ey(T) = o(T)?[/(Me), o(T)? is the variance of
random variable J(7).

Because e(7) and c{7) are difficult to estimate for our
problem, in our implementation, the deletion rule (22) is
further modified in an ad hoc way to:

L(Z)> Uy (X). (23)

The application of this ad hoc deletion rule may cause the loss
of optimal solutions, but the probability of the loss should be
small when we take M and T sufficiently large. We can also
adaptively set the number of simulations M to reduce the
probability. That is, when the upper bound of a currently
obtained complete solution is compared with the lower bound
of a partial solution, if the two solutions are close in the
branch and bound tree, M is taken a larger value to improve
the estimation accuracy of the upper bound. Otherwise, M is
taken a smaller value. Because as more and more variables of
a solution are given their values, the gap between the
estimated lower bound and the exact cost of the solution
becomes smaller and smaller. With this adaptive strategy, even
if we do not obtain optimal solutions, we can find high quality
near-optimal solutions.



Our algorithm enumerates (s, S) policy parameters for each of
the supplier and the retailers within finite discrete sets §
€ {Smins Smint 1, -+, Smax=1s Smac}s S € {Smins Smint 1y -5 S—1, S},
where the bounds S,,;,, Smac and s,,, are estimated based on the
cost coefficients, the demand and the lead time of each facility.
The enumeration starts from the supplier and then to retailer 1,
2, ..., and N . For each facility, parameter S is first enumerated
and then parameter s. The branching of the algorithm follows
the depth-first rule.

6. NUMERICAL RESULTS

In this section, we test the performance of our approach by a
set of problems with different features. 8 problems are tested.
The main features of these problems are given in Table 1. For
each problem, the mean value of the demand of each retailer
in each period is randomly generated from uniform
distribution U[20, 100], while its standard deviation is
generated by the mean value multiplied by a ratio randomly
generated from uniform distribution U[0.1, 0.3]. The cost
coefficients of the supplier are taken as K = 1000, ¢’ = 0, ' =
1, p* =5, while the cost coefficients of each retailer are taken

as K/ =500, ¢/ =0, h! =2, p/ = 10.

Table 1: Data for tested problems

Problem Number of Lead Lead
Number Retailers time L time /;

1 2 0 0

2 2 1 0

3 2 0 |

4 2 1 1

5 3 0 0

6 3 1 0

7 3 0 1

8 3 1 1

In our test, T is taken as 1000 and M is taken as 20. For each
instance, the algorithm is terminated after a run of one hour in
a Pentium III PC with CPU speed 700 Mb. After the
termination, the cost of the best solution found is re-evaluated
by 100 replications of simulation to improve its accuracy. The
computational results are shown in Table 2, where Cp 1s the
best cost obtained, Uy, is the upper bound at the root node, P/
is the percentage improvement of the solution obtained by our
algorithm over the industrial solutions designed according to
(17-20) and (21) on cost, and L, is the lower bound obtained
by our algorithm at the root node.

Table 2: Results for tested problems

PO | G U | PI | Lea
|| 154216 | 1711.83 | 991 | 126348
2 1279.46 1363.87 6.19 1109.11
3 [ 1315.83 | 140631 | 643 | 1069.34
4| 113071 | 119987 | 576 | 983.82
S| 198957 | 218238 | 8.83 | 1569.42
6 | 1722.02 | 194638 | 11.53 | 1453.55
7| 2125.16 | 225445 | 573 | 1716.89
8| 184285 | 197044 | 648 | 155191

From this table, we can see that after a reasonable time of
computation, our algorithm can found a solution with the cost
7.6% lower than that of the industrial solutions on average.
This amount of improvement implies a lot of money savings

for the supply chains in a long term run.

We also run our algorithm for several of the above instances
for a long time. It shows that our algorithm takes quite a long
time to terminate. One reason for this slow convergence is the
stochastic nature of the algorithm. Another reason is that the
cost function of the inventory planning problem is flat near its
optimum as pointed by Glasserman and Tayur ([7]). That is,
near the optimum, the cost does not vary much. The third
reason is that our lower bound obtained at the root node is not
very tight. A tighter lower bound may improve the
convergence of our algorithm. However, computation time is
not very critical for inventory planning since it is usually done
off-line.

The long run of the algorithm for these instances also shows
that after a reasonable time of computation, the upper bound
will not decrease more for a long time and tend to be steady.
This implies that the current best solution is near to the
optimum or is located in the flat area of the cost function.

7. CONCLUSION

In this paper, a stochastic branch and bound approach is
developed for find near-optimal policies for multi-echelon
inventory systems. Numerical results show that the approach
can obtain near optimal policies in a reasonable computation
time. Further work is to provide random accuracy estimates
for the approach.
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ABSTRACT

In this paper, we study a single-period two-product
inventory model with stochastic demands, downward
substitution, and information updating. The downward
substitution is that demands of a lower class product can
be satisfied by using the stocks of products of higher
class. We consider the case that the retailer could place
his order twice before the demands are realized. In view
of the added value of information, the retailer will
continue to collect the information of demands after he
places the first order, and update the initial forecast, and
then place the second order to adapt the changing
environment. A general profit maximization model is
built to describe this case. Then we prove that the
objective function of the problem is concave with respect
to the order quantities of the first order. Finally, we
present some computational results to show that the
information can improve the retailer’s profit.

1. INTRODUCTION

With the rapid development of economy, the competition
among the enterprises is fiercer than before. And the
field of competition has now shifted to the management
of supply chains. The facts also show that a
well-managed supply chain is crucial to the success of an
enterprise. The inventory management is an important
part of supply chain management.

In this paper, we study a single-period two-product
inventory model with stochastic demands, proportional
revenues and costs, full downward substitution, and
information updating. The downward substitution means
that demands from products of lower class can be
satisfied by the stocks of products of higher class,
however the products of lower class can not satisfy the
demands for products of higher class. The dowrward
substitution structure exists in real life, such as the
products with higher capabilities or more functions can

satisfy the demands for the product with lower
capabilities or less functions. There aie many examples
in the semiconductor industry, the steel industry, and so
on. For example, the integrated circuits with higher
performance characters (e.g., speed) can substitute the
integrated circuits with lower performance characters in
the semiconductor industry; the higher capacity memory
chips can satisfy the demands for the lower capacity
memory chips in the computer manufacturing factory[1];
the steel beams with greater strength can be used to
satisfy the demands for the beams with lesser strength in
the steel industry(2]; the petrol with higher quality can
substitute the petrol with lower quality at the petrol
station.

We assume that there are two products, and product 1 has
more functions or higher capacity than product 2, in
other words, demands from product 2 can be satisfied by
using the stocks of product 1, however demands from
product 1 can not be satisfied by using the stocks of
product 2. We also assume that the demands for each
product are stochastic. The order, holding, penalty, and
salvage costs are proportional to the quantity, and the
revenue earned is also linear in the quantity sold.

In view of the added value of information, we assume
that the retailer could place his order twice before the
demands are realized. After placing the first order, the
retailer will continue to collect the information of
demands, and update the initial forecast, and then place
the second order to adapt the changing environment. A
general profit maximization model is built to describe
this case, and the objective is to maximize the total profit
by choosing the order quantity for each product when the
retailer is placing the order. We prove that the objective
function of the problem is concave with respect to the
order quantities of the first order. Then we present some
computational results to show that the information can
improve the retailer’s profit.

Because the retailer can use products for substitution
from the higher class when there is shortage in the lower
class, the sever level may be improved with substitution.
So the substitution problem attracts many researchers’



attention. The analysis in single-period two-product
substitution problems including McGillivray and
Silver[3], Pasternack and Drezner[4], Gerchak. Tripathy
and Wang[5]. Within a newsboy type framework. Ernst
and Kouvelis study the problem that the retailer sells
products not only as independent items, but also as part
of multi-product packets[6]. Their model includes two
products that are not direct substitutes for each other,
sold either independently or as part of a packet, and then
they present the optimal conditions. Balakrishnan and
Geunes address a dynamic requirements-planning
problem for two-stage multi-product manufacturing
systems with bill-of-materials flexibility, i.e.., with
options to use substitute components or subassemblies
produced by an upstream stage to meet demand in each
period at the downstream stage(7]. They model the
problem, and describe a dynamic programming solution
method to find the production and the substitution
quantities that satisfy given multi-period downstream
demands at minimum total setup, production, conversion,
and holding costs. Computational results show that
substitution can save, on average, 8.7% of manufacturing
costs. Zheng studies multi-period multi-product
inventory models with full downward substitution,
proportional costs and revenues[8]. He develops a
general profit maximization model for the problem,
considering the order, holding, penalty, salvage costs,
and shows that the profit function is concave and
submodular with respect to the order quantities, then
presents an optimal allocation policy. Bassok, Anupindi
and Akkela study a single-period multi-product inventory
problem with full downward substitution, proportional
costs and revenues[9]. They develop a general tow-stage
profit maximization mode! for the problem, considering
the order, holding, penalty, salvage and substitution costs,
and show that the profit function is concave. They also
present a greedy algorithm for the allocation products to
demands and show that the greedy allocation policy is
optimal. Finally, they present a computational study to
illustrate that the profit can be improved by using the
substitution policy. Chen, Cai and Yan study a
single-period  two-product inventory model with
stochastic demands and full downward substitution[10].
They develop a general profit maximization model for
this problem, show that it is concave, and obtain the
optimal condition for the order quantities. For the
optimal quantities, they study the impact of the
parameters, and give some interesting properties, which
may be helpful for the retailer to make the decision. Then
they compare the model with newsboy model, with
respect to the optimal order quantities, the expected
profit and the sever level, and prove that the profits and
the sever level can be improved by using the substitution
policy.

Because information updating and sharing are important
in a supply chain, many works are concerned with the
added value of information and supply contracts. Lau
and Lau present a model for designing the pricing and
return-credit strategy for a monopolistic manufacturer of
single-period commodities[11]. Pasternack explores how

to coordinate a supply chain with appropriate pricing
scheme and return policy[12]). He demonstrates that
coordination can be achieved by allowing the retailer to
return all surplus products at a partial refund. Donohue
studies the problem of developing supply contracts that
encourage proper coordination of forecast information
and production decisions between a manufacturer and
distributor of high fashion, seasonal products with two
production modes[13]. He presents the optimal
conditions of the contract prices.

The rest of the paper is organized as follows. In section 2,
we develop a general profit maximization model for the
single-period two-product substitution problem with
information updating, and prove that the objective
function is concave with respect to the order quantities of
the first order. In section 3, we present a number of
computational results to show the added value of
information. Finally, we conclude in section 4 with a

summary and the directions for the future research.
2. THE MODEL

In this section, we develop a general profit maximization
model for single-period two-product substitution
problem with information updating. We give the optimal
solution of the second stage, and then show that the
profit function is concave with respect to the quantities
of the first order.

2.1 Notation and Assumptions

There are two products, product 1 and product 2, and
product 1 can substitute product 2. Respectively, we
assume the following sequence events:

1. At the beginning of the period, instant TO, the first
order is placed for each product.

2. The retailer continues to collect the information of
demands, and then updates the initial forecast.

3. At instant T1(>T0), the second order is placed for each
product to adapt the changing environment.

4. The order is delivered.

. Demands for all products are realized.

n

6. Demands are satisfied.
7. Excess stock of each product is salvaged.

Denote demand for product i as D,, with probability
distribution function f(-) and cumulative distribution
function F,() respectively. Let f{*) and F(-) be the joint
probability distribution function and the joint cumulative
distribution function of demands for product 1 and
product 2. And with new information, I, denote them as
demand for product i as D', f1¢), Fl¢), £(), and F()
after information updating. For each unit of product i, the
purchase cost of the first order is ¢,, but the purchase cost
of the second order is w,, the return price of the second



order is b, the selling price is p, A, is the.inventory
holding cost, =, is the shortage penalty, and s, is the
salvage value for any surplus at the end of the period. Let
v, be the effective per unit salvage value of product i, i.e.
v, = s, - h,. Denote r, = p, +m,. Furthermore, we make
assumptions as follows.

Assumption 1: There are two products, product | can
substitute for product 2, and the per unit selling price
plus the per unit penalty cost of product 2 is not less than
the per unit effective salvage value of product 1, i.e
r:2v.

Assumption 1 states that it is profitable for the retailer to
satisfy the demands for product 2 using the stocks of
product 1 when there is shortage in product 2.

Assumption 2: For each product, the per unit selling
price is not less than the purchase cost. and the per unit
purchase cost is not less than the effective salvage value,
ie. rp=p+m,2p 2c 2y, >0 fori=172

Assumption 2 states that each product will indeed be
used to supply demand for that product, instead of being
held as inventory and exchanged for salvage value, and
there is incentive for placing orders.

Assumption 3: The per unit selling price, penalty cost,
purchase cost and effective salvage value of product 1
are not less than that of product 2, ie. p 2 p,. 7,2 7.,

C;ZCz» V|ZV24

Assumption 3 states that it is more profitable to satisfy
unmet demand of product | than of product 2, and it is
not optimal to substitute product | for product 2
whenever there is excess inventory of product 2.

Assumption 4: if a unit of product | supplies the
demand for product 2, the price charged is p, (instead

of p)).

Assumption 5: For each product. the per unit purchase
cost of the second order is greater than that of the first
order, and both of them are greater than the return price,

e. wiZei2bh, wa2c22bo.

Assumption 5 ensures that the retailer will order proper
quantities in his first order.

Assumption 6: The per unit purchase cost of the second
order, the return price of product 1 are not less than that
of product 2, and the return price of product I is greater
than the purchase cost of product 2 of the second order,
ie. Wi2Zwa, b 2bss by >ws.

Assumption 5 ensures that the retailer will order proper
quantities in his second order.

2.2 The Profit Function

Let P(Q,,Q;) be the expected profits when the order
quantity of product / in the first order is Q,. From the
assumptions, we can observe that the retailer will always
supply demand for product i using on-hand product /

units as much as possible, and always supply the unmet
demand for product 2 using the excess inventory of
product 1. So the problem can be expressed as the
following maximization problem, a two-stage dynamic
programming model:

Max P(0,.0.) = -, 0, -0, + Ei [P1(0,. 0,

[UNO!

(1
P(Q.0, 1= Max P (©,,0,,0,(D,0,(D, 1)
Q)

P20, 05.0,(1). 0,1 1) =
~wlo,(-o] -w:lo, (-0
+olo,-0,(0] +b:lo.-0,0)
+p][jj—_f"’x/{ (dx + 2,0, 1 (x)dx]
e pa BBy 1 5,
A g 0, (D + 8, (D =x) 1 (x, )y
cE 20y £ oy + 0, 8. 1 () Jie]

+v.[@”JQ""'(’Q,(I)—x)f’ (x, y)dxdy

+15 010 (G, (+ T, (D-x-y) (x,y)dm’y]

0 [200. (D -y) fr )y
i 5‘(“()(—@](/))['/()()(1\'

l M“ )l(/)*gzu) x("+y Q (- QZ(]))f (x, y)dydx
o =0, (0) £ (x, )y @)

Where O (/) and Q,(/) are the final order quantity

of product | and product 2 in the second order with the
new information 1. P,(Q,,Q,,0,(1,Q,(I),1) is the
expected profits in the second stage with the order
quantity of product | and product 2 in the first order
0,.0,.and O, (/),Q,(I) inthe second order, and new
information . p,(Q,,Q,./) is the optimal expected
profits in the second stage with the order quantity of
product 1 and product 2 in the first order Q,,0, and
new information .

The first and the second term in equation (3) are the
purchase costs in the second stage. The third and fourth
term are the revenue from returning products to the
supplier. The fifth and sixth term are the revenue from
supplying the demands, both directly and using
substitution. The seventh and eighth term are the net
salvage value for excess inventory. The last two terms



are the penalty costs for shortage.
2.3 The Solution of the Second Stage

In order to solve the problem, we rewrite equation (3) as
follows:

P:(0,,0,.0,(N.Q,(I.]) =
~wlo -0} -wlo,in-0}
+ulo-0,0f +b:l0,-5.0)
+aQ,(N+c:0,()

+P5(Q,(D,0,(D,1) 4

Where p,(Q,(/).Q,(/).1) is the terms in equation (3),

except the first four minus and

c:éz(/)-

It is obvious that p;(Q, (/),Q,(/),]) is independent of
Q,,Q,. It can be proved that p,(Q,(/),Q,(/).1) is
concave with respect to O (/),0,(/)[10). With the
assumptions w,2¢,2p, and w,2c,24h,, it can be
shown that P,(Q,,0,,0,(1),0,(I),1) is
with respect to O, (/),0, (/). too. So it can be solved
by the traditional methods.

Denote G'(Q,,0,)=J%[%"%" f'(x,y)dydx , the joint

terms,

a0, ()

concave

serve level, then the optimal conditions can  be given as
follows:
) NUNRT)
h"bl . lj Ql' <Q|
={nor (5)
P, ¥ g
r=r
(G ) 22 [G o) n.g.m)
y—b " .
=20, <0,
=qrev (6)
D i 0, > 0,
ra2—v: i
The optimal solution of the second stage is shown in

figure 1.
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Figure 1 The Solution of the Second Stage

For example, if (Q,,0,) is in the region (4), it means

that the order quantity of product | in the first order is
small, and the order quantity of product 2 in the first
order is excessive. Then in the second order, the retailer
will increase the order quantity of product 1, and return
some of product 2 to the supplier. In this case, the final

order quantity of product | and product 2, él"" (1) and

éiﬂ (1), satisfies the following condition:

F o (1))
F' 0, ()+
I‘z_bz

—F’(Q,’ (.0," ()= r
2

g (0" (0.0, ()="

rh—ra2

L [G (0" (.0, )

(7

—
2.4 The Property of the profit function

After obtaining the solution of the second stage, we now
can get the form of function P(Q,,Q;) in detail. And it
can be shown that the retailer’s profit, P(Q,Q,), is
concave respect to Q,Q, by check the first partial
derivative of the function. So we can obtain the optimal
order quantities in the first order for the retailer by the
traditional optimization methods.

3. COMPURATIONAL STUDY

The main purpose of this computational study is to
demonstrate the added value of new information. Denote
Pl as the retailer’s optimal expected profit with
information updating, and PW as the retailer’s optimal
expected profit without information updating. We will
compare Pl with PW, and define the percentage gain as:



