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Preface to the Second Edition

Quite apart from the fact that percolation theory has its origin in an honest ap-
plied problem, it is a source of fascinating problems of the best kind for which
a mathematician can wish: problems which are easy to state with a minimum of
preparation, but whose solutions are apparently difficult and require new methods.
At the same time, many of the problems are of interest to or proposed by statistical
physicists and not dreamed up merely to demonstrate ingenuity.

As a mathematical subject, percolation is a child of the 1950s. Following the
presentation by Hammersley and Morton (1954) of a paper on Monte Carlo meth-
ods to the Royal Statistical Society, Simon Broadbent contributed the following
to the discussion:

“Another problem of excluded volume, that of the random maze, may
be defined as follows: A square (in two dimensions) or cubic (in three)
lattice consists of “cells” at the interstices joined by “paths” which are
either open or closed, the probability that a randomly-chosen path is open
being p. A “liquid” which cannot flow upwards or a “gas™ which flows
in all directions penetrates the open paths and fills a proportion A, (p) of
the cells at the rth level. The problem is to determine A, (p) for a large
lattice. Clearly it is a non-decreasing function of p and takes the values
Oat p =0and 1 at p = 1. Its value in the two-dimension case is not
greater than in three dimensions.

It appears likely from the solution of a simplified version of the
problem that as r — oo A,(p) tends strictly monotonically to A(p), a
unique and stable proportion of cells occupied, independent of the way
the liquid or gas is introduced into the first level. No analytical solution
for a general case seems to be known.”

This discussion led to a fruitful partnership between Broadbent and Hammer-
sley, and resulted in their famous paper of 1957. The subsequent publications of
Hammersley initiated the mathematical study of the subject.

Much progress has been made since, and many of the open problems of the
last decades have been solved. With such solutions we have seen the evolution
of new techniques and questions, and the consequent knowledge has shifted the
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ground under percolation. The mathematics of percolation is now fairly mature,
although there are major questions which remain largely unanswered. Percolation
technology has emerged as a comerstone of the theory of disordered physical
systems, and the methods of this book are now being applied and extended in a
variety of important settings.

The quantity of literature related to percolation seems to grow hour by hour,
mostly in the physics journals. It has become difficult to get to know the subject
from scratch, and one of the principal purposes of this book is to remedy this.
Percolation has developed a reputation for being hard as well as important. Nev-
ertheless, it may be interesting to note that the level of mathematical preparation
required to read this book is limited to some elementary probability theory and
real analysis at the undergraduate level. Readers knowing a little advanced prob-
ability theory, ergodic theory, graph theory, or mathematical physics will not be
disadvantaged, but neither will their knowledge aid directly their understanding
of most of the hard steps.

This book is about the mathematics of percolation theory, with the emphasis
upon presenting the shortest rigorous proofs of the main facts. I have made certain
sacrifices in order to maximize the accessibility of the theory, and the major one has
been to restrict myself almost entirely to the special case of bond percolation on the
cubsic lattice Z¢. Thus there is only little discussion of such processes as continuum,
mixed, inhomogeneous, long-range, first-passage, and oriented percolation. Nor
have 1 spent much time or space on the relationship of percolation to statistical
physics, infinite particle systems, disordered media, reliability theory, and so on.
With the exception of the two final chapters, I have tried to stay reasonably close
to core material of the sort which most graduate students in the area might aspire
to know. No critical reader will agree entirely with my selection, and physicists
may sometimes feel that my intuition is crooked.

Almost all the results and arguments of this book are valid for all bond and site
percolation models, subject to minor changes only; the principal exceptions are
those results of Chapter 11 which make use of the self-duality of bond percolation
on the square lattice. I have no especially convincing reason for my decision to
study bond percolation rather than the more general case of site percolation, but
was swayed in this direction by historical reasons as well as the consequential
easy access to the famous exact calculation of the critical probability of bond
percolation on the square lattice. In addition, unlike the case of site models, it is
easy to formulate a bond model having interactions which are long-range rather
than merely nearest-neighbour. Such arguments indicate the scanty importance
associated with this decision.

Here are a few words about the contents of this book. In the introductory
Chapter 1 we prove the existence of a critical value p, for the edge-probability p,
marking the arrival on the scene'of an infinite open cluster. The next chapter con-
tains a general account of three basic techniques—the FKG and BK inequalities,
and Russo’s formula—together with certain other useful inequalities, some drawn
from reliability theory. Chapter 3 contains a brief account of numerical equalities
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and inequalities for critical points, together with a general method for establish-
ing strict inequalities. This is followed in Chapter 4 by material concerning the
number of open clusters per vertex. Chapters 5 and 6 are devoted to subcriti-
cal percolation (with p < p¢). These chapters begin with the Menshikov and
Aizenman-Barsky methods for identifying the critical point, and they continue
with a systematic study of the subcritical phase. Chapters 7 and 8 are devoted to
supercritical percolation (with p > p.). They begin with an account of dynamic
renormalization, the proof that percolation in slabs characterizes the supercritical
phase, and a rigorous static renormalization argument; they continue with a deeper
account of this phase. Chapter 9 contains a sketch of the physical approach to the
critical phenomenon (when p = p), and includes an attempt to communicate to
mathematicians the spirit of scaling theory and renormalization. Rigorous results
are currently limited and are summarized in Chapter 10, where may be found the
briefest sketch of the Hara-Slade mean field theory of critical percolation in high
dimensions. Chapter 11 is devoted to percolation in two dimensions, where the
technique of planar duality leads to the famous exact calculation that p, = % for
bond percolation on Z2. The book terminates with two chapters of pencil sketches
of related random processes, including continuum percolation, first-passage per-
colation, random electrical networks, fractal percolation, and the random-cluster
model.

The first edition of this book was published in 1989. The second edition
differs from the first through the reorganization of certain material, and through the
inclusion of fundamental new material having substantial applications in broader
contexts. In particular, the present volume includes accounts of strict inequalities
between critical points, the relationship between percolation in slabs and in the
whole space, the Burton—Keane proof of the uniqueness of the infinite cluster, the
lace expansion and mean field theory, and numerous other results of significance.
A full list of references is provided, together with pointers in the notes for each
chapter,

A perennial charm of percolation is the beauty and apparent simplicity of its
open problems. It has not been possible to do full justice here to work currently
in progress on many such problems. The big challenge at the time of writing is
to understand the proposal that critical percolation models in two dimensions are
conformally invariant. Numerical experiments support this proposal, but rigorous
verification is far from complete. While a full account of conformal invariance
must await a later volume, at the ends of Chapters 9 and 11 may be found lists of
references and a statement of Cardy’s formula.

Most of the first edition of this book was written in draft form while I was visiting
Cornell University for the spring semester of 1987, a visit assisted by a grant from
the Fulbright Commission. It is a pleasure to acknowledge the assistance of Rick
Durrett, Michael Fisher, Harry Kesten, Roberto Schonmann, and Frank Spitzer
during this period. The manuscript was revised during the spring semester of
1988, which I spent at the University of Arizona at Tucson with financial support
from the Center for the Study of Complex Systems and AFOSR contract no.
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F49620-86-C-0130. One of the principal benefits of this visit was the opportunity
for unbounded conversations with David Barsky and Chuck Newman. Rosine
Bonay was responsible for the cover design and index of the first edition.

In writing the second edition, I have been aided by partial financial support
from the Engineering and Physical Sciences Research Council under contract
GR/L15425. 1 am grateful to Sarah Shea-Simonds for her help in preparing the
TEXscript of this edition, and to Alexander Holroyd and Gordon Slade for reading
and commenting on parts of it.

I make special acknowledgement to John Hammersley; not only did he oversee
the early life of percolation, but also his unashamed love of a good problem has
been an inspiration to many.

Unstinting in his help has been Harry Kesten. He read and commented in detail
on much of the manuscript of the first edition, his suggestions for improvements
being so numerous as to render individual acknowledgements difficult. Without
his support the job would have taken much longer and been done rather worse,
if at all.

G.R.G.
Cambridge
January 1999
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Chapter 1

What is Percolation?

1.1 Modelling a Random Medium

Suppose we immerse a large porous stone in a bucket of water. What is the
probability that the centre of the stone is wetted? In formulating a simple stochastic
model for such a situation, Broadbent and Hammersley (1957) gave birth to the
‘percolation mode!l’. In two dimensions their model amounts to the following.
Let Z2 be the plane square lattice and let p be a number satisfying0 < p < 1. We
examine each edge of Z2 in turn, and declare this edge to be open with probability p
and closed otherwise, independently of all other edges. The edges of Z2 represent
the inner passageways of the stone, and the parameter p is the proportion of
passages which are broad enough to allow water to pass along them. We think of
the stone as being modelled by a large, finite subsection of Z2 (see Figure 1.1),
perhaps those vertices and edges of Z2 contained in some specified connected
subgraph of Z2. On immersion of the stone in water, a vertex x inside the stone
is wetted if and only if there exists a path in Z2 from x to some vertex on the
boundary of the stone, using open edges only. Percolation theory is concerned
primarily with the existence of such ‘open paths’.

If we delete the closed edges, we are left with a random subgraph of Z2; we
shall study the structure of this subgraph, particularly with regard to the way in
which this structure depends on the numerical value of p. It is not unreasonable
to postulate that the fine structure of the interior passageways of the stone is on a
scale which is negligible when compared with the overall size of the stone. In such
circumstances, the probability that a vertex near the centre of the stone is wetted
by water permeating into the stone from its surface will behave rather similarly to
the probability that this vertex is the endvertex of an infinite path of open edges
in Z2. That is to say, the large-scale penetration of the stone by water is related to
the existence of infinite connected clusters of open edges.
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Figure 1.1. A sketch of the structure of a two-dimensional porous stone. The lines indicate
the open edges; closed edges have been omitted. On immersion of the stone in water, vertex
x will be wetted by the invasion of water, but vertex y will remain dry.

When can such infinite clusters exist? Simulations are handy indicators of
the likely structure of the lattice, and Figure 1.2 contains such pictures for four
different values of p. When p = 0.25, the connected clusters of open edges are
isolated and rather small. As p increases, the sizes of clusters increase also, and
there is a critical value of p at which there forms a cluster which pervades the
entire picture. In loose terms, as we throw in more and more open edges, there
comes a moment when large-scale connections are formed across the lattice. The
pictures in Figure 1.2 are of course finite. If we were able to observe the whole
of the infinite lattice Z2, we would see that all open clusters are finite when p is
small, but that there exists an infinite open cluster for large values of p. In other
words, there exists a critical value p. for the edge-density p such that all open
clusters are finite when p < p., but there exists an infinite open cluster when
P > pc (such remarks should be interpreted ‘with probability 1°). Drinkers of
Pernod are familiar with this type of phenomenon—the transparence of a glass
of Pemnod is undisturbed by the addition of a small amount of water, but in the
process of adding the water drop by drop, there arrives an instant at which the
mixture becomes opaque.

The occurrence of a ‘critical phenomenon’ is central to the appeal of percolation.
In physical terms, we might say that the wetting of the stone is a ‘surface effect’
when the proportion p of open edges is small, and a ‘volume effect” when p
is large.
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The above process is called ‘bond percolation on the square lattice’, and it is
the most studied to date of all percolation processes. It is a very special process,
largely because the square lattice has a certain property of self-duality which turns
out to be extremely valuable. More generally, we begin with some periodic lattice
in, say, d dimensions together with a number p satisfying 0 < p < 1, and we
declare each edge of the lattice to be open with probability p and closed otherwise.
The resulting process is called a ‘bond’ model since the random blockages in the
lattice are associated with the edges. Another type of percolation process is the
‘site’ percolation model, in which the vertices rather than the edges are declared
to be open or closed at random, the closed vertices being thought of as junctions
which are blocked to the passage of fluid. It is well known that every bond model
may be reformulated as a site model on a different lattice, but that the converse
is false (see Section 1.6). Thus site models are more general than bond models.
They are illustrated in Figure 1.9.

We may continue to generalize in several directions such as (i) ‘mixed’” models,
in which both edges and vertices may be blocked, (ii) inhomogeneous models, in
which different edges may have different probabilities of being open, (iii) long-
range models, in which direct flow is possible between pairs of vertices which are
very distant (in the above formulation, this may require a graph with large or even
infinite vertex degrees), (iv) dependent percolation, in which the states of different
edges are not independent, and so on. Mathematicians have a considerable talent in
the art of generalization, and this has not been wasted on percolation theory. Such
generalizations are often of considerable mathematical and physical interest; we
shall however take the opposite route in this book. With few exceptions, we shall
restrict ourselves to bond percolation on the d-dimensional cubsic lattice Z¢ where
d > 2, and the main reason for this is as follows. As the level of generality rises,
the accessibility of results in percolation theory is often diminished. Arguments
which are relatively simple to explain in a special case can become concealed in
morasses of geometrical and analytical detail when applied to some general model.
This is not always the case, as illustrated by the proofs of exponential decay when
p < pc (see Chapter 5) and of the uniqueness of the infinite open cluster when
it exists (see Chapter 8). It is of course important to understand the limitations
of an argument, but there may also be virtue in trying to describe something of
the theory when stripped of peripheral detail. Bond percolation on Z¢ is indeed a
special case, but probably it exhibits the majority of properties expected of more
general finite-range percolation-type models.

1.2 Why Percolation?

As amodel for a disordered medium, percolation is one of the simplest, incorporat-
ing as it does a minimum of statistical dependence. Its attractions are manyfold.
First, it is easy to formulate but not unrealistic in its qualitative predictions for
random media. Secondly, for those with a greater interest in more complicated
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processes, it is a playground for developing mathematical techniques and insight.
Thirdly, it is well endowed with beautiful conjectures which are easy to state but
apparently rather hard to settle.

There is a fourth reason of significance. A great amount of effort has been
invested in recent years towards an understanding of complex interacting random
systems, including disordered media and other physical models. Such processes
typncally invoive families of dependent random variables which are indexed by
74 for some d > 2. To develop a full theory of such a system is often beyond the
current methodology. Instead, one may sometimes obtain partial results by making
a comparison with another process which is better understood. It is sometimes
possible to make such a comparison with a percolation model. In this way, one
may derive valuable results for the more complex system; these results may not
be the best possible, but they may be compelling indicators of the directions to be
pursued.

Here is an example. Consider a physical model having a parameter T called
‘temperature’. It may be suspected that there exists a critical value T, marking
a phase transition. While this fact may itself be unproven, it may be possible to
prove by comparison that the behaviour of the process for small 7 is qualitatively
different from that for large 7.

It has been claimed that percolation theory is a cornerstone of the theory of
disordered media. As evidence to support this claim, we make brief reference to
four types of disordered physical systems, emphasizing the role of percolation for
each.

A. Disordered electrical networks. It may not be too difficult to calculate the
effective electrical resistance of a block of either material A or of material B, but
what is the effective resistance of a mixture of these two materials? If the mixture
is disordered, it may be reasonable to assume that each component of the block is
chosen at random to be of type A or of type B, independently of the types of all
other components. The resulting effective resistance is a random variable whose
distribution depends on the proportion p of components of type A. It seems to be
difficult to say much of interest about the way in which this distribution depends
on the numerical value of p. An extreme example arises when material B is a
perfect insulator, and this is a case for which percolation comes to the fore. We
illustrate this in a special example.

Let Uy be the square section {0, 1, ... ,n} x {0, 1, ..., n} of the square lattice,
and let S, and T,, be the bottom and top sides of U,,

Sp ={(m,0):0 <m <nj, Th={(m,n):0<m<n}.

We tum U, into an electrical network as follows. We examine each edge of U,
in turn, and replace it by a wire of resistance 1 ohm with probability p, otherwise
removing the connection entirely; this is done independently of all other edges. We
now replace S, and T, by silver bars and we apply a potential difference between



