0 education] KT EH B BEEIZEZEMZT

Computer Graphics
Algorithms and Implementations

D. P. Mukherjee
Debasish Jana

ATERF HARtL

AFHENBFTEIZLHB R (BEHIK)

Computer Graphics

Algorithms and Implementations

ITEHERE
HE5xH

D. P. Mukherjee
Debasish Jana

—hh—

D. P. Mukherjee, Debasish Jana
Computer Graphics: Algorithms and Implementations
EISBN: 978-81-203-4089-3

Copyright © 2011 by PHI Learning Private Limited, New Delhi.

Original language published by The McGraw-Hill Companies, Inc. All Rights reserved. No part of this
publication may be reproduced or distributed by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

Authorized English language edition jointly published by McGraw-Hill Education (Asia) Co. and Tsinghua
University Press. This edition is authorized for sale only to the educational and training institutions, and within
the territory of the People’s Republic of China (excluding Hong Kong, Macao SAR and Taiwan). Unauthorized
export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal
Penalties.

AT EN AR TG H K2 tH AR 56 [2 4% 55 - A R BUE AR () A B A FE R . EARRA (U BRAE 4
NRIEMESGA (RS EEE. 0T ATBIX S E G (0 8E LI 8E . REVr
Az Ha, A REERE, BREEZHH.

ARE A TS ASHVF AT, A8 LML)7 2 5 6 alah 22 A B AT AT 43«

A BRREERERFIET BT 01-2011-7644

AR HELE McGraw-Hill 2 SH7E, THREEREHE.
AR A, B, FHEEREIE: 010-62782989 13701121933

EH 74 B (CIp) ¥R

THENIE Y. #5553 =Computer Graphics: Algorithms and Implementations: 32/ (E1) FBEHf/K
(Mukherjee, D. P.), (E1) T4% (Jana, D.) 3. --ZEIA. b5t R, 20121
KFUHHIEH HIMELZEM R FHERR

ISBN 978-7-302-27487-2

[. Ot 1. O Q- I OFFHEEE—SEER—EM—%L V. OTP391.4]

R E R AR B 1R CIP BidEtZ 7 (2011) 55 253588 5

RIEIE: JeRUE
RAEENH): T =

HAREIT: EHERFEHRAE M kb JERUEHEREEBINE A B
http:/ /www.tup.com.cn #8 4%: 100084
#t = #l: 010-62770175 S M: 010-62786544

B 5IEERS: 010-62776969, c-service@tup.tsinghua.edu.cn

R & K 1&: 010-62772015, zhiliang@tup.tsinghua.edu.cn
THHRESERI]

=B ICEN AT R A F]

EEFEAE

185X 230 EN3K: 37.25

2012 4E 1 A5 1 IR ED OR: 20124 1 S8 1 IKEDR
1~3000

59.00 Jt

=

pur
S5 B 55 Dh i e

fil 53 SH RE T

7: 044597-01

HA

‘~u
B
0

&

dfn

o e B

BEAN 21 4L, 52 E LG BHE LR EGEEE I 58 S N . S50
BURXMAAMGES . EHARKESRRMAL, EREEESPIERE. BEHE, #
AREFE@BERNA H, DAZBHEEN. HiiREESHE OB EHRE, AT
IR BB, HOH FIELE K LB E # R E AN R E A

TR MR 1996 SETFUR, HRSMEL HIRA R &, BEMRT “K%i-8H
HEM GEERD” F—RFIGIHEY, ZHEM LSV, BA 21 e, &
MEEIREHEETEMRRMESOYIE, ECHORRM L, #—S5 KRENA, &
REBIFART, — WA i 5 RS T8 i S AR KA BB
ESM BB RE LA, ABEE “RETENHE EE LB RS BER”,
PRULA IRVIBIBY A B R F A R 50 HOb HO R AN LR BRA BeA] . A EE LK
BB BAHER SN B E R FH, LAIRAHE “ K% EN S B %4
BRI GEEIRRD” MAEL, &S mRITA N FE,

RPN T

Preface

Studying Computer Graphics enhances the core competence in the designing and development
of algorithms which are both computationally interesting and mathematically challenging. More
and more people are interested in Computer Graphics because it has emerged as a vehicle for
effective communication of business data as well as scientific visualization. At the same time
it has become the backbone of the modern day entertainment industry. The phenomenal increase
in man-machine interface is due to the ever-expanding implementations of smarter ideas in
graphical design.

Indeed Computer Graphics constitutes a core area of studies in Computer Science.
Inclusion of graphical designing as an unerring component of Computer Science is already an
accepted norm. There are several good books on graphics that cater to an intended audience.
Therefore, our enthusiasm for writing yet another book on graphics needs justification. Our
motivation for this comes mainly from our experiences in teaching graphics and conducting
researches in the related areas.

Although students excel in understanding Computer Graphics algorithms and we have also
seen them solving complex numerical problems of graphics, however, they perform poorly
while implementing the basic ideas of graphics and executing them successfully. This is
especially true in the case of handling discrete coordinates on screen or in visualizing 3D shapes
on 2D screen, in specific relation to the viewpoint position. There is a widespread need to teach
the theory of Computer Graphics along with the methods of its seamless implementation. We
believe that this particular book will fulfil this objective. Since we have explained relevant
theories alongside their simple C implementation in this book, we are confident that it will be
acceptable to a wide section of undergraduate and postgraduate students. The C programs of this
book generate application by targeting the Windows operating system. Dislike it or love it—
we are in the Windows age and unless today’s students are equipped with the know-how of
Windows application—especially when we are studying a subject like Computer Graphics, they
are likely to lose one of their finest sets of skill. The first chapter of the book introduces
Windows programming and subsequent chapters deal with implementation of computer
graphics algorithms with additional details of Windows programming as and when required.

Writing a book is considerably easy when you teach the subject. But, we are sure, it is
hard for students to cope with the uncountable iterations and interpretations that authors keep
on experimenting with, and which students have to accept without question, especially, in those
cases where the implementation aspect of an algorithm is explained. We would however like
to thank our students for their thoughtful challenges thrown at us over the years—challenges
and questions that have helped us in reconstructing this manuscript. We are fortunate enough
to be associated with the Institutes of national importance in India where they provide an
environment in which instructors can complete a project of this nature. We would like to put

xi

xii » Preface

on record our sense of gratitude to PHI Learning who readily agreed to our book-proposal and
helped in streamlining the editorial and production work.

Last but not the least, both of us are indebted to our respective families for their constant
support and encouragement without which we would not have been able to come this far. We
will be happy if students get benefitted from this book. Please send your feedback to

graphics.algoimpl @gmail.com. For updates and errata, please refer to the website
http://sites.google.com/site/graphicsalgoimpl.

D.P. Mukherjee
Debasish Jana

Contents

Preface

1

INTRODUCTION TO WINDOWS PROGRAMMING

1.1 PROLOGUE 1

1.2 WiNnDows OPERATING SYSTEM—THE UNIVERSAL GRAPHICAL USER INTERFACE

1.3 Wmpows OS—INTERNALS

1.4 WmNpows PROGRAMMING 5

1.4.1 Data Type Notation
1.4.2 Predefined Constants

5

6

1.4.3 Windows Programming Architecture 6
1.4.4 Creating Project in Visual Studio 7
1.4.5 Other IDE and Compiler Options 8
1.4.6 Message-driven Programming @ 9

1.5 FrsT WINDOWS PROGRAM

1.5.1 Implementation 10

1.5.2 Program Description

1.6 TyPING CHARACTERS IN WINDOW
1.6.1 Implementation 19

1.6.2 Program Description
1.7 My FrstT MENU 26

1.7.1 Implementation 26

1.7.2 Program Description
1.8 SumMmARY 32

1.9 REeVIEW QUESTIONS AND EXERCISES

12
19

21

29

32

TWO-DIMENSIONAL GEOMETRIC TRANSFORMATIONS

2.1 PROLOGUE 33
2.2 TRANSLATION 34
2.2.1 Implementation 35
2.2.2 Program Description
2.3 REFLECTION 57
2.3.1 Implementation 58
2.3.2 Program Description
2.4 ROTATION 66
2.4.1 Implementation 67
2.4.2 Program Description

45

61

71

xi

1-32

33-113

Vi » Contents
2.5 ScALING 76
2.5.1 Implementation 76
2.5.2 Program Description 81
2.6 ZOOMING 85
2.6.1 Implementation 87
2.6.2 Program Description 91
2.7 RUBBER BANDING 97
2.7.1 Implementation 97
2.7.2 Program Description 106
2.8 SUMMARY 113
2.9 REVIEW QUESTIONS AND EXERCISES 113
3 LINE DRAWING ALGORITHMS 114-166
3.1 PROLOGUE 114
3.2 ScaAN CONVERSION ALGORITHM: A SIMPLE LINE DRAWING ALGORITHM 115
3.3 BRESENHAM’S SCAN CONVERSION ALGORITHM 116
3.3.1 Implementation 119
3.3.2 Program Description 131
3.4 BaRrR CHART 146
3.4.1 Implementation 148
3.4.2 Program Description 156
3.5 SumMMARrRY 166
3.6 ReviEw QUESTIONS AND EXERCISES 166
4 CIRCLE DRAWING ALGORITHMS 167-237

4.1 PROLOGUE 167
4.2 BRrESENHAM’S CIRCLE DRAWING ALGORITHM 168
4.2.1 Implementation 171
4.2.2 Program Description 178
4.3 BRrESENHAM’S ELLIPSE DRAWING ALGORITHM 184
4.3.1 Implementation 187
4.3.2 Program Description 194
44 Arc 198
4.4.1 Implementation 200
4.4.2 Program Description 206
4.5 PiE CHART 209
4.5.1 Implementation 210
4.5.2 Program Description 218
4.6 PrOJECTED PIE IMPLEMENTATION 225
4.6.1 Program Description 234
4.7 SUMMARY 236
4.8 REVIEW QUESTIONS AND EXERCISES 237

Contents « Vil

5 DRAWING CURVES

5.1
5.2

5.3

54
53

PROLOGUE 238

B-SpLINE CURVE 239

5.2.1 Implementation 240

5.2.2 Program Description 247
BEzieEr CURVE 252

5.3.1 Implementation 253

5.3.2 Program Description 264
SUMMARY 272

REVIEW QUESTIONS AND EXERCISES

6 FILLING ALGORITHMS

6.1
6.2

6.3

6.4
6.5

PROLOGUE 273

SEeD FILL ALGORITHM 274

6.2.1 Implementation 284

6.2.2 Program Description 296
ScaN LINE POLYGON FILL ALGORITHM
6.3.1 Implementation 311

6.3.2 Program Description 321
SUMMARY 343

REVIEW QUESTIONS AND EXERCISES

7 CLIPPING ALGORITHMS

7.1
7.2

7.3

7.4

7.5
7.6

PROLOGUE 344

ViEwPoRT CLIPPING 344

7.2.1 Implementation 346

7.2.2 Program Description 360
MippoINT SuBDIVISION LINE CLIPPING
7.3.1 Implementation 381

7.3.2 Program Description 384
SUTHERLAND—COHEN LINE CLIPPING
7.4.1 Implementation 394

7.4.2 Program Description 397
SUMMARY 405

REVIEW QUESTIONS AND EXERCISES

8 THREE-DIMENSIONAL GRAPHICS

8.1
8.2
8.3
8.4

PROLOGUE 406

3D COORDINATE SYSTEM 406
DispLAYING 3D OBIECTS 409
3D TRANSFORMATIONS 410
8.4.1 3D Translation 410
8.4.2 3D Rotation 410
8.4.3 3D Scaling 411

238-272

273-343

344405

406-505

Vviii »w Contents
8.5 3D Osiect 1O 2D IMAGE PROJECTION 411
8.5.1 World Coordinate to 3D Viewpoint-based Coordinate
Transformation 412 '
8.5.2 Viewpoint-based Coordinate System to 2D Image Transformation 415
8.6 DispLaAYING CUBE IN 2D SCREEN 416
8.6.1 Implementation 416
8.6.2 Program Description 429
8.7 DISPLAYING SPHERE IN 2D SCREEN 443
8.7.1 Implementation 443
8.7.2 Program Description 446
8.8 VIEWING TRANSFORMATIONS 448
8.9 IMPLEMENTATION OF OTHER GEOMETRIC SHAPES 451
8.9.1 Implementation 451
8.9.2 Program Description 478
8.10 SumMMARY 504
8.11 REVIEW QUESTIONS AND EXERCISES 505
9 HIDDEN SURFACE REMOVAL 506-548
9.1 PROLOGUE 506
9.2 Z-BUFFER 507
9.3 Z-BUFFER ALGORITHM FOR CUBE 508
9.3.1 Implementation 508
9.3.2 Program Description 516
9.4 Z-BUFFER ALGORITHM FOR SPHERE 526
9.4.1 Implementation 526
9.4.2 Program Description 528
9.5 RAYy TRACING 529
9.6 RAY TRACING ALGORITHM FOR CUBE 533
9.6.1 Implementation 533
9.6.2 Program Description 538
9.7 RAY TRACING ALGORITHM FOR SPHERE 543
9.7.1 Implementation 543
9.7.2 Program Description 546
9.8 SUMMARY 547
9.9 REVIEW QUESTIONS AND EXERCISES 547
10 ILLUMINATION AND SHADING 549-575
10.1 ProLOGUE 549
10.2 ILLUMINATION 550
10.3 MODELLING A SHINY SURFACE 552

10.3.1 Phong Illumination Model 552
10.4 PHONG ILLUMINATION FOR CUBE 555

10.4.1 Implementation 555

10.4.2 Program Description 562

Contents € iX

10.5 PHONG ILLUMINATION FOR SPHERE 571
10.5.1 Implementation 571
10.5.2 Program Description 573
10.6 SuMMARY 574
10.7 ReVIEW QUESTIONS AND EXERCISES 575

SUGGESTED FURTHER READING 577-578
INDEX 579-583

L1 L

Chapter

ﬁ Introduction to Windows
Programming

~: Learning Objectives :~

The objectives of this chapter are to acquaint you with:

Windows programming basics

Windows operating system—The universal graphical user interface
Data type notation in Windows programming

Windows programming architecture

Event-driven programming

A simple program to create a window

Program to display character in a window

Menu handling

HhEERR T8 R

1.1 Prologue

One of the best ways to understand the computer graphics algorithms is through their
implementation. This book presents the computer programs, which code some of the widely
used graphics algorithms. For a wider acceptability, the programming language selected is C.
However, the programs are targeted at the Microsoft’s Windows ™ platform in order to derive
the advantages of the features of the Windows ™. This chapter introduces some of the
Microsoft’s Win32 (32-bit Windows Operating System) API (application programming
interface), which is the infrastructure that Microsoft offers so that the developers can build the
standard Windows! user interface (graphical look and feel). As a result, the programs in this

! Throughout the book we will use Windows with capital W to refer to Windows OS, whereas window with
small w for an instance of a window.

1

2 w» Computer Graphics: Algorithms and Implementations

book are Windows programs written in C language. Through the example programs in this
chapter, we will familiarize you with the bare minimum of Windows programming, with the
objective that in subsequent chapters you can utilize this knowledge to implement algorithms
of computer graphics. To run the programs given in this book, you need an access to a Windows
based machine. These programs have been compiled and tested with Microsoft Visual C++
Version 6 and run under every version of Windows from Windows 95 through Windows XP
and later. We assume the knowledge of C is a prerequisite.

In this chapter, we will explore Windows programming; we will learn how to create a
window, how to write or draw in a window and above all how to implement the most common
feature of the Windows—a menu. These will act as the building blocks for the implementation
of graphics algorithms in subsequent chapters. However, an experienced reader familiar with the
Windows program can certainly skip this chapter and can get a head start from the Chapter 2. If
you are not in that bracket, read along.

Programming Windows is a bit different than the way we are familiar with the
conventional character-oriented application development (for example, in MS-DOS or UNIX).
As the programming guru Charles Petzold puts it, “Windows are easy to learn but difficult to
program”. Not because Windows is a multitasked? environment, not because it resolves the
screen in terms of pixel resolution rather than characters, but because it defines every action to
and due to a window as messages®. Therefore, programming Windows is programming
messages with which we are not usually familiar. Messages are generated due to actions or
activities related to a window, for example, when the window is resized, or repositioned, or
mouse has been moved over the window area, so on and so forth. A Windows application
expects to service messages and also generates messages to be serviced by the Windows
Operating System (OS) or any other Windows applications. Is the Windows programming
difficult? Not really—like any other programming, once we appreciate the core issues of
message driven architecture, once we understand that from where these messages are generated
and how they are serviced in a program, we are the experts in Windows programming. Let us
then explore the message-driven architecture of Windows programming. We first recapitulate
some major features of Windows followed by writing a simple Windows based application.

1.2 Windows Operating System-The Universal Graphical
User Interface

It is indeed a waste of effort to prove the acceptance of Windows operating system as the
universal Graphical User Interface (GUI). Probably, it is the main factor behind the popularity
of Windows. Windows has standardized the user interface, may be chronologically it is not the
first to do so—but let us face it—it is now the de facto standard. The interface is standardized,
the buttons are defined, and mouse actions are fixed. Well, in one way, it is a constraint and
we are not permitted to deviate too much from the set standards.

2 More than one task is being serviced by the operating system.
3 Messages can be treated same as commands or keywords in any other programming language or operating
system.

Introduction to Windows Programming <« 3

As a developer or user of a particular OS, we need to understand the services offered by
the OS, so that we can leverage our work. So, before developing any application on the
Windows platform, let us explore some architectural features of underlying platform. We will
explore briefly the nature and working of Windows, how applications use the Windows OS, and
the facilities provided by the Windows platform. Well then, let us sniff a bit of the architectural

pearls of the Windows.

1.3 Windows OS—Internals

Since there are many versions of the Windows operating system available, let us explore them
briefly. Windows was originally a 16-bit graphical operating environment (not a full-fledged
bootable operating system) on top of the MS-DOS that was developed by Microsoft. The first
official release was Windows 1.0 in 1985 (in fact, originally called Interface Manager) with
many limitations and some bare bone functionalities. Windows 1.0 did not gain popularity in
the market. Microsoft Windows 2.0 came out in 1987 with some added functionalities but still
with many limitations and could not capture much market popularity. First broad commercial
success came in 1990 with the release of Windows 3.0 as graphical user interface oriented
operating environment on top of DOS with pseudo-multitasking?. Later the variant of Windows
3.11 came as operating environment on top of DOS, added with basic required services with
more sophistication for file handling, printing, GUI, etc. and minimal networking options.
Windows 95 and its subsequent upgraded version, Windows 98 emerged as desktop GUI based
32-bit operating system with reduced dependencies and relationships with DOS and features
like plug-and-play hardware support, sturdy file system FAT32, etc. and became spectacularly
popular.

The 32-bit operating system maintained downward compatibility to 16-bit operating
system applications for some time. However, the execution of such old apps (16-bit
applications) may not be that efficient on a 32-bit operating system kernel. From NT (New
Technology) versions, Windows relied solely on the NT kernel instead of the Windows MS-
DOS subsystem. Windows NT emerged as a server-centric operating system and came with
many important technical features and services, for example, file and print services, scalability,
multiprocessor support, more sophisticated security, wide area connectivity, emulated DOS
functionality, API support for the Portable Operating System Interface for UNIX (POSIX),
government certifiable C2° security for resource protection, access rights, user quotas, etc.

4 You may refer a book on Operating Systems, e.g. Operating Systems by Siverchatz and Galvin to know more
on multitasking or pseudo-multitasking.

* Trusted Computer System Evaluation Criteria (TCSEC), a United States Government Department of Defense
(DoD) standard defines four divisions of security: D, C, B and A where division A has the highest security.
The subdivision C1 provides Discretionary Security Protection with separation of users and data and
Discretionary Access Control (DAC) capable of enforcing access limitations on an individual basis. The
subdivision C2 provides Controlled Access Protection with more finely grained DAC, individual
accountability through login procedures, audit trails, resource isolation with requisite System Documentation
and user manuals.

4 w»w Computer Graphics: Algorithms and Implementations

Later variants Windows NT 4.0, Windows 2000, Windows XP, Windows Server, and ME
are all 32-bit operating systems based on NT Kernel. All of them support both process and
thread-based multitasking. These operating systems allow multiple applications or processes to
utilize a single CPU in a time multiplexed way. Every process is allotted a certain time slice,
after which another process is run so that even with a single processor system, the OS gives
a feeling of multitasking. The operating system scheduler determines the runtime priority and
the time slice allocated to a process. Threads are lightweight processes and several threads can
be executed in preemptive® multitasked environment and in the same address space’ of that of
the parent process.

The kernel of the Windows operating system, WinNT and its future variants provide basic
functionality through the file NTOSKRNL.EXE with dynamic link library (DLL) file HAL.DLL
(supports inter hardware communication) supported by two important files NTDLL.DLL
(implements many kernel-mode® APIs or “Native Windows API” for file input/output functions,
multithreading, etc.) and Win32K.SYS (performs most of the low-level tasks in Windows
involving graphics and user interface). The dynamic link libraries (DLLs) are far more efficient
unlike the executable files (.exe) containing APIs and kernels for Windows programming
and message servicing. The user-mode APIs popularly known as Win32 APIs (32-bit API
routines and libraries) are callable from user application programs written on top of the
Windows. The Win32 API is supported by three important dynamic link libraries (DLL):
Kernel32.DLL (user-mode equivalent of NTDLL.DLL), WinGDI.DLL (GDI stands for
Graphics Device Interface, a core component of Microsoft Windows operating system and
provides basic functions for drawing bitmaps and shapes like circles, rectangles, etc.) and
User32.DLL (implements the familiar user interface of Windows on top of WinGDI and
Win32K) supported by MSVCRT.DLL (implements C standard library functions) and
WS2_32.DLL (contains the API for communicating through sockets on the Internet, also
referred to as standard Berkeley socket). Older versions were named WINSOCK.DLL or
WSOCK32.DLL.

We have reviewed briefly some of the relevant features of popular 32-bit Windows
operating system. However, in this book, when we are referring to Windows features, we mean
the generic features of Windows, not specifically Windows 2000 or Millennium version. The
graphics algorithms implemented in this book are independent of any specific version of
Windows OS.

Well then, let us start Windows programming.

¢ Preemption allows operating systems to preempt or stop a currently running task to process a higher priority
task. Interrupt handling should be non-preemptive. Preemption helps system to be more responsive to handle
multiple tasks in conjunction.

7 An address space defines a range of discrete memory addresses for storing data or code applicable to a
particular program in execution (process) or a subprogram (thread) in execution.

8 Windows operating system and its modern variants are protected mode operating systems which segregate
virtual memory into kernel space and user space. Kernel space is strictly reserved for running the kernel,
device drivers and kernel extensions. Each user space process normally runs in its own virtual memory space,
and, normally cannot access the memory of other processes. User-written application programs run in user
mode and not in kernel or privileged mode.

Introduction to Windows Programming 4 5

1.4 Windows Programming

Two different approaches can be used for Windows programming. The first approach could be
that we can use the application programming interface (API) routines as and when necessary
in the application program written in C. The other approach is to use C++ class libraries
defining actions to and due to Windows, commonly referred to as Microsoft Foundation Classes
(MFC). While the former gives the complete control of message flow in the application, the
latter generates a bit cryptic code at the first glance as quite a significant message and
Windows-related actions are masked in the class libraries. There is of course a quicker way to
accelerate the second type of programming; however, we will not be using that in this book.
We purposely avoid the second type of programming, using MFC, Object Window Library
(OWL), and other such quicker ways. Instead, we will be using bare Win32 system. Through
the example programs spread throughout this book, we will take you to eventually learn and
specialize in graphics algorithms and their implementations. As such, we will purposefully omit
certain concepts and practices related to Windows programming in order to stay focused to
computer graphics algorithms. All the codes given in this book have been written, tested and
compiled, using Microsoft’s Visual C++ 6.0 compiler. You may, however, use any other
compiler of your choice on Windows platform.

So, we will take the first approach in this book as described in the earlier paragraph—
using APIs to write Windows program in C. This gives direct control over the basic actions of
the Windows and the application the operating system points to. We assume, we are the first
generation Windows programmer. This experience will help us in implementing the graphics
gizmos—the main focus of this book.

Description of Windows program in this book is incremental in nature. As we will be
exploring through the chapters, we will explain the additional features of Windows programm-
ing over and above the one that we will be covering in this chapter. The program description
includes presentation of the problem and the associated theory, followed by listing of codes
necessary to develop the application. The explanation of code attempts to relate the code with
the associated theory. The related resource and header files are explained as and when required.
Let us first familiarize ourselves with the notation conventions used in the Windows program.

1.4.1 Data Type Notation

The Windows programmers use a bit strange notation to represent variables used in a Windows
program. This is courtesy legendary Microsoft programmer, Charles Simonyi and because of his
Polish descendence, the notation is often referred to as Polish notation. At a first glance, they
seem strange but as we understand the rhythm of the notation, we will be able to use it at ease.
Usually the name of the variable will be prefixed with letter(s) describing the data type. So the
notation is useful once we are familiar with it. The Polish notation actually increases the
readability of the code. For example, a variable szWinName is a character string (prefix s)
ending with zero (prefix z). A Windows message generated on pressing the left button of the
mouse is specified by WM_LBUTTONDOWN, the prefix WM stands for Windows Message.
Rather than listing all possible prefix notations, we will introduce them as and when we
encounter them; but here is a glimpse of a few in the following section.

6 » Computer Graphics: Algorithms and Implementations

1.4.2 Predefined Constants

Windows uses an exclusive list of predefined constants (styled in upper cases) used as
messages, flag values, and other operational parameters. These constants usually include a two

or three-letters prefix set, as described in Table 1.1.

Table 1.1 Some predefined prefix values

Prefix Category Example as used in window messages

CS Class style’ CS_HREDRAW — redraws the entire window if a movement or size
adjustment changes the width of the window area

CS_VREDRAW — redraws the entire window if a movement or size
adjustment changes the height of the window area

Ccw Create window CW_USEDEFAULT — system selects the default position or size of the
window, as applicable

DT Draw text : DT_CENTER — centres text horizontally in the bounding rectangle or
window

IDC Cursor ID or identifier IDC_ARROW — sets the arrow cursor style for displaying cursors or
mouse pointers

IDI Icon ID or identifier IDI_APPLICATION — default application icon

WM Window message WM_PAINT — sent when the system or another application makes a
request to paint a portion of an application’s window

WS Window style WS_OVERLAPPEDWINDOW — this style gives the window a title bar,

a window menu, a sizing border, and minimize and maximize buttons.

With this preliminary idea of data type notations, let us see the Windows programming
architecture.

1.4.3 Windows Programming Architecture

A Windows program has two main sections. Let us call them window generation section and
message serving section. Whereas window generation part is fairly universal for most of the
applications that we discuss in this book, the message servicing part is application-specific and
programmer’s responsibility. As explained earlier, writing a Windows program is essentially
designing the messages and associated actions depending on the application.

In the window generation section, we need to define the window—basically the generic
window class with which the application is going to work. We have to specify the colour of
the window, the cursor, the menu type, the icon, etc. associated with the window class that we
will be using. The definition is followed by the registration of the window class that we have
Jjust defined—this is in fact an instantiation of the window—a “new” window is now born with

? A window class represents a structure as a template, from which several window instances may be created.
The structure specifies icons, menu, background colour, position, size and other applicable attributes. It also
holds a pointer to a procedure that controls how the window behaves in response to window events caused
due to user interaction or generated internally.

