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Preface

The book is aimed at natural science undergraduates, as well as at graduate and post-
graduate students studying the theory of nonlinear waves of various physical nature.
It may also be useful as a handbook for engineers and researchers who encounter
the necessity of taking nonlinear wave effects into account in their work.

Evolution of sufficiently intense waves is determined by nonlinear processes, in
which the progress is substantially influenced by dispersion (a dependence of the
phase velocity on its frequency). Media without dispersion, where the phase ve-
locity does not depend on the frequency, are the simplest ones with respect to their
physical properties and are the most common in nature. But nonlinear interactions of
the Fourier spectral components in such media are particularly complex and diverse.
Here, practically all “virtual” energy-exchange processes between waves of different
frequencies become resonant ones and occur with a high efficiency. An avalanche-
like increase of the number of spectral components of the field takes place, which,
within the space-time representation, corresponds to formation of structures with
strongly pronounced nonlinear properties. Examples of such structures are discon-
tinuities of a function describing the wave field or discontinuities of its derivative,
steep shock fronts of various types and muitidimensional cellular structures.

Nonlinear structures can be stable only in strong fields, under the conditions of
competition with effects of absorption, dispersion, etc, which contribute to the decay
of such structures. These objects have properties of quasiparticles. For instance,
shock fronts undergo inelastic collisions. Thus, in nondispersive media, nonlinearity
provides both a possibility of interactions between stable structures and their very
existence. Solitons are other well-known objects in nonlinear physics, which are,
generally speaking, stable only in idealized conservative systems. At the same time,
quasi stability of shock-front structures or sawtooth waves occurs in real dissipative
systems.

Structures of different physical nature are described by similar mathematical
models. These models are used not only in the wave theory, but also to describe
various non-wave objects, viz.: forest-fire fronts, density of a flow of non-interacting
particles, etc. Because of the universality of such nonlinear models, it is necessary to
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analyze them on the basis of general principles of mathematical physics, irrespective
of the nature of the described phenomena.

On the other hand, nondispersive waves and structures are widely used in science
and technology. A review of these applications, from the authors’ viewpoint, is what
“brightens up” the theory and may be of interest to many readers.

The theory of nonlinear waves and structures is a very extensive and constant de-
veloping field of physics (especially radiophysics and mathematical physics). It has
many specific applications. Among them there are both the well-known problems of
acoustics, electrodynamics and plasma physics (see, e.g., [1-5]), and the less-known
problems, such as surface-growth description (6, 7], dynamics of turbulence [8, 9]
and development of a gravitational instability of the large-scale distribution of mat-
ter in the Universe [10-14]. A wide range of phenomena arising here have led to the
development of a variety of mathematical methods, which are effective in address-
ing various kinds of nonlinear fields and waves (see, e.g., [15-17]). It is clear that
within a single monograph, it is not possible to give an exhaustively comprehen-
sive overview of the whole problem. For this reason, the authors limited themselves
to a discussion of the “hydrodynamic™ type of nonlinear waves in nondispersive
medium. First of all, the properties of solutions to such standard nonlinear wave
equations in nondispersive media as the simple wave equation, the Burgers equation
and the Kardar-Parisi-Zhang equation have been studied in detail. Apart from the
importance of these equations for the theory and applications, an analysis of these
solutions allows us to trace stages of development of typical nonlinear processes
and, above all, nonlinear distortion of profiles, the gradient catastrophe and emer-
gence of shock waves. In order for the theory of nonlinear waves in nondispersive
media not to look too abstract, the presentation is based on illustrative geometric
interpretations of both the equations themselves and their solutions, as well as on a
comprehensive discussion of the physical meaning of these solutions and the meth-
ods used to obtain them.

The monograph consists of two parts. The first part is devoted to a detailed de-
scription of the concepts and analysis methods of nonlinear waves and structures in
nondispersive media. The second part focuses on an in-depth description of the non-
linear theory as applied only to one type of waves — high intensity acoustic waves.
This object, on the one hand, is the most straightforward and, on the other hand, has
important practical applications.

The authors have attempted to communicate all materialls at the following *“two
levels” of complexity. The first level is intended to introduce beginning investi-
gators (above all undergraduate, graduate and PhD students) to the concepts and
methods of the theory of nonlinear waves and structures in nondispersive media.
In order to achieve a deeper understanding of the foundations, it is useful to solve
the problems given in the end of the chapters in Part 1. The second, higher, level
is meant for researchers, who already have experience in this field of study and
are interested in the state of the art or in specific results. Naturally, it is impossi-
ble to reflect the entire diversity of approaches used to study nonlinear fields and
waves in a single monograph. This is why the material is presented at a simple,
“physical” level of rigor, where possible. Those, who are interested in a more rigor-
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ous mathematical foundation of the problems discussed here, are advised to turn to
monographs [15,17], where mathematical foundations of many topics touched upon
in this book are thoroughly discussed. An in-depth review of the methods used to
solve nonlinear problems, along with profound results of the nonlinear field theory,
can be found in book [16]. In monograph [18], and also in textbook [19], the theory
of generalized functions necessary for construction of generalized solutions of non-
linear equations is comprehensively elucidated. We recommend those who intend
deeper to delve into the nonlinear field theory, without burying themselves in math-
ematical subtleties, the following thorough monographs and textbooks: [1, 2,4, 5],
which are written by physicists for physicists. Basic concepts of the nonlinear wave
theory, along with illustrative physical examples, can be found in the remarkable
textbook [14]. To those who are going professionally to engage themselves in the
field of nonlinear acoustics, we recommend monograph [3] and the books of prob-
lems [20, 21], where a set of problems aiding in mastering various aspects of non-
linear acoustics is given. If one is interested in statistical properties of nonlinear
random waves as applied to nonlinear acoustics, astrophysics and turbulence, he or
she can pick up necessary information from monograph [10]. We also advise to turn
to monograph [8], which covers the foundations of the theory of strong turbulence
and its inherent phenomena, such as intermittency and multifractality.

We are grateful to the renowned scientists, fruitful interactions with whom over
the years have formed our vision of the problems and methods of the nonlinear
science. First of all, they are: academicians A.V. Gaponov-Grekhov, Ya.B. Zel-
dovich, R.V. Khokhlov, V.I. Arnold and Ya.G. Sinai; corresponding members of
the Russian Academy of Sciences M.I. Rabinovich and D.I. Trubetskov; Profes-
sors A.N. Malakhov, L.A. Ostrovsky, S.A. Rybak, S.I. Soluyan, A.P. Sukhorukov,
A.S. Chirkin and S.F. Shandarin. We are delighted to remember the years of col-
laboration with international colleagues, among whom are: D. Crighton, U. Frisch,
B. Enflo, D. Blackstock, M. Hamilton, L. Cram, E. Aurell, A. Noullez, W.A. Woy-
czynski and many others.

We would like also to thank our translators, O. Simdyankina and S. Simdyankin,
not only for the speedy production of an English translation of this book, but also
for the lucid clarity of their literary representation of the original text.

Nizhny Novgorod, Moscow, Sergey N. Gurbatov
July 2011 Oleg V. Rudenko
Alexander 1. Saichev

References

1. M.]. Lighthill, Waves in Fluids, 2nd edn. (Cambridge University Press, 2002)

2. M. Rabinovich, D.I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems.
(Springer, Berlin, 1989)

3. 0.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Plenum, New
York, 1977)



viii

o

10.

11.
12.

13.
14.
15.
17.
18.
19.
20.

21.

Preface

M.B. Vinogradova, O.V. Rudenko, A P. Sukhorukov, Theory of Waves (Nauka, Moscow,
1979). In Russian

G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

. A L. Barabdsi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University

Press, 1995)

. M. Kardar, G. Parisi, Y.C. Zhang, Dynamical scaling of growing interfaces, Phys. Rev. Lett.

56, 889-892 (1986)

. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, 1995)

A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 2 (MIT Press, Cambridge, Mass,
1975)

S.N. Gurbatov, A.N. Malakhov, A.I. Saichev, Nonlinear Random Waves and Turbulence in
Nondispersive Media: Waves, Rays and Particles. (Manchester University Press, 1991)

PJ.E. Peebles, Large-Scale Structure of the Universe (Princeton University Press, 1980)

S.F. Shandarin, Y.B. Zeldovich, The large-scale structure of the universe: turbulence, intermit-
tency, structures in a self-gravitating medium, Rev. Mod. Phys. 61, 185-220 (1989)

S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

Y.B. Zeldovich, Elements of Mathematical Physics (Nauka, Moscow, 1973). In Russian

V.I. Amold, Ordinary Differential Equations (MIT Press, Cambridge, Mass, 1978)

. R. Richtmyer, Principles of Advanced Mathematical Physics, vol. 1 (Springer, Berlin, 1978)

B.L. Rozhdestvenskii, N.N. Yanenko, Systems of Quasilinear Equations (Nauka, Moscow,
1978). In Russian

Al Saichev, W.A. Woyczyfiski, Distributions in the Physical and Engineering Sciences
(Birkhéuser, Boston, 1997)

S.A. Lapinova, A.L Saichev, V.A. Filimonov, Generalized Functions and Asymptotic Methods
(Nizhny Novgorod University Press, 2006). In Russian

S.N. Gurbatov, O.V. Rudenko (eds.), Acoustics in Problems (Fizmatlit, Moscow, 2009). In
Russian

O.V. Rudenko, S.N. Gurbatov, C.M. Hedberg, Nonlinear Acoustics through Probiems and
Examples (Trafford, 2010)



Contents

Part I Foundations of the Theory of Waves in Nondispersive Media. .. ... 1
1 Nonlinear Equations of the FirstOrder ........................... 3
1.1 Simplewaveequation............c.ooiiiiiuiiiineinnanann 3
1.1.1 The canonical form of the equation ..................... 3

1.12 Particleflow ..... ... . . 4

1.1.3 Discussion of the Riemann solution .. ................... 5

1.1.4 Compressions and expansions of the particle flow ......... 6

1.1.5 Continuityequation ...............coiirennnrnnnnann. 8

1.1.6 Constructionof the density field........................ 9

1.1.7 Momentum-conservationlaw ...................ooiul. 10

1.1.8 Fourier transforms of density and velocity ............... 11

1.2 Line-growthequation ..........c.ooviiiiiiiiiii i, 13
1.2.1 Forest-fire propagation...............ccciviiiiiennnnnsn 13

1.2.2 Anisotropicsurface growth ............. ... ...l 16

1.2.3 Solution of the surface-growth equation ................. 18

1.3 One-dimensional laws of gravitation........................... 20
1.3.1 Lagrangian description of one-dimensional gravitation . . . . . 20

1.3.2 Eulerian description of one-dimensional gravitation ....... 22

1.3.3 Collapse of a one-dimensional Universe ................. 24

1.4 ProblemstoChapter 1....... ... i iiiiiniiiiiiiiiinnninnn 25
ReferenCes . ... .v ettt e e e 36

2  Generalized Solutions of Nonlinear Equations .. ................... 39
2.1 Standardequations ...............c.ciiiiiiiiiiiiiia i 39
2.1.1 Particle-flowequations............ooviiiiiiiiiiiia, 40

2.1.2 Line growth in the small angle approximation ............ 40

2.1.3 Nonlinear acoustics €quation ..........ceeverevranrrrnes 41

2.2 Multistream SOIUtiONS . ... ovvvvviiin it i 42

2.2.1 Interval of single-streammotion ........................ 42



Contents

2.2.2 Appearance of multistreamness ........................ 42
223 Gradientcatastrophe ................................. 44
23 Sumofstreams ........ ...l e 46
23.1 Totalparticleflow............. ... ... 46
23.2 Summation of streams by inverse Fourier transform ....... 47
2.3.3 Algebraic sum of the velocity field...................... 47
2.3.4 Density of a “warm” particle flow ...................... 48
2.4 Weak solutions of nonlinear equations of the first order . .......... 50
241 Porestfire .......vvnniniiii i i 50
2.4.2 The Lax-Oleinik absolute minimum principle ............ 52
2.4.3 Geometric construction of weak solutions................ 53
244 Convexhull...........c.oiviiiiiiiiiiiiiiinnn, 54
245 Maxwell’'srule.. ... 56
2.5 The E-Rykov-Sinai global principle ........................... 59
2.5.1 Flow of inelastically coalescing particles................. 59
2.5.2 Inelastic collisions of particles ......................... 60
2.5.3 Formulation of the global principle ..................... 61
2.5.4 Mechanical meaning of the global principle .............. 62
2.5.5 Condition of physical realizability ...................... 63
2.5.6 Geometry of the global principle ....................... 66
2.5.7 Solutions of the continuity equation..................... 69
2.6 Line-growth geometry ............cevvevnvininnneeeennannn... 70
2.6.1 Parametric equationsofaline.......................... 71
2.6.2 Contourin polarcoordinates...............c....oouunn.. 72
2.6.3 Contour envelopes . ......vvvvvvirrreerenninnnnnnennn. 74
27 ProblemstoChapter2...............oviiiiiiiiiiniinnnnnnnnn 77
REfEreNCES . ..\ttt 82
Nonlinear Equations of the Second Order......................... 83
3.1 Regularization of nonlinearequations.................cvvvuvu.n 83
3.1.1 The Kardar-Parisi-Zhangequation ...................... 84
3.1.2 TheBurgersequation...........cooiiiiiieiennnenaan.. 85
3.2 Properties of the Burgersequation ............................ 86
321 Galileaninvariance..............cciviiiiiiiiian.. 86
322 Reynoldsnumber.............cciiiiiiiiiiiiineea.. 87
3.23 Hubbleexpansion...............coiiiiiiiiiii e, 89
324 Stationary Wave ... .........eiiiiaaeenaann e 92
3.2.5 Khokhlov’ssolution............coovviriiiniinnnnnnnn. 93
326 Rudenko’ssolution.................ccoiiiiiiiiiiiaan, 95
3.3 General solution of the Burgersequation ....................... 100
3.3.1 The Hopf-Colesubstitution .. ................ccvvvu.... 101
3.3.2 General solution of the Burgers equation................. 102
3.3.3 Averaged Lagrangian coordinate ....................... 103

3.3.4 Solution of the Burgers equation with vanishing
VISCOSIEY . ..ttt it et e e i e 104



Contents xi

3.4 Model equations of gasdynamics ............................. 105
3.4.1 One-dimensional model of a polytropic gas .............. 105
3.4.2 Discussion of physical properties of a model gas . . ........ 108
3.5 ProblemstoChapter3..............oiuinininnnnn .. 111
References . ... ..o 115

4  Field Evolution Within the Framework of the Burgers Equation.. . . .. 117

4.1 Evolution of one-dimensional signals .. ........................ 117

4.1.1 Self-similar solution, oncemore .. ...................... 117

4.1.2 Approach to the linearstage ........................... 119

413 N-waveandU-wave..............c.oovvununninin... 120

4.1.4 Sawtooth Waves ..............uviuiininnnnennnnnnn... 123

4.1.5 PeriodicWaves ..............oiiiiiiiiiiii . 128

4.2 Evolution of complex signals.................cooeenrninn.. ... 131

4.2.1 Quasiperiodic complex signals . ........................ 132

4.2.2 Evolution of fractal signals . ........................... 133
4.2.3 Evolution of multi-scale signals — a dynamic turbulence

model...... ... 135

4.3 ProblemstoChapterd.............c.ooininn e, 147

References . ... ...t 152

5 Evolution of a Noise Field Within the Framework of the Burgers

Equation ........... ... 153
5.1 Burgers turbulence — acoustic turbulence . .'.................... 153
5.2 The Burgers turbulence at the initial stage of evolution ........... 155
5.2.1 One-point probability density of a random Eulerian
velocityfield .......... .. i i 157
5.2.2 Properties of the probability density of a random velocity
field ... 159
5.2.3 Spectraofavelocityfield ............................. 162
5.3 Turbulence evolution at the stage of developed discontinuities . .. .. 166
5.3.1 Phenomenology of the Burgers turbulence ............... 167

5.3.2 Evolution of the Burgers turbulence: statistically
homogeneous potential and velocity (n > 1 andn < —3) ... 171

5.3.3 Exactself-similarity(n>2) ........................... 173
5.3.4 Violation of self-similarity (1 <n<2).................. 176
5.3.5 Evolution of turbulence: statistically inhomogeneous

potential (=3 <n<1) . ... 178
5.3.6 Statistically homogeneous velocity and inhomogeneous

potential (—1 <nm<1) ...l 179
5.3.7 Statistically inhomogeneous velocity and inhomogeneous

potential (—3 <n< —1) .......coiiiiiiiii i 181
5.3.8 Evolution of intense acoustic noise ..................... 182

References . ... oot e e 185



xii Contents

6 Multidimensional Nonlinear Equations . .......................... 189
6.1 Nonlinear equations of the firstorder .................. e 189
6.1.1 Main equations of three-dimensional flows . .............. 189
6.1.2 Lagrangian and Eulerian description of a three-dimentional
oW .. e 191
6.1.3 Jacobian matrix for the transformation from Lagrangian to
Euleriancoordinates...............ccoviiiiiuinnnnnnnn. 192
6.1.4 Density of a multidimensionalflow ..................... 193
6.1.5 Weak solution of the surface-growth equation ............ 194
6.1.6 Flows of locally interacting particles and a singular density
fleld ... e s 197
6.2 Multidimensional nonlinear equations of the second order ........ 201
6.2.1 The two-dimensional KPZ equation..................... 201
6.2.2 The three-dimensional Burgersequation ................. 202
6.2.3 Modeldensityfield............... ... .. i, 203
6.2.4 Concentrationfield..................... ... 204
6.3 Evolution of the main perturbation types in the KPZ equation and
in the multidimensional Burgers equation ...................... 207
6.3.1 Asymptotic solutions of the multidimensional Burgers
equation and local self-similarity ....................... 208
6.3.2 Evolution of simple localized perturbations .............. 212
6.3.3 Evolution of periodic structures under infinite Reynolds
MUMDETS . . vttt ettt eneneenennnnennnnns 214
6.3.4 Evolution of the anisotropic Burgers turbulence ........... 219
6.3.5 Evolution of perturbations with complex internal
SIUCIUTE . . .ttt ittt et ettt 225
6.3.6 Asymptotic long-time behavior of a localized
perturbation........ ... ... L 231
6.3.7 Appendix to Section 6.3. Statistical properties of maxima
of inhomogeneous random Gaussian fields . .............. 233
6.4 Model description of evolution of the large-scale structure of the
L8 TS << 236
6.4.1 Gravitational instability in an expanding Universe......... 236
6.4.2 From the Vlasov-Poisson equation to the Zeldovich
approximation and adhesionmeodel ..................... 238
References .. ..ot 243
Part II Mathematical Models and Physical Phenomena in Nonlinear
Acoustics. .. ... ... 245
7  Model Equations and Methods of Finding Their Exact Solutions .. .. 247
7.0 Introduction ......... ... ciiiieiiiiiiiiii i 247
7.1.1 Facts fromthe lineartheory.............. ... ... it 247
7.1.2 How to add nonlinear terms to simplified equations........ 253

7.1.3 More general evolution equations............oovvivnnn. 255



Contents xiii

7.1.4 Two types of evolutionequations ....................... 256
7.2 Lie groups and some exactsolutions.............. ..., 257
7.2.1 Exact solutions of the Burgers equation.................. 257
7.2.2 Finding exact solutions of the Burgers equation by using
the group-theorymethods ............................. 259
7.2.3 Some methods of finding exact solutions................. 261
7.3 Theapriorisymmetrymethod ............................... 266
References .. .. ... ... e e 268
8 Types of Acoustic Nonlinearities and Methods of Nonlinear
AcousticDiagnostics. ... ......... ... ... i, 271
8.1 Introduction ............c.ouinieiiiiiiinenieiiaineneienann. 271
8.1.1 Physical and geometric nonlinearities ................... 271
8.2 Classification of types of acoustic nonlinearity .................. 274
8.2.1 Boundary nonlinearities..................... ... ..... 275
8.3 Some mechanisms of bulk structural nonlinearity ................ 280
8.3.1 Nonlinearity of media with strongly compressible
INCIUSIONS .. ... i e 281
8.3.2 Nonlinearity of solid structurally inhomogeneous media. . . . 284
8.4 Nonlinear diagnostiCs .. .....c.vuetrriniiin e 290
8.4.1 Inverse problems of nonlinear diagnostics................ 292
8.4.2 Peculiarities of nonlinear diagnostics problems ........... 294
8.5 Applications of nonlinear diagnostics methods .................. 297
8.5.1 Detection of bubbles in a liquid and cracks in a solid.. ... .. 297
8.5.2 Measurements based on the use of radiation pressure ...... 299

8.5.3 Nonlinear acoustic diagnostics in construction industry . ... 300
8.6 Non-typical nonlinear phenomena in structurally inhomogeneous

13170 - A 301

References ......ccoviiiiiii i i i i it 304

9 Nonlinear SawtoothWaves ........................oiiiiiiiin. 309

9.1 SawtoOth WaVES . ... ...ttt ittt eiiiiiine e 309

9.2 Field and spectral approaches in the theory of nonlinear waves. . . .. 312

921 Generalremarks ........... ... .. ... i, 312

9.2.2 Generationofharmonics ................ ... ...l 313

9.2.3 Degenerate parametric interaction ..............eevveie. 314

9.3 Diffracting beams of sawtoothwaves .......................... 318
9.4 Waves in inhomogeneous media and nonlinear geometric

ACOUSLICS « vttt te et ie e ie i ie i it i i e 323

9.5 The focusing of discontinuous waves ..................c.c.uvunn. 328

9.6 Nonlinear absorption and saturation ...............ccvvvenannn 335

9.7 Kinetics of sawtoothwaves .................ooiiii .. 340

9.8 Interaction of waves containing shock fronts . ................... 344

) 23S (= (=) 17 =< OGO 350



Xiv Contents

10 Self-action of Spatially Bounded Waves Containing Shock Fronts. . ..
10.1 Introduction .. ..o vvvu ittt i it aie et etne s
10.2 Self-action of sawtooth ultrasonic wave beams due to the heating
of a medium and acoustic wind formation ......................
10.3 Self-refraction of weak shock waves in a quardatically nonlinear
10.4 Non-inertial self-action in a cubically nonlinear medium..........
10.5 Symmetries and conservation laws for an evolution equation
describing beam propagation in a nonlinear medium .............
10.6 Conclusions
References

.....................................................

11 Nonlinear Standing Waves, Resonance Phenomena and Frequency
Characteristics of Distributed Systems
11,1 Introduction .. .....ciiii ittt et iieie e inans
11.2 Methods of evaluation of the characteristics of nonlinear

TESONALOTS . ot v v vt it et nna e enanteeniosoennnonssenananson
11.3 Standing waves and the Q-factor of a resonator filled with a

dissipatingmedium .. ...... ... il
11.4 Frequency responses of a quadratically nonlinear resonator. . . ... ..
11.5 Q-factor increase under introductionof losses ...................
11.6 Geometric nonlinearity due to boundary motion .................
11.7 Resonator filled with a cubically nonlinear medium ..............
RefereNCES . .\ttt it i it e e e

Appendix Fundamental Properties of Generalized Functions ..........
A.1 Definition of generalized functions . ................... .. ool
A2 Fundamental SEQUENCES . ...........coviuniinerenunnnnneenenns
A.3 Derivatives of generalized functions .................... ... ...
A4 Theleibnizformula................. ...,
A.5 Derivatives of discontinuous functions .. .......................
A.6 Generalized functions of a composite argument .................
A.7 Multidimensional generalized functions ........................
A.8 Continuity equation...........c..veiniiuitiinnnienenns

A.8.1 Singularsolution.............ooiiiiiiiaiiiiiii i
A8.2 Green'sfunction.........ovveiiiininiiiiiiiiiiiiina,
A.8.3 Lagrangian and Eulerian coordinates ....................
A9 Method of characteristics . ........oov vt iniernniineneennns



Part 1

Foundations of the Theory of Waves in
Nondispersive Media






Chapter 1
Nonlinear Equations of the First Order

The basic patterns of nonlinear fields and waves of the hydrodynamic type already
can be discerned by the behavior of solutions to the simplest nonlinear partial differ-
ential equations of the first order. This chapter discusses solutions of such equations.
Those wishing to study the theory of the first-order nonlinear equations more fully
are advised to turn to the following literature: [1-4].

1.1 Simple wave equation

The simplest and, at the same time, crucial equation of the nonlinear wave theory
of the hydrodynamic type is the simple wave equation. In what follows, we will pay
tribute to the remarkable mathematician Riemann, who laid the foundations of the
nonlinear wave theory, and call this equation the Riemann equation. In mathematical
literature, this equation is often called the Hopf equation. By using the equation as
an example it is most instructive to explain such typically nonlinear effects as the
wave steepening and gradient catastrophe.

1.1.1 The canonical form of the equation

The simple wave (Riemann) equation is the following first order partial differential
equation:
du du
— +C(u)=— =0 1.1
ar TG, b
with respect to the function u(x,#) which has different geometric, mechanical, eco-
nomic, etc. meanings in different applications.
By multiplying Eq. (1.1) by C’(u), it is reduced to the equivalent, but simpler in
form, canonical Riemann equation:
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ov  dv

5 +v¢9x—0 1.2)
with respect to the new function v(x,t) = C(u(x,t)). Thus, without loss of general-
ity, in what follows, we will limit ourselves to a detailed analysis of the Riemann
equation (1.2) with an initial condition v(x,t = 0) = vo(x). The following instructive
mechanical interpretation of solutions to the Riemann equation helps better famil-
iarize oneself with peculiarities of solutions to this equation.

1.1.2 Particle flow

The easiest way to comprehend properties of solutions to the Riemann equation is
by using a flow of particles uniformly moving along the x-axis as an example. Let
a particle at the point y at the initial moment of time # = 0 have the velocity vg(y).
Then the particle’s motion is given by the following equations:

X(y,t)=y+vo(y)t, V(y7t) =v0(y). (1.3)

By varying y, we obtain the laws of motion of other particles in the flow. Note
that apart from the time ¢, another argument y, the initial particle position, appears
here. Such coordinates, which are rigidly bound to the particles of a flow, are called
Lagrangian coordinates (a pictorial comparative discussion of flow descriptions in
the Lagrangian and Eulerian coordinate systems is given in textbook [4]).

Usually, an observer measures the velocity of a flow at some fixed position with
a Cartesian coordinate x. These, more natural for an external observer, coordinates
are called Eulerian. The mapping from the Lagrangian into Eulerian coordinates is
described by the following equation:

x=X(yt). 1.4
In the case of uniformly moving particles, this equation has the following form:

x=y+vo(y)t. 1.5)

Let the field v(x,t) of particle velocities in a flow be given as a function of the
Eulerian coordinate x and time #. If, in addition to that, the mapping (1.4) of the La-
grangian to Eulerian coordinates is also known, then the dependence of the velocity
field on the Lagrangian coordinates is given by the following equation:

V(it) =v(X(n,0),1)- (1.6)

In what follows, the fields describing the behavior of particles in the Lagrangian
coordinate system will be called the Lagrangian fields, and the fields in the Eulerian
coordinate system will be referred to as the Eulerian fields. So v(x,t) is the Eulerian
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particle-velocity field, and X (y,#) is the Lagrangian field of the Eulerian coordinates
of the particles.

From the uniformity of particle motion follows that the velocity V (y,z) of a par-
ticle with the Lagrangian coordinate y does not depend on time, i.e. it satisfies the
following simplest differential equation:

av
dr

and its coordinate obeys a no less obvious equation:
dXx

—=V. : (1.8)

Equations (1.7) and (1.8) are nothing else than characteristic equations for the first
order partial differential equation (1.2). In order to reconstruct the solution of the
Riemann equation from the solutions of the characteristic equation (1.7), (1.8), it is
sufficient to find the inverse of function (1.4)

0, 1.7

y=y(x,t),

which maps the Eulerian coordinates to the Lagrangian ones. If this function is
known, then, with provision for (1.3) and (1.6), the solution of the Riemann equa-
tions takes on the following form:

v(x,t):V(y(x,t),t) =V0(y(x’t))' (1.9)

Let us emphasize that the single-valued inverse function y(x,z) exists, and
Eq. (1.9) gives the classical Riemann solution of Eq. (1.2), only if the mapping
from the Lagrangian coordinates to the Eulerian ones (1.4), (1.5) is a monotonically
increasing function y from R onto R. In the following chapter we will discuss in
detail what happens if this condition is violated. At the moment, let us assume that
it is satisfied.

1.1.3 Discussion of the Riemann solution

Let us discuss the characteristic peculiarities of the behavior of the Riemann solution
v(x,t) as a function of the x-coordinate and time ¢. But, before doing that, let us list
the main forms of notation for solutions of the Riemann equation. By substituting
¥(x,¢) for y in the equation of uniform motion of a particle (1.5)

y(x,t) =x—vo(y(x,8))t = y(x,£) =x—v(x,t)t (1.10)

and by inserting the right-hand side of this expression into Eq. (1.9), we obtain the
implicit form of the Riemann solution:

v(x,t) = vo(x — v(x,1)t). (1.11)



