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Preface

A good part of matrix theory is functional analytic in spirit. This statement
can be turned around. There are many problems in operator theory, where
most of the complexities and subtleties are present in the finite-dimensional
case. My purpose in writing this book is to present a systematic treatment
of methods that are useful in the study of such problems.

This book is intended for use as a text for upper division and gradu-
ate courses. Courses based on parts of the material have been given by
me at the Indian Statistical Institute and at the University of Toronto (in
collaboration with Chandler Davis). The book should also be useful as a
reference for research workers in linear algebra, operator theory, mathe-
matical physics and numerical analysis.

A possible subtitle of this book could be Matriz Inequalities. A reader
who works through the book should expect to become proficient in the art
of deriving such inequalities. Other authors have compared this art to that
of cutting diamonds. One first has to acquire hard tools and then learn how
to use them delicately.

The reader is expected to be very thoroughly familiar with basic lin-
ear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R.
Halmos and Linear Algebra by K. Hoffman and R. Kunze provide adequate
preparation for this. In addition, a basic knowledge of functional analy-
sis, complex analysis and differential geometry is necessary. The usual first
courses in these subjects cover all that is used in this book.

The book is divided, conceptually, into three parts. The first five chapters
contain topics that are basic to much of the subject. (Of these, Chapter 5
is more advanced and also more special.) Chapters 6 to 8 are devoted to
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perturbation of spectra, a topic of much importance in numerical analysis,
physics and engineering. The last two chapters contain inequalities and
perturbation bounds for other matrix functions. These too have been of
broad interest in several areas.

In Chapter 1, I have given a very brief and rapid review of some basic
topics. The aim is not to provide a crash course but to remind the reader
of some important ideas and theorems and to set up the notations that are
used in the rest of the book. The emphasis, the viewpoint, and some proofs
may be different from what the reader has seen earlier. Special attention
is given to multilinear algebra; and inequalities for matrices and matrix
functions are introduced rather early. After the first chapter, the exposition
proceeds at a much more leisurely pace. The contents of each chapter have
been summarised in its first paragraph.

The book can be used for a variety of graduate courses. Chapters 1
to 4 should be included in any course on Matrix Analysis. After this, if
perturbation theory of spectra is to be emphasized, the instructor can go
on to Chapters 6,7 and 8. With a judicious choice of topics from these
chapters, she can design a one-semester course. For example, Chapters 7
and 8 are independent of each other, as are the different sections in Chapter
8. Alternately, a one-semester course could include much of Chapters 1
to 5, Chapter 9, and the first part of Chapter 10. All topics could be
covered comfortably in a two-semester course. The book can also be used
to supplement courses on operator theory, operator algebras and numerical
linear algebra. The book has several exercises scattered in the text and a
section called Problems at the end of each chapter. An ezercise s placed at a
particular spot with the idea that the reader should do it at that stage of his
reading and then proceed further. Problems, on the other hand, are designed
to serve different purposes. Some of them are supplementary exercises,
while others are about themes that are related to the main development in
the text. Some are quite easy while others are hard enough to be contents
of research papers. From Chapter 6 onwards, I have also used the problems
for another purpose. There are results, or proofs, which are a bit too special
to be placed in the main text. At the same time they are interesting enough
to merit the attention of anyone working, or planning to work, in this area.
I have stated such results as parts of the Problems section, often with
hints about their solutions. This should enhance the value of the book as
a reference, and provide topics for a seminar course as well. The reader
should not be discouraged if he finds some of these problems difficult. At a
few places I have drawn attention to some unsolved research problems. At
some others, the existence of such problems can be inferred from the text.
['hope the book will encourage some readers to solve these problems too.

While most of the notations used are the standard ones, some need a
little explanation:

Almost all functional analysis books written by mathematicians adopt
the convention that an inner product (u,v) is linear in the variable « and
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conjugate-linear in the variable v. Physicists and numerical analysts adopt
the opposite convention, and different notations as well. There would be no
special reason to prefer one over the other, except that certain calculations
and manipulations become much simpler in the latter notation. If wand v
are column vectors, then u*v is the product of a row vector and a column
vector, hence a number. This is the inner product of u and v. Combined
with the usual rules of matrix multiplication, this facilitates computations.
For this reason, I have chosen the second convention about inner products,
with the belief that the initial discomfort this causes some readers will be
offset by the eventual advantages. (Dirac’s bra and ket notation, used by
physicists, is different typographically but has the same idea behind it.)

The k-fold tensor power of an operator is represented in this book as
®* A, the antisymmetric and the symmetric tensor powers as A¥A and V¥ A,
respectively. This helps in thinking of these objects as maps, A — ®FA,
etc. We often study the variational behaviour of, and perturbation bounds
for, functions of operators. In such contexts, this notation is natural.

Very often we have to compare two n-tuples of numbers after rearrang-
ing them. For this I have used a pictorial notation that makes it easy to
remember the order that has been chosen. If z = (Z1,...,2,) is a vector
with real coordinates, then z! and zT are vectors whose coordinates are ob-
tained by rearranging the numbers z; in decreasing order and in increasing

order, respectively. We write z! = (zf,...,z}) and z' = (zl,...,20),
where z; > - >z and z] < ... < 2.

The symbol || - || stands for a unitarily invariant norm on matrices: one
that satisfies the equality |||[UAV||| = |||A||| for all A and for all unitary

U,V. A statement like [|A[| < || B|| means that, for the matrices 4 and B,
this inequality is true simultaneously for all unitarily invariant norms. The
supremum norm of A, as an operator on the space C", is always written
as ||A||. Other norms carry special subscripts. For example, the Frobenius
norm, or the Hilbert-Schmidt norm, is written as ||A||;. (This should be
noted by numerical analysts who often use the symbol ||A||; for what we
call ||A]].)

A few symbols have different meanings in different contexts. The reader’s
attention is drawn to three such symbols. If z is a complex number, |z| de-
notes the absolute value of z. If z is an n-vector with coordinates (z1,. .., z,)
then |z| is the vector (|z1],...,|zn|). For a matrix A, the symbol |A| stands
for the positive semidefinite matrix (A*A)'/2. If J is a finite set, |.J| denotes
the number of elements of J. A permutation on n indices is often denoted
by the symbol o. In this case, o(j) is the image of the index j under the
map o. For a matrix A, o(A) represents the spectrum of A. The trace of a
matrix A is written as tr A. In analogy, if z = (z,,...,z,) is a vector, we
write tr z for the sum Zz;.

The words matrix and operator are used interchangeably in the book.
When a statement about an operator is purely finite-dimensional in content,



viii Preface

I use the word matrix. If a statement is true also in infinite-dimensional
spaces, possibly with a small modification, I use either the word matrix or
the word operator. Many of the theorems in this book have extensions to
infinite-dimensional spaces.

Several colleagues have contributed to this book, directly and indirectly. I
am thankful to all of them. T. Ando, J.S. Aujla, R.B. Bapat, A. Ben Israel,
I. Ionascu, A.K. Lal, R.-C.Li, S.K. Narayan, D. Petz and P. Rosenthal read
parts of the manuscript and brought several errors to my attention. Fumio
Hiai read the whole book with his characteristic meticulous attention and
helped me eliminate many mistakes and obscurities. Long-time friends and
coworkers M.D. Choi, L. Elsner, J.A.R. Holbrook, R. Horn, F. Kittaneh,
A. McIntosh, K. Mukherjea, K.R. Parthasarathy, P. Rosenthal and K.B.
Sinha, have generously shared with me their ideas and insights. These ideas,
collected over the years, have influenced my writing.

I owe a special debt to T. Ando. I first learnt some of the topics presented
here from his Hokkaido University lecture notes. I have also learnt much
from discussions and correspondence with him. I have taken a lot from his
notes while writing this book.

The idea of writing this book came from Chandler Davis in 1986. Various
logistic difficulties forced us to abandon our original plans of writing it
together. The book is certainly the poorer for it. Chandler, however, has
contributed so much to my mathematics, to my life, and to this project,
that this is as much his book as it is mine.

I am thankful to the Indian Statistical Institute, whose facilities have
made it possible to write this book. I am also thankful to the Department
of Mathematics of the University of Toronto and to NSERC Canada, for
several visits that helped this project take shape.

It is a pleasure to thank V.P. Sharma for his [ATEXtyping, done with
competence and with good cheer, and the staff at Springer-Verlag for their
help and support.

My most valuable resource while writing, has been the unstinting and
ungrudging support from my son Gautam and wife Irpinder. Without that,
this project might have been postponed indefinitely.

Rajendra Bhatia
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I
A Review of Linear Algebra

In this chapter we review, at a brisk pace, the basic concepts of linear and
multilinear algebra. Most of the material will be familiar to a reader who
has had a standard Linear Algebra course, so it is presented quickly with
no proofs. Some topics, like tensor products, might be less familiar. These
are treated here in somewhat greater detail. A few of the topics are quite
advanced and their presentation is new.

[.1 Vector Spaces and Inner Product Spaces

Throughout this book we will consider finite-dimensional vector spaces over
the field C of complex numbers. Such spaces will be denoted by symbols
V, W, W, Vs, etc. Vectors will, most often, be represented by symbols u, v,
w, z, etc., and scalars by a, b, s, t, etc. The symbol n, when not explained,
will always mean the dimension of the vector space under consideration.

Most often, our vector space will be an inner product space. The inner
product between the vectors u,v will be denoted by (u,v). We will adopt
the convention that this is conjugate-linear in the first variable u and linear
in the second variable v. We will always assume that the inner product is
definite; i.e., ‘u,u) = 0 if and only if u = 0. A vector space with such
an inner product is then a finite-dimensional Hilbert space. Spaces of this
type will be denoted by symbols H, K, etc. The norm arising from the inner
product will be denoted by ||u|; i.e., [lul| = (u,u)'/2.

As usual, it will sometimes be convenient to deal with the standard
Hilbert space C". Elements of this vector space are column vectors with
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n coordinates. In this case, the inner product (u,v) is the matrix product
u*v obtained by multiplying the column vector v on the left by the row
vector u*. The symbol * denotes the conjugate transpose for matrices of
any size. The notation u*v for the inner product is sometimes convenient
even when the Hilbert space is not C™.

The distinction between column vectors and row vectors is important in
manipulations involving products. For example, if we write elements of C*
as column vectors, then u*v is a number, but uv* is an n x n matrix (some-
times called the “outer product” of u and v). However, it is typographically
inconvenient to write column vectors. So, when the context does not de-
mand this distinction, we may write a vector z with scalar coordinates
Z1,...,Zn, simply as (z1,...,Z,). This will often be done in later chap-
ters. For the present, however, we will maintain the distinction between
row and column vectors.

Occasionally our Hilbert spaces will be real, but we will use the same
notation for them as for the complex ones. Many of our results will be true
for infinite-dimensional Hilbert spaces, with appropriate modifications at
times. We will mention this only in passing.

Let X = (z1,...,Zx) be a k-tuple of vectors. If these are column vectors,
then X is an n x k matrix. This notation suggests matrix manipulations
with X that are helpful even in the general case.

For example, let X = (z,,...,zx) be a linearly independent k-tuple. We
say that a k-tuple Y = (y1,...,¥x) is biorthogonal to X if (y;,z;) = 6;;.
This condition is expressed in matrix terms as Y* X = I, the k x k identity
matrix.

Exercise 1.1.1 Given any k-tuple of linearly independent vectors X as
above, there ezists a k-tuple Y biorthogonal to it. If k = n, this Y is unique.

The Gram-Schmidt procedure, in this notation, can be interpreted as a
matrix factoring theorem. Given an n-tuple X = (z,,...,z,) of linearly
independent vectors the procedure gives another n-tuple Q = (q1,...,¢n)
whose entries are orthonormal vectors. For each k = 1,2, ..., n, the vectors
{z1,...,zx} and {q1,...,qx} have the same linear span. In matrix notation
this can be expressed as an equation, X = QR, where R is an upper
triangular matrix. The matrix R may be chosen so that all its diagonal
entries are positive. With this restriction the factors Q and R are both
unique. If the vectors z; are not linearly independent, this procedure can
be modified. If the vector zx is linearly dependent on zi,...,zx_;, set
gx = 0; otherwise proceed as in the Gram-Schmidt process. If the kth
column of the matrix @ so constructed is zero, put the kth row of R to be
zero. Now we have a factorisation X = QR, where R is upper triangular
and @ has orthogonal columns, some of which are zero. Take the nonzero
columns of @ and extend this set to an orthonormal basis. Then, replace
the zero columns of @ by these additional basis vectors. The new matrix
Q now has orthonormal columns, and we still have X = QR, because the
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new columns of Q are matched with zero rows of R. This is called the QR
decomposition.

Similarly, a change of orthogonal bases can be conveniently expressed in
these notations as follows. Let X = (z,,...,zx) be any k-tuple of vectors
and E = (ey,...,e,) any orthonormal basis. Then, the columns of the
matrix E*X are the representations of the vectors comprising X, relative
to the basis E. When k = n and X is an orthonormal basis, then E*X is a
unitary matrix. Furthermore, this is the matrix by which we pass between

coordinates of any vector relative to the basis E and those relative to the
basis X. Indeed, if

u=ajey+---+anen, =b1z1 + - + bpzp,

then we have
u=FEa, a;= eju, a=E"y,
u=Xb, bj=zju, b=X"u

Hence,
a=FE'Xb and b= X*FEa.

Exercise 1.1.2 Let X be any basis of H and let Y be the basis biorthogonal
to it. Using matriz multiplication, X gives a linear transformation from
C™ to H. The inverse of this is given by Y*. In the special case when
X 1is orthonormal (so that Y = X ), this transformation is inner-product-
preserving if the standard inner product is used on C".

Exercise 1.1.3 Use the QR decomposition to prove Hadamard’s inequal-
ity: if X = (z1,...,Zn), then

|det X| < []llz;ll-

=1

Equality holds here if and only if either the z; are mutually orthogonal or
some T; 1s zero.

[.2 Linear Operators and Matrices

Let £(V, W) be the space of all linear operators from a vector space V to
a vector space W. If bases for V,W are fixed, each such operator has a
unique matrix associated with it. As usual, we will talk of operators and
matrices interchangeably.

For operators between Hilbert spaces, the matrix representations are
especially nice if the bases chosen are orthonormal. Let A € L(H,K), and
let E = (ey,...,e,) be an orthonormal basis of H and F=(f1,...,fm)an
orthonormal basis of K. Then, the (i, j)-entry of the matrix of A relative
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to these bases is ai; = f; Ae; = (fi, Ae;). This suggests that we may say
that the matrix of A relative to these bases is F* AE.

In this notation, composition of linear operators can be identified with
matrix multiplication as follows. Let M be a third Hilbert space with or-
thonormal basis G = (g1, . -,9p). Let B € L(K, M). Then

(matrix of B-A) = G*(B-A)E

= G'BF F*AE
(G*BF)(F*AE)
= (matrix of B) (matrix of A).

The second step in the above chain is justified by Exercise I.1.2.

The adjoint of an operator A € L(H,K) is the unique operator A* in
L(K,H) that satisfies the relation

(2, Az)c = (A% z,T)n
forallz € H and z € K.

Exercise 1.2.1 For fized bases in H and K, the matriz of A* is the con-
jugate transpose of the matriz of A.

For the space £L(H,H) we use the more compact notation L(H). In the
rest of this section, and elsewhere in the book, if no qualification is made,
an operator would mean an element of L(H).

An operator A is called self-adjoint or Hermitian if A = A*, skew-
Hermitian if A = —A*, unitary if AA* = I = A*A, and normal if
AA* = A A.

A Hermitian operator A is said to be positive or positive semidefinite
if (x, Az) > 0 for all £ € H. The notation A > 0 will be used to express
the fact that A is a positive operator. If (x, Az) > 0 for all nonzero z, we
will say A is positive definite, or strictly positive . We will then write
A > 0. A positive operator is strictly positive if and only if it is invertible.
If A and B are Hermitian, then wesay A > Bif A— B> 0.

Given any operator A we can find an orthonormal basis y;, .

.., Yn such
that for each k = 1,2,...,n, the vector Ay is a linear combination of
Y1,---,Yk. This can be proved by induction on the dimension n of H. Let

A1 be any eigenvalue of A and y; an eigenvector corresponding to \;, and
M the 1-dimensional subspace spanned by it. Let N be the orthogonal com-
plement of M. Let Py denote the orthogonal projection on . For y € N,
let Avy = Py Ay. Then, Ay is a linear operator on the (n — 1)-dimensional
space N. So, by the induction hypothesis, there exists an orthogonal ba-
sis ¥2,...,Yn of N such that for k = 2,...,n the vector Apxyx is a linear
combination of ys,...,yk. Now y1,...,¥yn is an orthogonal basis for H, and
each Ay is a linear combination of y;,...,yx for k =1,2,...,n. Thus, the
matrix of A with respect to this basis is upper triangular. In other words,
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every matrix A is unitarily equivalent (or unitarily similar) to an up-
per triangular matrix T', i.e., A = QT Q*, where Q is unitary and T is upper
triangular. This triangular matrix is called a Schur Triangular Form for
A. An orthonormal basis with respect to which A is upper triangular is
called a Schur basis for A. If A is normal, then T is diagonal and we have
Q*AQ = D, where D is a diagonal matrix whose diagonal entries are the
eigenvalues of A. This is the Spectral Theorem for normal matrices.
The Spectral Theorem makes it easy to define functions of normal matri-
ces. If f is any complex function, and if D is a diagonal matrix with A,, ...
An on its diagonal, then f(D) is the diagonal matrix with f(\;),..., f(An)
on its diagonal. If A = QDQ*, then f(A) = Qf(D)Q*. A special conse-
quence, used very often, is the fact that every positive operator A has a
unique positive square root. This square root will be written as A'/2.

Exercise 1.2.2 Show that the following statements are equivalent:
(i) A is positive.
(ii) A = B*B for some B.
(1) A =T*T for some upper triangular T'.

(iv) A = T*T for some upper triangular T with nonnegative diagonal
entries.

If A is positive definite, then the factorisation in (iv) is unique. This is
called the Cholesky Decomposition of A.

Exercise 1.2.3 (i) Let {Aqa} be a family of mutually commuting operators.
Then, there is a common Schur basis for {Aq}. In other words, there ezists
a unitary Q such that Q* A,Q is upper triangular for all a.

(i) Let { Ao} be a family of mutually commuting normal operators. Then,
there ezists a unitary Q such that Q*A,Q is diagonal for all a.

For any operator A the operator A*A is always positive, and its unique
positive square root is denoted by |A|. The eigenvalues of |A| counted with
multiplicities are called the singular values of A. We will always enu-
merate these in decreasing order, and use for them the notation s1(A) 2
sa(A) > -+ > sn(A).

If rank A = k, then sx(A) > 0, but sg41(A) = -+~ = s,(A) = 0. Let S be
the diagonal matrix with diagonal entries s1(A), ..., sn(A) and Sy the kxk
diagonal matrix with diagonal entries s1(A), .. ., sk(A). Let Q@ = (Q1,Q2)
be the unitary matrix in which @, is the n x k matrix whose columns are
the eigenvectors of A* A corresponding to the eigenvalues s2(A),...,s1(A)
and Q; the n x (n — k) matrix whose columns are the eigenvectors of A*A
corresponding to the remaining eigenvalues. Then, by the Spectral Theorem

euae=(5 1)
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Note that
Qi(A*A)Q; =52, Q3(A°A)Q2=0.
The second of these relations implies that AQ2 = 0. From the first one we

can conclude that if W; = AQ: S;l, then W} W, = I;. Choose W, so that
W = (W;, W) is unitary. Then, we have

. WrAQ: WAQ: \ [ S+ 0
wae= (g wisg )= (7 o)

This is the Singular Value Decomposition: for every matrix A there
exist unitaries W and Q such that

W*AQ = S,

where S is the diagonal matrix whose diagonal entries are the singular
values of A.

Note that in the above representation the columns of Q are eigenvectors
of A*A and the columns of W are eigenvectors of AA* corresponding to
the eigenvalues s?(A), 1 < j < n. These eigenvectors are called the right
and left singular vectors of A, respectively.

Exercise 1.2.4 (i) The Singular Value Decomposition leads to the Polar
Decomposition: Every operator A can be written as A = UP, where U
18 unitary and P is positive. In this decomposition the positive part P is
unique, P = |A|. The unitary part U is unique if A is invertible.

(i1) An operator A is normal if and only if the factors U and P in the
polar decomposition of A commute. .

(111) We have derived the Polar Decomposition from the Singular Value
Decomposition. Show that it is possible to derive the latter from the former.

Every operator A can be decomposed as a sum

A=ReA+:ImA,

where Re A = A—zﬂ‘ and ImA = A—'ziA'—. This is called the Cartesian
Decomposition of A into its “real” and “imaginary” parts. The operators

Re A and Im A are both Hermitian.
The norm of an operator A is defined as

lAll = sup [Az]|.
[lzll=1
We also have
lAll= sup [(y, Az)|.
llzll=llyll=1

When A is Hermitian we have

|All = |St“1p |{z, Az)|.
Izll=1



