BARRGH & (k)

Embedded

Systems

O’REILLY"
¥ &5 %Y HpRit Elecia White %

BARERHAF & wan

Making Embedded Systems

Elecia White 3

O’REILLY"

Beijing - Cambridge - Farnham - Kdln - Sebastopol - Tokyo
O’Reilly Media, Inc. 4 AL dy X 4 th 3RAL 4R

REAXEFHEH

EHERSE (CIP) XiR

ARG R %3/ (3£) b (White, EJE . —
ENd. —mx: KREEK¥ MR, 20126

5483 Making Embedded Systems

ISBN 978-7-5641-3450-1

I O IL O I OMEIHENL— ALt
—#F3r IV. D TP360.2 '

FRERRAEAE CIP EiEF (2012) 5084977 5

ILHERRAURE R A RIS
EF. 10-2012-160 8

©2011 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2012. Authorized reprint of the original English edition, 2012 O’Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form,

% LK Jady O'Reilly Media, Inc. # 3& 2011,

FE W eIy & oy A o RAL SRR 2012 30 F Ep R o) 3k N A4 AT 5] ok RALA 4R B AL BT A —— O’Reilly
Media, Inc. ##% T,

BBHR, ARBFRHAT, XBNEMRS P LRTAUEFTH XEH,

BARRGEFER (RER)

HREFT: REAZEHKRH .

o b EARMEE2S WB4E: 210096
H R A: TR

A 3k : http://www.seupress.com

H, F-Hif . press@seupress.com

B B B HERMAERAE

F & T8TEENK x 980k 167 %
B 3k 205

¥ ¥ 4017

R W: 20124£ 6 A 1)R

Bl k. 201246 HE | REDRI

3 £ . ISBN 978-7-5641-3450-1

& #r: 58.005¢ ()

FHEFEANERBAE, FEESEHRBR. BF (f$H). 02583791830

O’Reilly Media, Inc.t+45

O'Reilly Mediaifiit B3, &, Z&ME. WEFAMKNEHALBAF M, H19784
FFi4. O'Reilly—HERR AR RALIEE D E . BRIBETEEFBERER, mHRI1E
EREEENBAGH—ETBAMRE “WMEES" ki@t A FPBmEE. b
. BRHXPERNS5E, ORellyfIZRIENRT M AFHER, EmEHEX.

O'Reilly b FF R A R REMER “ShHp$H" SIEE—/ LMY (GNN) AAT
EMEGENF HRAEES, CETHRKESHLALA L, 813 TMakeZtE, MR
DIYEMERAR: —wREbEESRHEAMEE RS ANAH. OReilly&iUMkS
ERTAZBEBREEMCEMA R LS, EFEHSHFF L EMEBE, b
RALHEE BRIER, OReily ALK E&RERNMREBLERNHANA . TRE
BEHE ., FRRFTLEZRE, O ReillylI7=REREL T A TSI ZHBHEE—
HERRM A OIFHIHE.

Ab it
“O’Reilly Radar i 4 o '¥#%, ”
—Wired

“OReilly £ H— A7 (AH2SHALBANT) EABEELTRETFALHLE,

——Business 2.0

“O’Reilly Conference & R X 48 T BMA &) 842F 3L, 7
——CRN

“—AOReilly®§ BHRKAL—AH A, Ak, TXFIS1HE, "
' —Irish Times

“TimRAAH LRITHHA, RELRARTFRKE, R/ MGR%R, HALbyRRER
Yogi Berrati ¥ L A4 T : ‘e RRABZ LS TSR0, A% (£3%) . @9H
it ¥, TimAFE&—kARLET 1B, REH AR R PiEHNd, REXS
LR, "

—Linux Journal

tH kit it BR

BEHEIERNRBIERA, AREESA—MHEARE % BHOFH. HE
PLEEARRR B AT Tolk 27, #5lkiEshH0 B ¥R T ERMEM. 2R,
HEHLSHR A E AR EFE B2 bR X F 48, % TR ENEAA REE—IF
TRESBEFAER, REksHREMEE OReilly Meida, Inc. ik ML, Bk
S5 HZA FNRBMNEBHARAREEL S TOBREE BANWER, LB &E Bk
PRRIHR EMAIEE. X, HERBHHRSESNES ‘RS UK, A R
HER” BAAI%RE. ’

BMNAEHAR, BrolsERBHEME AT LHERA R SRR R
MRBImERNEINTERFHEY, XEAHREILBEANRRARRE. bR LWE
EERHEROE LRI

BEFHRARZERES, S

e (Hbase EIEEE) (RZEIAR)

o (HERMAREY (REK)

e (BEAEH jQuery) (REIR)

o (EEAZRM HTMLS 38 (HHKR)
o (BIFHIMIE F_MR) (RER)

o (HTMLS) (RENR)

e (HTMLS5 Cookbook) (EZENR)

o (PerliZH%&E FMKRY (BER)
o (EARHZIHEBMY (EER)
o (BIRRBMERY (REIRR)

o (ARXRZEIRY (EHR)

o (iOS 5 Z3#& Cookbook) (BZENER)
o (EtEREMySQL E=FRY (BENER)
o (iOS B HKLKB) (HER)

Preface

I love embedded systems. The first time a motor turned because 1 told it to, I was
hooked. I quickly moved away from pure software and into a field where I can touch
the world. Just as I was leaving software, the seminal work was done on design pat-
terns.” My team went through the book, discussing the patterns and where we’d
consider using them. As I got more into embedded systems, 1 found compilers that
couldn’t handle C++ inheritance, processors with absurdly small amounts of memory
in which to implement the patterns, and a whole new set of problems where design
patterns.didn’t seem applicable. But I never forgot the idea that there are patterns to
the way we do engineering. By learning to recognize the patterns, we can use the robust
solutions over and over. So much of this book looks at standard patterns and offers
some new ones for embedded system development. I’ve also filled in a number of
chapters with other useful information not found in most books.

About This Book

After seeing embedded systems in medical devices, race cars, airplanes, children’s toys,
and gunshot location systems, I've found a lot of commonalities. There are a lot of
things I wish I knew then on how to go about designing and implementing software
for an embedded system. This book contains some of what I've learned. It is 2 book
about good software design in resource-constrained environments.

It is also a book about understanding what interviewers look for when you apply for
an embedded systems job. Each section ends with an interview question. These are
generally not language specific; instead, they attempt to divine how you think. Good
interview questions don’t have a single correct answer. Instead of trying to document
all the paths, the notes after each question provide hints about what an interviewer
might look for in your response. You'll have to get the job (and the answers) on your
own merits.

* Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides, 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston: Addison-Wesley.

One note, though: my embedded systems don’t have operating systems. The software
runs on the bare metal. When the software says “turn that light on,” it says it to the
processor without an intermediary. This isn’t a book about an embedded operating
system (OS). But the concepts translate to processors running OSs, so if you stick
around, you may learn about the undersides of OSs too. Working without one helps
you really appreciate what an OS does.

This book describes the archetypes and principles that are commonly used in creating
embedded system software. I don’t cover any particular platform, processor, compiler,
or language, because if you get a good foundation from this book, specifics can come
later.

About the Author

In the field of embedded systems, I have worked on DNA scanners, inertial measure-
ment units for airplanes and race cars, toys for preschoolers, a gunshot location system
for catching criminals, and assorted medical and consumer devices.

I have specialized in signal processing, hardware integration, complex system design,
and performance. Having been through FAA and FDA certification processes, I un-
derstand the importance of producing high-quality designs and how they lead to high-
quality implementations.

I've spent several years in management roles, but I enjoy hands-on engineering and the
thrill of delivering excellent products. I'm happy to say that leaving management has
not decreased my opportunities to provide leadership and mentoring.

Acknowledgments

This book didn’t happen in a vacuum. It started with a colleague who said, “Hey, do
you know a book I can give to one of my junior engineers?” From that planted seed
came months of writing; I learned to really appreciate understanding (and encouraging)
friends. Then there were the engineers who gave their time to look at the technical
material (any remaining issues are my fault, not theirs, of course). Finally, O’Reilly
provided tremendous support through the whole process.

Thanking each person as they properly deserve would take pages and pages, so I will
just go through them all in one breath, in no particular order: Phillip King, Ken Brown,
Jerry Ryle, Matthew Hughes, Eric Angell, Scott Fitzgerald, John Catsoulis, Robert P.
J. Day, Rebecca Demarest, and Jen Costillo. These folks made a difference in the flavor
of this book. There are additional thank-yous spread throughout the book, where I got
help from a particular person on a particular area, so you may see these names again
(or a few different ones).

Two people are left out of that list. Andy Oram is an excellent editor at O’Reilly, and
I was lucky to get him. He’s made a big difference to this book and to my writing.

x | Preface

Finally, authors always give gushing thanks to their spouses; it is a cliché. However,
having written a book, I see why. Christopher White, my favorite drummer, physicist,
and embedded systems engineer, thank you most of all. For everything.

Organization of This Book

I read nonfiction for amusement. | read a lot more fiction than nonfiction, but still,
like any good book. I wrote this book to be read almost as a story, from cover to cover.
The information is technical (extremely so in spots), but the presentation is casual. You
don’t need to program along with it to get the material (though trying out the examples
and applying the recommendations to your code will give you a deeper understanding).

This isn’t intended to be a technical manual where you can skip into the middle and
read only what you want. I mean, you can do that, but you’ll miss a lot of information
with the search-and-destroy method. You'll also miss the jokes, which is what I really
would feel bad about. I hope that you go through the book in order. Then, when you
are hip-deep in alligators and need to implement a function fast, pick up the book, flip
to the right chapter, and, like a wizard, whip up a command table or fixed point im-
plementation of variance.

Or you can skip around, reading about solutions to your crisis of the week. I under-
stand. Sometimes you just have to solve the problem. If that is the case, I hope you find
the chapter interesting enough to come back when you are done fighting that fire.

The order of chapters is:

Chapter 1, Introduction
What is an embedded system? How is development different from traditional
software?

Chapter 2, Creating a System Architecture
How to create (and document) a system architecture.

Chapter 3, Getting Your Hands on the Hardware
Hardware/software integration during board bring-up can be scary, but there are
some ways to make it smoother.

Chapter 4, Outputs, Inputs, and Timers
The embedded systems version of “Hello World” is making an LED blink. It can
be more complex than you might expect.

Chapter 5, Managing the Flow of Activity
This chapter describes how to setup your system, where to use interrupts (and
how not to), and how to make a state machine.

Chapter 6, Communicating with Peripherals
Different serial communication forms rule embedded systems (UART, SSP, SPI,
I2C, USB, etc.). Networking, bit-bang, and parallel buses are not to be discounted. -

Preface | xi

Chapter 7, Updating Code
When you need to replace the program running in your processor, you have a few
options ranging from internal updaters to building your own solution.

Chapter 8, Doing More with Less
This covers methods for reducing consumption of RAM, code space, and processor
cycles.

Chapter 9, Math
Most embedded systems need to do some form of analysis. Understanding how
mathematical operations and floating points work (and don’t work) will make your
system faster.

Chapter 10, Reducing Power Consumption
From reducing processor cycles to system architecture suggestions, this chapter
will help you if your system runs on batteries.

The information is presented in the order that I want my engineers to start thinking
about these things. It may seem odd that architecture is first, considering that most
people don’t get to it until later in their careers. However, I want the people I work
with to be thinking about how their code fits in the system long before I want them to
worry about optimization.

Conventions Used in This Book

Typography
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, data types, and keywords.

xii | Preface

o .
st t)
.5 This icon signifies a tip, suggestion, or general note.

xS
'At\' -

This icon indicates a warning or caution.

Terminology

A microcontroller is a processor with onboard goodies like RAM, code space (usually
flash), and various peripheral interfaces (€.g., 1O lines). Your code runs on a processor,
or central processing unit (CPU). A microprocessor is a small processor, but the defini-
tion of “small” changes.

A DSP (digital signal processor) is a specialized form of microcontroller that focuses
on signal processing, usually sampling analog signals and doing something interesting
with the result. Usually a DSP is also a microcontroller, but it has special tweaks to
make it perform math operations faster (in particular, multiply and add).

As I wrote this book, T wanted to use the cotrect terminology so you'd get used to it.
However, with so many names for the piece of the system that is running your code, [
didn’t want to add confusion by changing the name. So, I stick with the term pro-
cessor to represent whatever it is you’re using to implement your system. Most of the
material is applicable to whatever you actually have.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Making Embedded Systems by Elecia White
(O’Reilly). Copyright 2012 Elecia White, 978-1-449-30214-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xili

Safari® Books Online

Saf «3 Safari Books Online is an on-demand digital library that lets you easily
AfArl cearch over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920017776.do
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http:/lwww.oreilly.com

wiv | Preface

About the Author

Elecia White has worked on DNA scanners, inertial measurement units for airplanes
and race cars, toys for preschoolers, a gunshot location system for catching criminals,
and assorted other medical and consumer devices. She is the founder of Logical Ele-
gance, an embedded systems consulting company based in San Jose. Elecia has devel-
oped strong skills in signal processing, hardware integration, complex system design,
and performance. Having been through FAA and FDA certification processes, she un-
derstands the jmportance of producing quality designs and how they lead to quality
implementations. '

Elecia has spent several years in management roles but enjoys hands-on engineering
and the thrill of delivering excellent products. While continuing to provide leadership
and mentoring, she prefers to focus on the technical aspects of a project. A graduate of
Harvey Mudd College in Claremont, CA, Elecia enjoys sharing her passion for science,
engineering, and interesting gizmos, particularly how these things can make the world
a better place.

Colophon

The animal on the cover of Making Embedded Systems is a great-eared goatsucker.

Great-eared goatsuckers are members of the family Caprimulgidae, informally referred
to as “nightjars.” The term “goatsucker” stems from an inaccurate belief that the birds
drink milk from goats; it is not to be confused with “chupacabra,” the fabled cryptid
believed by some to inhabit the Americas and drink the blood of goats. The name “great-
eared nightjar” is more commonly used today.

Great-eared nightjars inhabit subtropical or tropical moist lowland forests in areas of
Southeast Asia, including India, Bangladesh, Myanmar, Thailand, Malaysia, Indonesia,
Laos, Cambodia, Vietnam, the Philippines, and China. They are crepuscular, meaning
mostly active at dusk and at night, during which time they satisfy their diets of flying
insects and moths and sound their distinctive calls: a sharp “tissk,” followed by a two-
syllable “ba-haw.”

Great-eared nightjars are characterized by pronounced ear tufts, which, in addition to
their average length of 16 inches, make them more conspicuous among nightjars. Their
soft gray and brown plumage resembles their preferred habitat, leaf litter and bracken.
They lay their eggs either directly on bare ground or in leaf-litter nests on the ground.
Nightjar nestlings have been observed to be completely silent and motionless, which,
in addition to their leaf-colored plumage, may help protect them from danger while
nesting.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

Table of Contents

Preface veseaens cerirrauns ceereeseannaniies . ix
1. Introductionccovvvviiiiiininnnnne, evedtriiisieieianiiiinanes 1
Compilers, Languages, and Object-Oriented Programming 1
Embedded System Development 2
Debugging 2

More Challenges 4
Principles to Confront Those Challenges 5
Further Reading 7

2. (Creating a System Architecture Cerereraenes Ceerereieiaanes 9
Creating System Diagrams 10
The Block Diagram 10
Hierarchy of Control 13
Layered View 14

From Diagram to Architecture 16
Encapsulate Modules 16
Delegation of Tasks 17
Driver Interface: Open, Close, Read, Write, IOCTL 18

~ Adapter Pattern 19
Getting Started with Other Interfaces 20
Example: A Logging Interface 21

A Sandbox to Play In . 27
Further Reading 32

3. Getting Your Handsonthe Hardwarecccvviiiiieiiiiinnnnn 35
Hardware/Software Integration 35
Ideal Project Flow 36

Board Bring-Up 37

_ Reading a Datasheet 38
Datasheet Sections You Need When Things Go Wrong 40

Important Text for Software Developers
Evaluating Components Using the Datasheet
Your Processor Is a Language
Reading a Schematic
Having a Debugging Toolbox (and a Fire Extinguisher)
Keep Your Board Safe
Toolbox
Digital Multimeter
Oscilloscopes and Logic Analyzers
Testing the Hardware (and Software)
Building Tests
Flash Test Example
Command and Response
Command Pattern
Dealing with Errors
Consistent Methodology
Error-Handling Library
Debugging Timing Errors
Further Reading

4. Outputs, Inputs, andTimersccoevvvevnieennens
Toggling an Output
Starting with Registers
Set the Pin to Be an Output
Turn On the LED
Blinking the LED
Troubleshooting
Separating the Hardware from the Action
Board-Specific Header File
I/0-Handling Code
Main Loop
Facade Pattern
The Input in [/O
A Simple Interface to a Button
Momentary Button Press
Interrupt on a Button Press
Configuring the Interrupt
Debouncing Switches
Runtime Uncertainty
Dependency Injection
Using a Timer
Timer Pieces
Doing the Math

42
45
48
50
53
s3
54
55
56
59
60
61
64
67
69
70
70
71
72

75
75
76
77
79
80
80
82
82
83
85
86
87
88
90
90
91
91
94
95
96
97
99

iv | Tableof Contents

A Long Wait Between Timer Ticks

103

Using the Timer 104
Using Pulse-Width Modulation 104
Shipping the Product 106
Further Reading 108
Managing the Flow of Activity Creimeeasenciuiantenaannnes cenes 109
Scheduling and Operating System Basics 109

Tasks 109

Communication Between Tasks 110

Avoiding Race Conditions 110

Priority Inversion 112
State Machines 113

State Machine Example: Stoplight Controller 114

State-Centric State Machine 115

State-Centric State Machine with Hidden Transitions 115

Event-Centric State Machine 116

State Pattern 117

Table-Driven State Machine 118

Choosing a State Machine Implementatlon 121
Interrupts 121

An IRQ Happens 122

Save the Context 129

Get the ISR from the Vector Table 131

Calling the ISR 133

Restore the Context 136

When to Use Interrupts 136
How Not to Use Interrupts 137

Polling 138

System Tick 138

Time-Based Events 140

A Very Small Scheduler 141
Watchdog 142
Further Reading 144
Communicating with Peripheralscoovuveninninennnn.. 147
The Wide Reach of Peripherals 147

External Memory 147

Buttons and Key Matrices 148

Sensors 150

Actuators 153

Displays 158
So Many Ways of Communicating 163

Table of Contents | v

Serial
Parallel
Ethernet and WiFi
Putting Peripherals and Communication Together
Data Handling
Adding Robustness to thé Communication
Changing Data
Changing Algorithms
Further Reading

7. UpdatingCodecovveervirvroraresrenseronssrsnersnncessnsssnsrnne
Onboard Bootloader
Build Your Own Updater
Modifying the Resident Updater
Brick Loader
Copy Loader to RAM
Run the Loader
Copy New Code to Scratch
Dangerous Time: Erase and Program
Reset to New Code
Security
Linker Scripts
Summary

8. DoingMorewithLlessccavvuue Cieesreasteceaiaiannss ceree
Code Space :
Reading a Map File (Part 1)
Process of Elimination
Libraries
Functions and Macros -
Constants and Strings
RAM
Remove malloc
Reading a Map File (Part 2)
Registers and Local Variables
Function Chains
Pros and Cons of Globals
Memory Overlays
Speed
Profiling
Optimizing
Summary
Further Reading

165
173
175
176
176
186
189
191
193

197
198
199
201
202
203
204
205
205
205
206
207
210

213
214
214
217
218
219
220
221
221
223
224
226
228
228
229
230
234
243
244

vi | Tabie of Contents

9, Math . ..iiviiiiiiiiiiiaririrstneresnsossnsosursssscsnccasesssnsence 247

Identifying Fast and Slow Operations
Taking an Average

Use an Existing Algorithm

Designing and Modifying Algorithms
Factor Polynomials
Taylor Series
Dividing by a Constant
Scaling the Input
Lookup Tables

Fake Floating-Point Numbers
Rational Numbers
Precision
Addition (and Subtraction)
Multiplication (and Division)
Determining the Error

Further Reading

10. Reducing Power Consumption

Understanding Power Consumption

Turn Off the Light When You Leave the Room

Turn Off Peripherals
Turn Off Unused 1/0 devices
Turn Off Processor Subsystems
Slowing Down to Conserve Energy
Putting the Processor to Sleep
Interrupt-Based Code Flow Model
A Closer Look at the Main Loop
Processor Watchdog
Avoid Frequent Wake-Ups
Chained Processors
Further Reading

248
249
252
255
255
256
258
259
260
267
268
269
270
271
272
276

........................ veese 279

280
282
282
283
283
284
285
286
288
289
290
290
290

..... N L |

Table of Contents | vii

