A
AA4

ENERSERRERNZESHEANFHM e

Wesley

ijrﬁ*ﬂﬂ%ﬁ’ww S

g COMPUTER SC

I'lth Edition:

POSTS & TELECOM PRESS

% A%mﬂﬁtﬂﬁﬁﬁ

'iN CE T f(%e%/af)/i}zzf

(¥] J.Glenn Brookshear

ENEESEREGERMESEANEHS

(B 1RR)
(e 3Chi)

COMPUTE

11th Edition

An Overview

(3] J.Glenn Brookshear ¥

NG S R

=AY

EBERSE (C1P) HiE

THEPBZER - BUR . X/ B) AERK
/K (Brookshear, J.G.) ##. —— dti : ARHBHEHARAL,
2012.5

B4 4 R bR s BR e SRR T HM
ISBN 978-7-115-27794-7

. @it L. OFF- T OiEHPIE —EmE2K
— ¥ —3 IV. OTP3

o E R A B BIECIPEHEZ T (2012) 350464705
JRAL FHEH

Original edition, entitled Computer science : an overview, 9780132569033 by J. Glenn Brookshear, published
by Pearson Education, Inc, publishing as Addison Wesley, Copyright © 2012 by Pearson Education, Inc.
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval
system, without permission from Pearson Education, Inc.

_China edition published by PEARSON EDUCATION - ASIA LTD., and POSTS &
TELECOMMUNICATIONS PRESS Copyright © 2012.

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in
People’s Republic of China excluding Hong Kong, Macau and Taiwan.

(URFHEARLNEEAN (FEFFEES. RIMSRTBRRFPEAZHR) #HE.

A3 NS4S Pearson Education (EAEHBHARER) BLBIIRE. TAREETEHE.

H 4% 2 SRR B R R ARTE HM
HEMR IR E 1A (SR
¢ E [3¢] J. GléfmBroolafiosg
TiiTmE a7 W

o A BRMRHL AR AR AT RS K S FFE 14 5
BE4R 100061 BT H 315@ptpress.com.cn
RHE http://www.ptpress.com.cn

KT BEENRIE PR ST A | 6k
& FrA: 787x1092 /16

Efgk: 39
=H. 737 FF 20125 AB 1R
Ens: 1-3 000 fit 2012 £E 5 A EsE 1 IKEDRI

ZENESRBZIES BT 01-2012-2667 5
ISBN 978-7-115-27794-7
4 59.00 7T
EERRSHL. (010)67132692 ENEREML: (010) 67129223
RiBHR#E: (010)67171154
FESEFEIE: RRIBCFE 0215

i}

A

FHRAEHBZBATIENM . ERERFZRTEHFN, ERBERE, UXHE R
EEESE A E R

EEXR

ZHE E B D R EAR S 2R E . REBOHENR 2L R ETERYIR S
AREERFE—MEE, DR ENR MR R, RIS LR RSO SR, BA
XEA ERRMITTERR V. EhREFEIRERIEmL. B, EATBB, FEH
ETRENEZXNEMFERRAENTE, IHERFBKRE. 2T ABEFEEXT
BRI ZHE - BEN T #, FEEXAERL, AT USRS 5 H IR KR
BAERFR. FEE, RBRARGERY R BRBEEATHERHE AR,

FAER A R RN IAMEAR A S, EREARXEEZHARE R, EHTM
AT BHLRL R SR AL MR B SURAR SE A BT, T A DUR 33 N A an ol B A A
A — ST SRR HER DT, EABKEHKAET Y, WmemET
BB ER,

ik, EFXARN, RIIREREXFEEREEEMTESE. Hit, LWHRSCE
BRI AR, RS T AR ERFRERNE M ERRRE LML, X —
AT BT — H AR

¥ 11 BIENRE

FIREEMIME T F B ENAE, FHRBRTIL. Fit, X-RONFET S
B, ¥%, HHEREAMREESERFIHARZAMRR. REEEEHE:

Q HHEFHES;

Q 3GM% 54GM 451 X Al

o BRFIRERSL:

o BREFHERATTR;

0 HREFHAPZ LI HE.

PSR S ENBESIE GRMERS) Mg (M), F6x (WMEIES) MBRTH
(BT PHERRE, : ‘

X — B R AR B B AR B AR R AT A B

a HAEFERNTE: X—RESHER T H7E KA LE HEHESHXORE.

0 YIKATMEMSE: HXAE LENE, ATHER ST 7R,

BE, X—IREHTEPNERRMELASHEARL . XEEERELEOR (Fid). F1

2 W 7

B OCREREM ME2s (BuRBRE.

BN R

ABE A AR S R — X R — R T RN, 528 E R0 A
S @ET-MEE. HENMANEEBRG. LT EIEREMNEARFRE CE1EM
28D, MMARERSZ CGE3E) ATENME (B4, BERN THE. BEFRIHES
BROFFR (BSEEFETE), RERRWAEFRYIES CGEEMFBIR), BI0FEIRTHEML
EREHARM— S EENA, FURPRATER, FREEINHTEERHMERERET.

ABRHIVT BRER, BEANEWAARBROMILN, WTLERER, taRENR
FAMFEFHS . FLl, KBEEENSERENEM, AFEFRITFRSHERN.
Hp—MEER AN RS ENBE (FEMEFIIHES), ARERTERERTHAENE
o REEEE ARNB 128G XA AR XAFE G ERRAR FSURIE B 8
EAt, HT “HEPHIE” MERS. I TARETHRSEARNEE, BFEFTUERR
Fad CHMKEERMN). $9% (BWERS). F10& GHENERS MENE (AT,

BERFRMHESHFE THREEY. BFEVEARNRETWHIES, RARMNERN
BAERARI . S UOUR AR AR R AR R BT ARG — . 2R, EH HAR
Bo JLER TR I RREFRAOES, REDORT I RENT.

] F o
Li~14 FEmEMEEER
2.1~23 HEAE REMAPBES
3.1~33 BIERY
4.1~43 £1 B PRI
5.1~54 REMEE R
6.1~6.4 BrREiEs
7.1~72 KELRE
8.1~8.3 B R
9.1~9.2 BEERR
10.1~10.2 THENLER F
11.1~11.3 ATHEG
12.1~122 HEMR

EARHE AR FHLMEL. T8 —RITEIRZRTKRRELE . EBNE
RRUABREZASANEE, WRHAWHRE, FEHFATE. B %ELRHROE
R\ R R T REH RN R SRERERRIIN, REERERE. GREH. HM.
By BERTHES. RAETRE. SR AU ERLER 2% N AR REHI.

BHm

ABAFEA N A RRE N RN IR, Bt S ERNORKENES A O8¥E
ROMEEE, RERETEERARHINT. hekI, REAHHCEENGRER,
AR EMERKEE ERMXMILY, SATUREFEFHLEE. REFHHENRLE

WF 3

TEA—HMRRENSET, MIEETRENAR. BAERIRS I ERIEEL, SEi¥Es
D23, MAEREE. WRBRITARFANREE —EEERE b, a2 ERRes
T BAINZE MM F5] . _

XTFEPNARERROALEW, BREBEVEESING. EREE, BRINBUASEE
SIREBAT FERAMA, XEN B R2RIEE—SESETER RN, BIEREIT,
BAANABIF LA ENEM . TRRATATHE ANARERNRR/EE. TEIGE
G, BAERGURAW, FAXEER SN S E I 5 = E—Amhf TR aT ge i i g
JPEG, MP3XEAE, AAEACDADVDZIFRE ¥, TititEime:, MASE —RIERE,
B LI REEN. RED, AXSEEFRFFRXITRE, 2ETAGTE RBMITEER T
BRIESR, HAEXMNMEAEHALERAETAZAERMNERE. BB RRSRE RbiLE
IR MAAL, FlEE, BREH. BERNES. BEFRFS. WIFEEURE R
M, TixEHERERNEGUSMABAARTENBZNEENS. EORAIEATHN,
BAREBRAR LR, RESARIMIIEEE—T.

BAVEEE, RERZIANEARERTEE TRINEERERNHNE, TABEBRIERY
MIRFEASHRR. HE “E87 MEHNRRTER, RELM. FAEFTRERLESH
BRI R R R R, A R A SR R 1 B —— AU AR O v i Y
“HEARWEE?, FEERAOEMERE. HEREERFMATRENHE, HERib
Hbh— s s me — BRE IR EREHERTREAR . REWRITRAF R
330 X e I R

B—FES WBBLEST” MEETAPILERS. SEAELSTMER. RINARHAR
RRLZMT RE, ToRNEES RN, MiXERARBKSHEEN . RITRRI, 3.57.
4.5%, 7.8, 0.7WFNLTH SR ERERS. AN, RAETE. EEERGMATEEH LT
THRE T A B RAEMESE RIS, i, 06 RiBd RS B EAKER
MBI ANIX— E X BT A0 A FEAS T s B ST AE I 2 0 RS Bt | RIER K,
F-BHAETT “HLSHE” N, X EEERNES BERLH 5B ABTRRE,

BT AR BBRMNE. TRHRRETEAABENSH, REFERNFER -HEFRITE
PR 2 E CER.

BEHE

ABRBEHFLBIOES, HRERDBEFFTELERE . BEENRRRTEENHE
BRSNS 5 — X —ERAX 10008 M, 4% “HBS5%3", “E318” M “Hx
HE”, “IME54%3” JESTAR (RTHESN), ATFEINRNTREHAE. TR
Wit EiR, RERRUELYERNAXRTEM. XEHENERTUMNEARERX
(www.ituring.com.cn) A5 H 4B EM T

“55 51" FIFEERRRE (EOERIN. TIIREEMEL, WAEERE, £HP R
BE.

“HAHE” WHESENER, HEENR. WE BT URRTRRMR, TERE
AR FERM PR O LRE

EREMRRERA “WANIER7, BHHRT E5AEEEEARNS L. Fi, iEUR
1E 3z e BT B R bkt 3R E A AT AR AR S Bk .

4 W F

*hIEREL

AV A 7R R0R AT LA BR S M 355 www. pearsonhighered.com/brookshear 3£ %], LLF K
AHEFTERE.

0 WEASEERIE FENINREEA M O EM, T A T A

QO FEK “BNE” FREEIELBRHNE.

QO NflavafICHEREEOFM, BEHERF LS ABRERN.

Btk &b, TR TT BL% K Pearson Education ¥ #()f ¥ +.0» (www.pearsonhighered.com)
W3t B VA SRR T T AT SR

0 B “E3E" BERNHITNERE.

O PowerPoint£J4T K 88,

a PR E.

RIFEEE— TRAN AR www.mscs. mu.edu/~glennb, FARBIER (I THRE—
B RBATEER), ERRFERIEEAHNEE. HHEE B2, REELRIIERM
iR

B¥EE

A~ RRRA (— KRR AR— A, FIUSAHN, RFDEZMAREL,
RHHE NN AR FHEEL TR RIEGEHEZRALENAN “EERE", B
REHXEHRPREGEN. EEFENR —SLENMTH RN AR EAR, AL “4iK”
R A — RAEREEL T, FAAEE¥E N L. ALRRTEBMET:E,
RIREHF B, REE—2RE LSS BRI ER BN . MR
WENALERS —F, R UEGEEREE AR — S, ARSI KN TER
MEMBHRMR “Rz”, THRBBEBRIIESER.

REBRMME, EMEBEARARORES, L2k tiESURNRE.
RAMNFIBR KRR — X IERAE AN (T . A A5K IS K 7 s 0 A P PRI A 2 R P
K. BTREERMRA, FIIRSTEAR—ERK. REBEIIERFHITHER, FERR
TRANNE, MERTRIERE., B¥2¥S.

ARG, S TREXAY. EAfE, RATMEAHEHES —ENER. RS
BFRMREBROLRA| T4 F1E.

gt

HARBERGEBL AT GIRHFEHERILMES) FAL, RBBMEE.

David T. Smith (F4 BN ENFERHMAY¥) FMDennis Brylow (HHFAY) MHX—hR
HIBIEL T TR KB DavidiI STsR E ELHEROE., H1&. 25 FTRHAME 112, Dennis
MITTR L EERESEIRE, F45E, FoEMFPI10T. MBEEMIINITIE, X—RBEAFALHH.
RE LU BHRAT.

REFIEMHEPOREAT, F4SEHRBEd Angel. John Carpinelli, Chris Fox. Jim
Kurose, Gary Nutt, Greg RiccardiffiPatrick Henry WinstonfE 25 108% F T8 5T#R . MBI

‘;ifr

)
wh

RRBEBINRBERE T TR

FAH X —RRANZ ATAR A1 Y FTRR AU 58T, M. Adams. C. M. Allen. D.C. S. Allison. R.
Ashmore. B.Auemheimer. P. Bankston. M. Barnard. P.Bender. K.Bowyer. P. W. Brashear. C.
M. Brown. H. M. Brown. B. Calloni. M. Clancy. R. T.Close. D. H. Cooley. L. D. Cornell. M. J.
Crowley. F.Deek. M. Dickerson. M. J. Duncan. S.Ezekiel, S.Fox. N.E. Gibbs, J. D. Harris.
D. Hascom. L.Heath. P. B. Henderson. L. Hunt. M. Hutchenreuther. L. A. Jehn., K. K. Kolberg.
K. Korb. G Krenz, J.Liu. T.J. Long. C.May. J.J. McConnell, W. McCown. S.J. Merrill, K.
Messersmith. J. C. Moyer. M. Murphy. J. P. Myers, Jr., D.S. Noonan, W. W. Oblitey, S. Olariu,
G. Rice. N. Rickert, C. Riedesel. J. B. Rogers. G. Saito, W. Savitch, R. Schlafly. J. C. Schlimmer.
S. Sells, G Sheppard, Z. Shen, J. C. Simms. M. C. Slattery. J. Slimick, J. A. Slomka. D. Smith,
J. Solderitsch, R. Steigerwald. L. Steinberg. C.A. Struble. C.L. Struble. W. J. Taffe. J. Talburt,
P. Tonellato. P. Tromovitch. E.D. Winter, E. Wright, M. Ziegler, & — M EAKAK. BE
A1 4G — A B AR BB B R

WRTATR, ABKEEME LG TavaRICHF MR PER X B MG F MBEAEIR, 5EHH
HEHBREE. 12 HDiane ChristiefE 5 ¥, 7EMRTERME . F5h, EZ/RBERoger Eastman,
bR A A P A RS ER I E B A .

B IR BRI YA TR H 1 H ST#R 19 Addison-Wesley 1 2 L. MBI TA U IRIF RS 1EKEE,
i B RAREF R A . JIRARATTEES —A8h, L% R34 Addison-Wesley H .

WAL T BRI R A\ EarleneME A £ LCheryl, BRifHA1IX 4 ZEXMNBAE . MR Cheryl
BE2EK, JEUNCLERTEME4IE. FarlenelkpEERH N RE—NEEMA. 1998
ERANBHER, RRROERF, RBANBRED TER, tRELT 3. ITEE—
RERAT, REVERE—T, Fod IR —3E sEURTTDGREEE IR TR EFilk.)

BJG, RERWRIRLE, FRINRSMIIMERIL. RATE —OREMIEERER B
AR LR T “BRAVLTFRPBENIERET, AABRZRE.” ©

J.G.B.

@ FHAF I HXERE.

Chapter 0 Introduction 1

0.1 The Role of Algorithms 2

0.2 The History of Computing 4
0.3 The Science of Algorithms 10
0.4 Abstraction 11

0.5 An Outline of Qur Study 12
0.6 Social Repercussions 13

Chapter 1 Data Storage 19

1.1 Bits and Their Storage 20
1.2 Main Memory 26
1.3 Mass Storage 29
1.4 Representing Information as Bit Patterns 35
*1.5 The Binary System 42
*1.6 Storing Integers 47
*1.7 Storing Fractions 53
*1.8 Data Compression 58
*1.9 Communication Errors 63

Chapter 2 Data Manipulation 73

2.1 Computer Architecture 74

2.2 Machine Language 77

2.3 Program Execution 83

*2.4 Arithmetic/Logic Instructions 90

*2.5 Communicating with Other Devices 94
*2.6 Other Architectures 100

* Asterisks indicate suggestions for optional sections.

Chapter3 Operating Systems 109

Chapter 4

Chapter 5

Chapter 6

Chapter 7

3.1 The History of Operating Systems 110
3.2 Operating System Architecture 114

3.3 Coordinating the Machine's Activities 122

*3.4 Handling Competition Among Processes
3.5 Security 130

Networking and the Internet 139

4.1 Network Fundamentals 140
4.2 The Internet 149

4.3 The World Wide Web 158
*4.4 Internet Protocols 167

4.5 Security 173

Algorithms 187

5.1 The Concept of an Algorithm 188
5.2 Algorithm Representation 191
5.3 Algorithm Discovery 198

5.4 Iterative Structures 204

5.5 Recursive Structures 214

5.6 Efficiency and Correctness 222

Programming Languages 239

6.1 Historical Perspective 240

6.2 Traditional Programming Concepts 248
6.3 Procedural Units 260

6.4 Language Implementation 268

6.5 Object-Oriented Programming 276

*6.6 Programming Concurrent Activities 283
*6.7 Declarative Programming 286

Software Engineering 299

7.1 The Software Engineering Discipline 300
7.2 The Software Life Cycle 302

7.3 Software Engineering Methodologies 306
7.4 Modularity 308

7.5 Tools of the Trade 316

7.6 Quality Assurance 324

7.7 Documentation 328

7.8 The Human-Machine Interface 329

7.9 Software Ownership and Liability 332

125

Chapter8 Data Abstractions 341

8.1
8.2
8.3
8.4
8.5
*8.6
*8.7

Basic Data Structures 342

Related Concepts 345
Implementing Data Structures 348
A Short Case Study 362
Customized Data Types 367
Classes and Objects 371

Pointers in Machine Language 372

Chapter 9 Database Systems 383

9.1
9.2
*9.3
*9.4
*9.5
9.6
9.7

Database Fundamentals 384

The Relational Model 389
Object-Oriented Databases 400
Maintaining Database Integrity 402
Traditional File Structures 406

Data Mining 414

Social Impact of Database Technology 416

Chapter 10 Computer Graphics 425

10.1
10.2
10.3
10.4
*10.5
10.6

The Scope of Computer Graphics 426
Overview of 3D Graphics 428
Modeling 430

Rendering 439

Dealing with Global Lighting 449
Animation 452

Chapter 11 Artificial Intelligence 461

1.1
11.2
11.3
11.4
11.5
11.6
1.7

Intelligence and Machines 462
Perception 467

Reasoning 473

Additional Areas of Research 484
Artificial Neural Networks 489
Robotics 497

Considering the Consequences 500

Chapter 12 Theory of Computation 509

12.1
12.2
12.3
12.4
12.5
*12.6

Functions and Their Computation 510
Turing Machines 512

Universal Programming Languages 516
A Noncomputable Function 522
Complexity of Problems 527
Public-Key Cryptography 536

Appendixes 545

Index 597

A
B

C
D
E
F

ASCIT 547
Circuits to Manipulate Two's Complement
Representations 548
A Simple Machine Language 551
High-Level Programming Languages 553
The Equivalence of Iterative and Recursive Structures 555
Answers to Questions & Exercises 557

CHAPTER

0.1 The Role of Algorithms 0.3 The Science 0.5 An Outline of
. of Algorithms Our Study
0.2 The History

of Computing 0.4 Abstraction 0.6 Social Repercussions

Chapter O Introduction

Computer science is the discipline that seeks to build a scientific foundation for
such topics as computer design, computer programming, information process-
ing, algorithmic solutions of problems, and the algorithmic process itself. It pro-
vides the underpinnings for today's computer applications as well as the
foundations for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a typi-
cal university computer science curriculum. We want to appreciate the full scope
and dynamics of the field. Thus, in addition to the topics themselves, we will be
interested in their historical development, the current state of research, and
prospects for the future. Our goal is to establish a functional understanding of
computer science—one that will support those who wish to pursue more special-
ized studies in the science as well as one that will enable those in other fields to
flourish in an increasingly technical society.

0.1 The Role of Algorithms

We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later in Chapter 5.) For example, there are
algorithms for cooking (called recipes), for finding your way through a strange
city (more commonly called directions), for operating washing machines (usu-
ally displayed on the inside of the washer’s lid or perhaps on the wall of a laun-
dromat), for playing music (expressed in the form of sheet music), and for
performing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is com-
patible with the machine. A representation of an algorithm is called a program.
For the convenience of humans, computer programs are usually printed on
paper or displayed on computer screens. For the convenience of machines, pro-
grams are encoded in a manner compatible with the technology of the machine.
The process of developing a program, encoding it in machine-compatible form,
and inserting it into a machine is called programming. Programs, and the algo-
rithms they represent, are collectively referred to as software, in contrast to the
machinery itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the

' search for algorithms was a significant activity of mathematicians long before
the development of today's computers. The goal was to find a single set of direc-
tions that described how all problems of a particular type could be solved. One of
the best known examples of this early research is the long division algorithm for
finding the quotient of two multiple-digit numbers. Another example is the
Euclidean algorithm, discovered by the ancient Greek mathematician Euclid, for
finding the greatest common divisor of two positive integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance of
that task no longer requires an understanding of the principles on which the
algorithm is based. Instead, the performance of the task is reduced to the process
of merely following directions. (We can follow the long division algorithm to find
a quotient or the Euclidean algorithm to find a greatest common divisor without
understanding why the algorithm works.) In a sense, the intelligence required to
solve the problem at hand is encoded in the algorithm.

0.1 The Role of Algorithms

Figure 0.1 An algorithm for a magic trick

Effect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

Step 1. From a normal deck of cards, select ten red cards and ten black cards. Desl these cards
face up in two piles on the table according to color.

Step 2. Announce that you have selected some red cards and some black cards.

Step 3. Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Step 4. Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Step 5. Immediately after returning the bilack cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughy mixing the cards.

Step 6. As long as there are face-down cards on the table, repeatedly
execute the following steps: ’

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
the remaining cards to prove your claim.

Figure 0.2 The Euclidean algorithm for finding the greatest common divisor of two
positive integers

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:
Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.

Step 2. Divide M by N, and call the remainder R.

Step 3. If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2;
otherwise, the greatest common divisor is the value currently assigned to N.

Chapter 0 Introduction

It is through this ability to capture and convey intelligence (or at least intel-
ligent behavior) by means of algorithms that we are able to build machines that
perform useful tasks. Consequently, the level of intelligence displayed by
machines is limited by the intelligence that can be conveyed through algorithms.
We can construct a machine to perform a task only if an algorithm exists for per-
forming that task. In turn, if no algorithm exists for solving a problem, then the
solution of that problem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities solidified as a subject
in mathematics in the 1930s with the publication of Kurt Gédel’s incompleteness
theorem. This theorem essentially states that in any mathematical theory
encompassing our traditional arithmetic system, there are statements whose
truth or falseness cannot be established by algorithmic means. In short, any
complete study of our arithmetic system lies beyond the capabilities of algorith-
mic activities.

This realization shook the foundations of mathematics, and the study of algo-
rithmic capabilities that ensued was the beginning of the field known today as
computer science. Indeed, it is the study of algorithms that forms the core of
computer science.

0.2 The History of Computing

Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it most likely had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine is
quite simple, consisting of beads strung on rods that are in turn mounted in a
rectangular frame (Figure 0.3). As the beads are moved back and forth on the
rods, their positions represent stored values. It is in the positions of the beads
that this “computer” represents and stores data. For control of an algorithm’s exe-
cution, the machine relies on the human operator. Thus the abacus alone is
merely a data storage system; it must be combined with a human to create a
complete computational machine.)

In the time period after the Middle Ages and before the Modern Era the quest
for more sophisticated computing machines was seeded. A few inventors began
to experiment with the technology of gears. Among these were Blaise Pascal
(1623-1662) of France, Gottfried Wilhelm Leibniz (1646-1716) of Germany, and
Charles Babbage (1792-1871) of England. These machines represented data
through gear positioning, with data being input mechanically by establishing ini-
tial gear positions. Output from Pascal's and Leibniz's machines was achieved by
observing the final gear positions. Babbage, on the other hand, envisioned
machines that would print results of computations on paper so that the possibil-
ity of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of flexibility
in these machines. Pascal's machine was built to perform only addition.
Consequently, the appropriate sequence of steps was embedded into the structure
of the machine itself. In a similar manner, Leibniz's machine had its algorithms
firmly embedded in its architecture, although it offered a variety of arithmetic
operations from which the operator could select. Babbage’s Difference Engine (of
which only a demonstration model was constructed) could be modified to perform
a variety of calculations, but his Analytical Engine (the construction for which he

0.2 The History of Computing

Figure 0.3 An abacus (photography by Wayne Chandler)

never received funding) was designed to read instructions in the form of holes in
paper cards. Thus Babbage’s Analytical Engine was programmable. In fact,
Augusta Ada Byron (Ada Lovelace), who published a paper in which she demon-
strated how Babbage's Analytical Engine could be programmed to perform various
computations, is often identified today as the world's first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752-1834), who, in
1801, had developed a weaving loom in which the steps to be performed during
the weaving process were determined by patterns of holes in large thick cards
made of wood (or cardboard). In this manner, the algorithm followed by the loom
could be changed easily to produce different woven designs. Another beneficiary
of Jacquard’s idea was Herman Hollerith (1860-1929), who applied the concept of
representing information as holes in paper cards to speed up the tabulation
process in the 1890 U.S. census. (It was this work by Hollerith that led to the cre-
ation of IBM.) Such cards ultimately came to be known as punched cards and sur-
vived as a popular means of communicating with computers well into the 1970s.
Indeed, the technique lives on today, as witnessed by the voting issues raised in
the 2000 U.S. presidential election.

The technology of the time was unable to produce the complex gear-driven
machines of Pascal, Leibniz, and Babbage in a financially feasible manner. But
with the advances in electronics in the early 1900s, this barrier was overcome.
Examples of this progress include the electromechanical machine of George
Stibitz, completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944

