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INFINITE SERIES

1. INDETERMINATE FORMS

If f(x) and F(x) both approach 0 as x tends to a value g, the quotient

Ax)
F(x)

may approach a limit, may become infinite, or may fail 10 have any limit. We saw
in the definition of derivative that it is the evaluation of just such expressions that
leads to the usual differentiation formulas. We are aware that the expression

fa) O

F(a) 0
is in itself a meaningless one, and we use the term indeterminate form for the
ratio 0/0.

If f(x) and F(x) both tend to infinity as x tends to g, the ratio f(x)/F(x) may
or may not tend to a limit. We use the same term, indeterminate form, for the
expression oofee, obtained by direct substitution of x = a into the guotient
fx)/F(x).

We recall the Theorem of the Mean, which we established (Chapter 6, p.
143).

Theorem 1 (Theorem of the Mean). Suppose that f is continuous for
a=x=5h

and that f'(x) exists for each x between a and b. Then there is an xq between a and b
(that is, @ < xp < b) such that

fb) — flay _
T2~ [xo)

Remark. Rolle’s Theorem (p. 141) is the special case f(a) = f(b) = 0. -

The evaluation of indeterminate forms requires an extension of the Theorem
of the Mean which we now prove.



sotemn 2 (Generalized Theorem of the Mean). Suppose that f and F are con-
anuon . for a =x = b, and f(x) and F(x) exist for a < x < b with Fi(x) # 0
there. Then F(b) — F(a) # 0 and there is a number £ with

a<£<h
such that . .
fbr  Fe s ,
Fb) - Fla;  +g) (1)

Proof. The fact that F(b) — F(a) # 0 is obtained by applying the Theorem of the
(D Mean (Theorem 1) to F. For then, F(b) — F(a) = F(x;}{b — a) for some x; such
that a < xp < b. By hyoothesis, the right side is different from zero.
For the proof of the main part of the theorem, we define the function ¢(x) by
the formuia

#(x) = f(x) - fla) - %g;:-—fp(&))[lf(x) — F(a}).
We compute ${a), $(b), and '(x), getting
8@ = @) - fta) - L2=LEL[F(a) - Fia) = 0,
80) = 1) - fia) - L D=L 1E ) - £ - o,
$'(x) = Fx) - H F(x).

Applying the Theorem of the Mean (i.e., in the special form of Rolle’s Theorem)
to ¢(x) in the interval {q, b], we find

o)~ @) _ o o fB) )
e = 0= O =1 - g

for some £ between a and b. Dividing by F'(£), we obtain formula (1). -

F{§)

The next theorem, known as ’Hépital’s Rule, is useful in the evaluation of
(2 indeterminate forms.

Theorem 3 (’Hopital’s Rule). Suppose that

. _ . _ . fix) -
)lci_rgf(x) = {, llrl_l.l':. F(x) = 0, and 112"1, Fix) L,

and that the hypotheses of Theorem 2 hold in some deleted interval®* about a. Then

* Let I be an interval which has a as an interior point. The inter.zl 7 with @ removed from it is called
a deleted interval about a.



Proof. For some h we apply Théorem 2 in the interval @ < x < g + h. Then
fla+h)—fla) _ Ffla+h _ F&
Fla+ h) - F(a) Fla+h) F(§
where we have taken f(a) = F(a) = 0. As h tends to 0, £ tends to a, and so

_fath) L F@)
el L

A similar proof is valid for x in the interval @ — h < x < a.

a<i<a+h,

L.

Example 1. Evaluate

ﬁmx"~212—2x——3
x—+3 xz-—g '

Solution. We set f(x) = x> — 2x% — 2x — 3 and F(x) = x* — 9. We see at once

that f(3) = 0 and F(3) = 0, and we have an indeterminate form. We calculate
f(x) =3x*-4x -2, F(x)=2x

By Theorem 3 (I’'Hpital’s Rule):

. f® L fl®)_39)-43)-2 13
:isl—«lg Flx) 11—13 F(x) 2(3) 6" <

Remarks. It is essential that f(x) and F(x) both tend to zero as x tends to a
before applying I'Hépital’s Rule. If either or both functions tend to finite
limits # 0, or if one tends to zero and the other does not, then the limit of the
quotient is found by the method of direct substitution as given in Chapter 4.

It may happen that f’(x)/F'(x) is an indeterminate form as x — a. Then
’Hopital’s Rule may be applied again, and the limit f"(x)/F"(x) may exist as x
tends to a. In fact, for some problems I"Hopital’s Rule may be required a number
of times before the limit is actually determined. Example 3 beiow exhibits this
point.

Example 2, Evaluate

[ P

X —-a
Hm —— -3 .
x—»a xq — a‘i’ a 0

Soiuiion. We set f(x) = xP — a®, F(x) = x% ~ a% Then f(a) = 0, F(a) = 0. We
compute f'(x) = px*~*, F'(x) = gqx*"'. Therefore

VY CR
MR - N Ey T I

=2 at %
q

Example 3. Evaluate

)

[¥y)

o

Iz



Solution. We set f(x) = x —sin x, F(x) = x*. Since f(0) = 0, F(0) = 0, we
apply 'Hopital’s Rule and get

But we note that f(0) = 0, F'(0) = 0, and so we apply 'Hopital's Rule again:

F(x) = sin x, F'(x) = 6x.
Therefore ) ®
. f(xy . fix
) A Gy

Again we have an indeterminate form: f(0) = 0, F'(0) = 0. We continue, to
obtain f"(x) = cos x, F"{x) = 6. Now we find that.

im 1) _ o ) _cos0 L
MFe B Fm - 6 6 <
L'Hépital’s Rule can be extended to the case where both f(x) — = and
@F (x) = = as x — a. The proof of the next theorem, which we omit, is analogous
to the proof of Theorem 3.

Theorem 4 (PHopital’s Rule). Suppose that
fixy _

lim f(x) = «,  lim F(x} =, and lﬂ% L.

Then

Remark. Theorems 3 and 4 hold for one-sided limits as well as for ordinary
limits. In many problems a one-sided limit is required even though this statement
is not made explicitly. The next example illustrates such a situation.

Example 4. Evaluate .
) Inx
x—oln (2e* — 2Y
Solution. First note that x must tend to zero through positive values since
B otherwise the logarithm function is not defined. We set
(x}=1nx, F(x) = In(2¢* - 2).
Then f(x) - ~= and F(x) - —= as x — 0*. Therefore

o fx) x . e -1
R F(x) . efe* —1) o S
= lim‘..l._:a.e__:
=) b 4



We still have an indeterminate form, and we take derivatives again. We obtain

Inx €
i ———— = lim
R nGe -3 A%

= 1. -

Remark. Theorems 3 and 4 are valid when a = +w or —, That is, if we have an
indeterminate expression for f(e)/F{=}, then

and a similar statement holds when x —» —c. The next example exhibits this type
of indeterminate form.

Example 5. Evaluate

lim S—f

K00 e

Solution lim 8_: = lim _§; 0. P

X—rtm @ E—a-boo @

Remarks. Indeterminate forms of the type 0 - @ or @ — w can often be evaluated
by transforming the expression into a quotient of the form 0/0 or «/x. Limits
involving exponential expressions may often be evaluated by taking logarithms.
Of course, algebraic or trigonometric reductions may be made at any step. The
next examples illustrate the procedure.

Example 6. Evaluatc
li:11‘17'2 (sec x — tan x).

Solution. We employ trigonometric reduction to change © — ® into a standard
form. We have
. . —sinx ., —COs X
hm (secx - tanx) = lim 1—-——= lim - ={. <
i w2 COS X x=—u/2 =S1N X

Example 7. Evaluate
li_lg 1+ x)'~
Solution. We have 1%, which is indeterminate. Set y = (1 + x)"* and take
logarithms. Then
In(l+ x)
E—

Iny =In(l + x)!/* =
By I'Hdpital’s Rule,

+
i n+x) L 1
x—0 X —01]1 4+ x

= 1.

Therefore, lim;_., In y = 1, and we conclude that

. — . 1;‘: -
llf.tloy—lﬁln(1+x) e. -

5



PROBLEMS
@ In each of Problems 1 through 42, find the limit.

1.

1i.

13.

15.

17.

19.

21.

23.

25.

27. lim

29.

31

33,

3s.

37.

39.

. 2P+ 5x+2
;—-—z_——xz_——z_—

3
x"—3x+2
Lim
=g’ —x*-x+1

L2 -x*+3x 41

e 3x? 257 - x — 1

2 -3x+1
s—sa2xt = x* 4+ 2
. tan 3x
lim —

—0 sin x
h_mc”‘-2x--1
=0 1 —-cosx

. Imx
lim

=0 g

. In{l + 2x)
lim ———
x—+0 3x

3! —_ x
i 2

=) X

2

. 1 —sinx
tim ~—m—
w2  COS X
Insin x
m
E-rwf2 l — SN X
k]
I
lim —

=t e’

. sinx
lim ~—

Rwtm
X — arctan x

0 X —sinx
lim x cot x
x—w}

arctan x

Hm

X—bbm X

. 1
lim (c«c:ot2 x = —5)
=i} x

lim «**

x—+

. 2
lim x*”

A=}

lim x{”!nl.)

x—el)

2. lim

10.

12

14.

16,

18.

L. xX—-xt-x-2

2 X -8
x*—3x*-4
=2 x> + 2x° — 4x ~ 8
. X —8x*+2x+ 1
axt —x?42x -3
tim *-2x* -1
e 2% — 3x2+ 3

fim sin Tx

PRl X

. 831,_1
lim ———
=+0] — cos X

1
lim —=, h>0

s+ X
3w
x
lim ¥or

x—0 J;
V2x -2

lim
x—f)

20. lim

22,

24.

26.

28.

30.

32,

34,

36.

38.

40.

=2ln{x — 1)
Cos X
im ——
w2 831N° X

tan x

lim
2 Incos x
sin x

x—wf2 ¥
lim vVxin x
x—0

Iim (x — n/2)secx

x—ewid

(e - 5)

lim |csc @ — —
8

lim x*
z—ai}

) k\*
im (1 + —)
X = i x
}i_r_!"t] {cot x}"

P

X
im —, p>0

X —# 400 £



41. lim (sin x)*"* 42, im 22 his a real number
=0 ) )

43, a) Prove that
lim x’e'* = +o,
x -+t

b} Prove that for every positive integer n,
lim x"e' = 4o,
-

¢) Find the result if in part (b) we have x — 07 instead of x — 0V'.

44, By direct methods, find the value of lim,,..(xsinx)/(x* + 1). What hsppens
if FHopital's Rule is used? Explain.
45. Prove the following form of "Hépital's Rule:

i
xl_iglhf(x) =0, ,]—i.'l‘w glx)=0  and xl_’.IquT(('E)} =1
then
Hm [x) = J,
o g(x)

[Hint: Consider lim, o f(1/x)/g(1ix).]
46. Suppose that
lim f(x) = lim f(x) = lim f(x} = lim f*(x} = 0,

and that
_ Xf7(x)
M 2

Find lim, ., x*f(x)/f(x).
47. 1f the second derivative f* of a function f exists at a value x,, show that

. 0 h; - 2 - h
i Pt 2= H e = iy

48. Let P(x) and Q(x) be polynomials of degree m and n, respectively. Analyze

lim &)
=+ (J(x)

accordingasm >norm=norm<n

2., CONVERGENT AND DIVERGENT SERIES

In Chapter 4, Section 10, the idea of a sequence of numbers was introduced. We
begin by repeating some of the material presented there. The numbers

bl, b2; b3’ ey blZa bl:b bld

form a sequence of fourteen numbers. Since this set contains both a first and last
element, the sequence is termed finite. In all other circumstances it is called
infinite. The subscripts not only identify the location of each element but also
serve to associate a positive integer with each member of the sequence. In other (3)

7



words, a sequence is a function with domain a portion (or all) of the positive
integers and with range in the collection of real numbers. If we use J to denote
the collection of positive integers and R the set of real numbers, then a sequence
is a function f:J — R,

If the domain is an infinite collection of positive integers, ¢.g., all positive
integers, we write

[ U7 7 VOO < NN

the final dots indicating the never-ending character of the sequence. Simple
examples of infinite sequences are

111 1
1’2’5!2" 1;!"‘ (1)
123 n
3 T @
2,4,6,...,2n,.... 3}
Definition. Given the infinite sequence
a1,a2,'°‘9anp'--j

we say that this sequence has the limit c if, for each e > 0, there is a positive
integer N (the size of N depending on €) such that

la, — ¢] < ¢ feralln > N.
We also write a, — ¢ as n — o and, equivalently,
Jim a, = ¢
Tl

In the sequence (1) above, we have

a=1, a -1 =1
1 ' 2 2: LRI a,,—'n,...
and lim,.» 4, = 0. The sequence (2) has the form
ool o2 __n
1 29 2 39 ey an_n+1,

and lim, ... a, = 1. The sequence (3} does not tend to a limit.
An expression such as

Uy + U+ by +--- + 24
is called a finite series. The som of such a series is obtained by adding the 24
terms. We now extend the notion of a finite series by considering an expression of
the form

u1+u2+ u3+-'-+u"+'-°

8



which is nonterminating and which we call an infinite series.* Qur first task is to
give 2 meaning, if possible, to such an infinite succession of additions. )

Definition. Given the infinite series u; + Uz + Uz + ++ + U4, + - - -, the quantity
Sk = Uy + Uy + -+ + u, is called the kth partial sem of the series. That is,
51 = Uy, 53 = Wy + Uy, §3 = Uy + Uy + U,

etc. Each partial sum is obtained simply by a finite number of additions.

Definition. Given the series
Myt Up+ g+ b Uy - (4)
with the sequence of partial sums

51582, 53, -y Sy a - -

we define the sum of the series (4) to be
1:.“2, Sn {5)

whenever the limit exists.

Using the ¥ notation for sum, we can also write

L o = lim o

n=1

If the limit {5} does not exist, then the sum (4) is not defined.

Definitions. If the limit (5) exists, the series 3.1 u, is said to converge to that
limit; otherwise the series is said to diverge.

Remark. The expression Y, ., u, is a shorthand notation for the formal series
expression (4). However, the symbol Y ., u, is also used as a synonym for the
numerical vatue of the series when it converges. There will be no difficulty in
recognizing which meaning we are employing in any particular case. We could

obtain more precision by using the (more cumbersome) notation described in the
footnote below.

The sequence of terms
a, ar,ar’,ar’,...,ar" ! ar", . ..

forms a geometric progression. Each term (except the first) is obtained by multipki-
cation of the preceding term by r, the common ratio. The partial sums of the {0
geometric series

a+ar+arf+ar+- - +art+ .-

* The definition given here is informal. A more formal definition is as follows: An infimite series is an
ordered pair ({u,}. {s.]} of infinite sequences in which s, = u; + -+ - + w, for each k. The infinite
series ({un}, {s,}) isdenoted by u, + up + -+« + w, + -+ - or ¥, u,. When no confusion can arise we
also denote by Y, 4, the limit of the sequence {5,} when it exists.

9



$; = a,
5> = a + ar,
33=a+ar+ar2,

a+ar+ ar* + ar’,

L7
and, in general,

s,=a(l+r+r 447"

For example, with ¢ = 2 and r = 3,

1 1 1)
w=2l1 -+ )
5 ( 274 21

The identity
Q+r+rF+--+""Hl-0=1-r"
which may be verified by straightiorward multiplication, leads to the formula

1-r"
1-r

5. = a

for the nth partizl sum. The example a = 2, r = 3 gives

1-2"" 1
=2 =4 —
$ % 3" 2
In general, we may write
I-r"  a a

alwr_llr_-l—rr' r* 1. ©)

Sp =
The next theorem ts a direct consequence of formula (6).

Theorem 5. A geometric series
atar+arf+---+ar"+.-

converges if —1 < r <1 and diverges if |r| = 1. In the convergent case we have
T‘ L o r {7)

Proof. From (6) we see that r" — 0 if |f] < 1, yielding (7); also, r" — = if
[r{ > 1. For r = 1, the partial sum s, is na, and s, does not tend to a limit as
n — o If r = —1, the partial sum s, is a if n is odd and 0 if n is even. <

The next theorem is useful in that it exhibits a limitation on the behavior of
{1 the terms of a convergent series.

10



Theorem 8. If the series

e =tttz + -+, + - (8
k=1
converges, then
lim u, = 0.
n—+om
Proof Writing
5n = Uy + Myt - +ouy,

s,,_,—‘=u14-u2+---+u,,_1,

we have, by subtraction, u, = s, ~ s..,. Letting ¢ denote the sum of the series,
we see that 5, — c as h — ®; also, 5,_; — ¢ as n — = Therefore

lim u, = lim (sx = sp-1) = lim s, — lim s,y = ¢~ ¢ = 0. «
Remark. The converse of T:corem 6 is not necessarily true. Later we shall show

(by example) that it is possible both for u, to tend to 0 and for the series to
diverge.

The following corollary, a restatement of Theorem 6. is useful in establishing
the divergence of infinite series.

Corollary. If u, does not tend to zero as n — ®_ then the series Yom1 Uy i
divergent.

Convergent series may be added, subtracted, and muitiplied by constants, as
the next theorem shows.

Theorem 7. If 3., u, and T5_, v, both converge and c is any number, then the
series

() L (00, Y, (in = )

n=1 n=F LE

all converge, and

i (cu,) = ¢ i Uy,

=1 ne=]
Z (un + vn) = Z U, = Z V-
n=1 n=1 =1
Proc < For each n. we have the following equalities for the partial sums:

I; (cu,) = cz‘l W;

E{u:iv,)&iu,iiv;.
=1 =1

i



