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Preface

The word, elementary and the term quantum chemistry mean different things to different
people. This text is elementary in the sense that an attempt is made to present certain selected
topics of quantum theory on the lowest possible level at which triviality and misrepresenta-
tion can be avoided more often than not. The decision marking such a level depends, of
course, upon the judgment of the author and cannot be expected to satisfy a diversity of
critics. As to quantum chemistry, the coverage is obviously limited in scope and sometimes
even in depth. If this text may be said to have a single aim, that aim is to provide a guide to
the computer-age quantum theory of atomic and molecular electronic structure. By com-
puter age is meant (with some exceptions) the post-1950 activity in quantum chemistry.

To the average chemistry student, the area known as quantum chemistry often appears to
consist of an almost inpenetrable jungle of partial differential equations, matrix theory,
operator algebra, and other esoteric mathematics. One of the purposes of this text is to
blaze a rough trail into the interior of this apparent jungle. It is the task of the reader to go
back and broaden the path, smooth out the bumps and corners, strengthen the bridges, and
(above all) build new avenues. This can be accomplished only by studying more mathe-
matics and physics and, especially, by intimate study of the literature of quantum chemistry.



In at least some respects, quantum mechanics is mathematically easier than, say, thermo-
dynamies. Yet it is a common experience that exposure to a first course in quantum me-
chanics leaves the average student with a far weaker grasp of a useful tool than exposure to
a first course in thermodynamics. This regrettable circumstance has at least two explanations:
first, the subject matter of thermodynamics is closer to the previous training of & chemist than
the subject matter of quantum mechanics and, second, thermodynamics can be taught rela-
tively thoroughly and rigorously on the basis of the minimum mathematics required for an
ACS-accredited B.S. degree in chemistry. In teaching an elementary course in quantum
chemistry one has two extreme alternatives to consider. The first is to build upon the actual
mathematical background possessed by most chemistry students and thereby run the very
real risk of gross oversimplification. Certainly this approach has virtually no chance of
exposing the essential structure of quantum chemistry, since this structure has been delib-
erately suppressed. Such an approach leads to physical insights which are too often-trivial
or downright false. Even more serious, such an approach imparts a vanishingly small
ability to analyze even simple problems of a quantum-theoretical nature. Furthermore,
the student is not given a useful foundation for improving his level of competence by self-
study: he will likely find the research literature incomprehensible (and distasteful). The
second extreme is to teach quantum chemistry in an intellectually honest manner along with
the concomitant mathematical background. This has several obvious disadvantages.
One certainly cannot teach very much rigorous mathematics and yet have time to cover
much rigorous quantum chemistry (including extensive applications!). Furthermore, the
student is forced to cope with two extremely difficult problems at the same time, viz., he is
forced to struggle with the formal mathematical structure and the conceptual structure of
quantum mechanics simultaneously. Either problem alone is battle enough for most people!
The present text represent’s one man’s attempt to follow some middle trail. If the reader
obtains the impression that the formal mathematical structure generally tends to overshadow
the conceptual structure, he may very well be correct. The author feels that the converse
would place the student at an even greater disadvantage when he attempts to deepen his
knowledge of quantum chemistry by self-study, e.g., by studying the research literature.
The author does not make the claim that mastery of this text will transform the workbench
chemist into a theoretician capable of carrying out and appreciating high-level analyses and
calculations. Instead, the aim is to impart a modicum of proficiency in enough fundamental
areas, so that the dedicated student is likely to feel competent to continue his own education
in quantund chemistry should the need or desire exist.

The writer has taught the material in this text to both beginning and advanced graduate
students representing all areas of chemistry. There appears to be no reason why the material
should not be suitable for advanced undergraduate classes as well. It is assumed that the
student has had mathematics through the calculus and at least one year of undergraduate
physics taught on the basis of the calculus. A background in differential equations, linear
algebra, and modern (or atomic) physics is very helpful but not absolutely essential at the
outset. Mathematical and physical material not necessarily assumed as part of the students’
background, e.g., vectors, matrices, electromagnetic theory, and some restricted aspects of
classical mechanics, is incorporated into the text, usually in a condensed fashion. The device
of introducing much of the strictly mathematical material with or before those topics for
which such a background is seriously needed for the first time (as opposed to collecting
such material in appendixes) appears to the author as the most natural and effective approach
for those having little mathematical background. Admittedly, this device imparts neither
sophistication nor depth, but at least it does permit the student to continue without acquiring



the hopeless feeling that first he needs to master an entire specialized text or take a full
course in some specialized auxiliary area. Those who have a sophisticated knowledge of such
topics may use the material for a quick review or may ignore it altogether.

Throughout the course the writer has found it both desirable and convenient to refer the
student to several auxiliary texts in quantum chemistry and related areas. Foremost of these
are Pauling and Wilson, “Introduction to Quantum Mechanics,” Eyring, Walter, and
Kimball, “Quantum Chemistry,” Slater, “Quantum Theory of Atomic Structure,” vols. 1
and 2, and “Quantum Theory of Molecules and Solids,” vol. 1, Herzberg’s four volumes on
atomic and molecular spectroscopy, and Bethe and Salpeter, “The Quantum Mechanics of
One- and Two-Electron Atoms.” Many areas which the present text deals with rather
summarily are amplified in the above texts and reference works.

It would be impossible to acknowledge adequately all the sources of the material appearing
in this text: the numerous books, journal publications, and technical reports—and, perhaps
most important—teachers I have studied under. Nevertheless, certain persons have in-
fluenced and inspired me to a special degree and deserve at least my explicit thanks: Pro-
fessor Hans H. Jaffé (University of Cincinnati), my first teacher in quantum chemistry;
Professor Per-Olov Lowdin (Uppsala University and University of Florida), Professor Ruben
Pauncz (Technion, Israel Institute of Technology), and Professor J. de Heer (University of
Colorado), whose lectures I attended at the University of Florida Institute in Quantum
Chemistry; and Professor C. A. Coulson (Oxford University), who was my gracious host
during a pleasant year’s stay at the Mathematical Institute. Especial thanks are due to my
wife, Anita Pilar, who consistently encouraged and counseled me in my efforts, often turned
despair into renewed hope, and more than once rescued portions of the manuscript from
certain members of the next generation.
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chapter 1
Origins of the Quantum Theory

1-1 Pre-1900 Physics. Toward the close of the nineteenth century it appeared as
if the penultimate chapter in physics had been written. There were indications that
the final chapter would be little more than the working out of details of fundamental
theories and their applications to problems in physics, chemistry, engineering, and,
hopefully, in all fields of human endeavor. In fact, a well-known physicist was led to
make the remark that all that remained to be done in physics was the calculation of
the next decimal point. Nevertheless, for those who could read them, the signs of a
coming cataclysm in classical ideas were already manifest. In 1887 Hertz quite ac-
cidentally discovered the photoelectric effect. Even earlier, the phenomenon of
blackbody radiation had been well known and quite well studied both by experi-
mentalists and by theoreticians. It was true that neither of these phenomena could
be successfully explained by the most powerful methods of nineteenth-century
theoretical physics, but such failures were commonly regarded as no more than
temporary obstructions to the eventual, complefe triumph of the basic structure of
physical theory as it then existed. Only the most progressive and daring of scientists
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could have predicted that physics was on the brink of a new era, an era marked by
the abandonment of some long-cherished concepts of scientist, philosopher, and
layman.

The twentieth century opened on a scientific world in which all physies appeared
to be encompassed within the mechanics of Newton and the electromagnetic theory
of Maxwell. The labors of many mathematicians and physicists had extended
newtonian mechanics to an elegance that appeared to lack little, if anything, in
perfection. By the use of Newton’s laws and certain of their generalizations, one
could carry out very precise calculations concerning the motions of astronomical
bodies and the behavior of machines. Indeed, by purely theoretical calculations,
Leverrier and Adams in 1846 used the known perturbations of the motion of Uranus
to predict the existence of the then unknown planet Neptune. Young’s double-slit
diffraction experiment and Fresnel’s interference experiment appeared to furnish
conclusive proofs of the wave nature of light and thereby to demolish the rival
corpuscular theory of Newton. Maxwell, motivated largely by Faraday’s brilliant
experiments, developed a general mathematical theory of electromagnetic radiation
which encompassed the discoveries of Coulomb, Ampere, Gauss, Volta, and Faraday
and united them with the laws of optics. The atomic theory of Dalton had been
fully vindicated, and even though atoms were known to consist of charged particles,
these were believed to occupy the atom in a dense, compact fashion and to obey
ordinary laws of physics. Curiously enough (especially with the advantage of
hindsight), although matter was known to be discontinuous, energy was regarded as
continuous. The laws of chemical binding were as yet undiscovered, but scientists
such as Gibbs, van’t Hoff, Arrhenius, and Ostwald had just begun to enjoy a modi-
cum of success in the interpretation and formulation of certain chemical facts in
terms of mathematical physics. Many felt that this approach would soon lay bare
the fundamentals of chemistry, which would undoubtedly have their bases in
newtonian mechanics and maxwellian electrodynamies, with, perhaps, a tempering
of Maxwell-Boltzmann statistics. Even organic chemists of that time were often
thoroughly grounded jn mathematics and physics, perhaps in the expectation that
they, too, would find order in chaos. Certainly there appeared little reason why the
prevailing structure of physics would not be adequate for the deseription of nature
on the atomic and subatomic scale of size. After all, an electron was thought to be a
particle—even if ever so tiny—and therefore should be expected to obey Newton’s
and Maxwell’s laws. Small wonder, then, that the climax of physical theory ap-
peared to be just over the horizon. The few remaining discrepancies between theory
and fact hardly seemed capable, at first sight, of spawning the upheaval which pro-
duced the theories of relativity and quanta.

In the remainder of this chapter we shall discuss some of the more important
experiments and ideas which ultimately led to the quantum theory of today. We
begin with the events leading up to Planck’s reluctantly tendered hypothesis and
eventually reach the speculations of de Broglie at the dawn of modern wave me-
chanics. Hardly a generation is spanned by this story.
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1-2 The Spectral Shape of Blackbody Radiation.' Before the end of the
nineteenth century, it was a well-known fact that any heated solid was capable of -
emitting radiation and that this radiation consisted of a spread of different wave-
lengths at different intensities. Similarly, it had been observed that such bodies were
also capable of absorbing radiation and that radiations of certain wavelengths were
absorbed more strongly than others. One of the tasks of the physicist was to account
for the details of such absorption and emission.

The theoretical study of these phenomena is most conveniently approached by
means of a model known as the blackbody. In physics and chemistry, as well as in
other closely related sciences, actual systems of interest are often far too complex to
study directly, and so one replaces them with a hypothetical model which is con-
siderably simpler to handle and whose behavior approaches that of the actual system
under some set of well-defined limiting conditions. Such a model should be rela-
tively easy to visualize and should lend itself to rigorous mathematical interpreta-
tions which, at worst, are at least first approximations to the behavior of the actual
system which the model represents. Such a model, if successful, may later be re-
fined, leading ultimately to rather sophisticated understanding of the actual complex
system. For example, the physical chemist’s concept of the ideal gas concerns an
imaginary model which is not, in general, a good approximation to the behavior of
real gases, but under conditions of high temperatures or low pressures (or both) all
real gases approach the behavior predicted by Boyle’s and Charles’ laws.

A blackbody is much the same sort of an idealization of a substance which can
absorb and emit radiant energy. It is defined as a body whose surface absorbs
100 percent of all the radiation incident upon it; i.e., the absorptivity is unity for all
wavelengths. No real substance behaves in this idealized fashion (as handbook
tables of absorptivities of metals and other solids will testify). However, certain
substances such as lampblack and black velvet reflect but a small portion of incident
radiation and thus approach the behavior of blackbodies.

For experimental purposes, an acceptable blackbody may be obtained by using a
cavity with a small hole in its side and whose walls are maintained at some tempera-
ture 7. Such an enclosure is often called a hoklraum or an isothermal enclosure. The
radiant energy enclosed in such a cavity is called blackbody radiation. The amount of
energy associated with each wavelength differs with the wavelength, and, further-
more, the distribution varies as the temperature of the walls changes. The black-
body problem in terms of this model is this: if the cavity is filled with radiation at &
given temperature T, what is the spectral distribution of the radiant energy? Alter-
natively: what is the specific heat of a vacuum?

In 1884 Boltzmann derived a theoretical relationship for the variation of the total
emissive power of a blackbody as a function of the absolute temperature. This rela-

' An unusually interesting historical account of this and following topics is given by E. U.
Condon, 60 Years of Quantum Physics, Phys. Today, October, 1962, p. 37. A more complete and
sophisticated discussion is given in Ref. 7. (Numbered references appear at the end of the chapter.)
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tionship, which arose from the consideration of a Carnot engine operated with radia-
tion as the working substance, is now known as the Stefan-Boltzmann law and is
given by

= gT* (1-1)

where &, the total emissive power at the absolute temperature 7', is the energy
emitted per unit area per unit time by any blackbody surface! and ¢ is a constant
(the Stefan-Boltzmann constant) having the value 0.56697 X 10—* erg sec™! em™2
deg. This equation may also be written in terms of the energy density (energy per
unit volume) as

p=all = — 1-2)

i

where a is known as Stefan’s constant and ¢ is the speed of light. Equation (1-1) isa
consequence of the second law of thermodynamics and therefore compatible with
that area of classical physics.2 It is of interest to note that there is a rather close
analogy between radiation in a hohlraum and an ideal gas in a flask. Whereas the
gas density is a function of volume and temperature, the radiation density is a func-
tion of temperature alone. Furthermore, the distribution of velocities in a gas is
analogous to the distribution of. frequencies in the radiation.

Unfortunately, the Stefan-Boltzmann law did not lead to an explanation of the
distribution of the radiation with respect to the wavelengths of the emitted radia-
tion; nor did the law provide any means of deducing the value of the Stefan-Boltz-
mann constant in a purely theoretical manner. According to the classical principle
of the equipartition of energy, the total energy of a hohlraum should be equal to fk7,
where k is the Boltzmann constant and f is the number of degrees of freedom. For,
say, a crystal of N atoms, f = 3N and is finite since N is finite. However, for an
“empty” cavity, one is talking not about the oscillation of material particles but
rather about the oscillation of the so-called ether, which is taken to bé a continuum.
Thus, f is infinite for a vacuum, and so the total energy must be infinite. This im-
plies that the cavity will absorb energy endlessly from the walls in an attempt to
reach thermal equilibrium. Thus, thermal energy would be endlessly converted to
radiation of smaller and smaller wavelengths, the so-called ultraviolet catastrophe.
All this, however, contradicts Stefan’s law, which states that the energy density
is finite. '

In Fig. 1-1 is shown the experimentally determined distribution of the radiation
density as a function of wavelength. The distribution is described by a curve which
passes through a maximum at some intermediate wavelength and drops off rapidly
at both higher and lower wavelengths. At lower temperatures the height and sharp-

t For actual bodies, i.e., nonblackbodies, the temperature enters in approximately as 7%,
? By classical physics we shall henceforth mean pre-1900 physics.
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ness of the maximum decreases, and its position shifts to a higher wavelength. By
the use of classical mechanics, Wien! was able to show that the position of the maxi-
mum obeyed the relationship

AmaxT = 0.290 cm deg approx (1-3)

"This relationship, called the Wien displacement law, was verified experimentally by
Lummer and Pringsheim. This law makes it possible to obtain correct blackbody
spectra at any given temperature T, provided a complete spectrum is known at some
particular temperature. Using some rather special assumptions concerning the
process of absorption and emission, Wien was able to derive the spectral-distribution
formula

8rkB

c3

p(r) dv =

e BTy dy (1-4)
where o(v) is defined by

o= [, ob)av (1-5)
and where 8 is an empirical constant. As shown in Fig. 1-1, the Wien equation fits
the experimental curve very well at low wavelengths. In general, the discrepancies

become noticeable only when »/7' is greater than about 101 sec™t deg.

1 Cf. Ref. 11 for a full discussion of the reasoning.



6  Elementary Quantum Chemistry

Rayleigh made the assumption, based on the classical principle of the equiparti-
tion of energy, that each possible vibration within the isothermal enclosure con-
tributed equally to the energy.! In this manner, he was led to the alternative
spectral-distribution formula

o dv = BrkT 2 dv (1-6)

cd

which did not contain any undetermined constant but which also was not generally
valid, agreement with experiment being limited to small values of »/7, that is, large
wavelengths. Unfortunately, the Rayleigh equation leads to the ultraviolet catas-
trophe, that is,

lim p(y) = lim pQA) = o a-n

Apparently, some unknown factor was responsible for decreasing the radiation
density as the wavelength decreased toward the ultraviolet.

If one lets * = »/T, both the Wien and Rayleigh formulas can be written in the
general form

o(6) dv = 2% Fl)o? dv (1-8)
where

kBe~ 8= Wien
F) = k Rayleigh (1-9)

The difference between Eqs. (1-4) and (1-6) is thus simply due to different guesses
at F(z).

In 1900, Planck obtained an empirical formula for the spectral distribution which
satisfied the entire spectrum. He simply found a function F(z) which .would reduce
to the Wien function for high values of z and to the Rayleigh function for low values
of z, or

F(z) = kB(ef> — 1) (1-10)

He then set himself the task of deriving the entire equation from some simple set of
assumptions. Using the thermodynamic requirement that the entropy and the
energy must be related by the relationship

dE
a8 = T (1-11)

where (by the second law of thermodynamics) 7' must be the same for all radiation
frequencies, Planck showed that at thermodynamic equilibrium between radiation

t See Ref. 10 and also J. Rice, Trans. Faraday Soc., 11, 1 (1915).
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and absorbers the average energy of an oscillator must be given by the Maxwell-
Boltzmann statistical relationship

E €ne kT
i= "2 = F(z) (1-12)

z e~ enIkT

nw(
where €, is the energy associated with the nth oscillator. According to classical
physics, the energy should vary continuously from zero to infinity, so that the sum-
mations in Eq. (1-12) may be replaced by integration. It was evident from the
experimental shape of the spectral-distribution curve that €, had to be such that as
the frequency became higher and higher, its contribution to the total energy density
became smaller and smaller. Planck! now abandoned the classical concept of the
continuity of energy in favor of an entirely novel and nonclassical supposition. He
assumed that a blackbody could be viewed as a collection of isotropic oscillators
capable of interacting with radiation but with the restriction that such oscillators
could exist only in certain allowed energy states and could radiate energy only in
certain exact integral multiples of a basic energy unit, i.e., a guantum, or bundle, of
energy. In order to introduce the desired effect of reducing the contributions of
higher frequencies to the total energy, it is necessary to set the oscillator energies €,
proportional to the frequency. Thus Planck postulated the now-famous relationship

€, = nhy n=2012... (1-13)

where & is a constant independent of the composition of the blackbody. It is not
hard to see that the Boltzmann factor exp (—e€,/kT) = exp (—nhv/kT) becomes
smaller as v increases. Thus, the probability of an oscillator emitting energy of a
given frequency drops off at very high frequencies, going through a maximum at
some lower frequency.

The use of the energy expression (1-13) led to

¢ = vF(x) = ho(eM*T — 1)1 (1-14)
This, in turn, led to the correct spectral-distribution law
o) dv = 8—;',—"(ewkr — )Wy (1-15)

in which Wien’s constant 8 turns out to be h/k. Integrating Eq. (1-15) over the
entire frequency range gives Stefan’s law

o™ S8xkt r 23
p= /0 p(v) dv = (-Ea—hT [0 —__—ldx)T‘ (1-16)

e’

in which the quantity in parentheses represents a theoretical expression for Stefan’s
constant a. The integral may be evaluated graphically to give the value of 6.494- - -.

1 M. Planck, Ann. Physik, 4, 553 (1901). A very good account of just how Planck probably
reasoned is given in Ref. 7,
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Using the experimental value of Stefan’s constant, one can then obtain an estimate
of the constant A.

The constant k, which has the dimensions of action, i.e., energy X time, is now
known as the guantum of action or as Planck’s constant. The smallness of this
quantity (about 6 X 10~% erg sec) compared to the gross energies usually measured
in macroscopic systems precluded any earlier suspicion that energy could be quan-
tized. We now know that A is a fundamental constant related to all dynamical
discontinuities in nature, especially evident on the atomic and subatomic scale.
Planck’s own feeling, which persisted for many years, was that the quantum hy-
pothesis itself could have no basic significance but rather was an artificiality which
would eventually be replaced with a more reasonable alternative.

One should note that Planck’s work did not suggest anything concerning the
nature of the electromagnetic radiation with which the material oscillators inter-
acted. In the following section we shall show how Einstein was led to extend
Planck’s hypothesis to the radiation itself, an extension which Planck regarded at
first as a feat of reckless abandon.

Exercises

I1-1. Verify Eq. (1-14). Hint: It is useful to note that (1 — e2)~! =1 +¢=* 4+ ¢ +--- and
that (e2 — 1)™! = ¢=* - e% 4 g3 -+ -,

1-2. Show that the constant in the Wien displacement law (1-3) is given approximately by he/5k.
Hint: Use the limiting form of Planck’s equation when v/7" is very large.

1-3 The Photoelectric Effect. In 1887 Hertz' set out to demonstrate the exis-
tence of electromagnetic waves in order to provide experimental support for Max-
well’s equations. During the course of these experiments (which were successful)
Hertz accidentally discovered the photoelectric effect. The discovery attracted
early attention, and soon the salient experimental facts emerged.

The photoelectric effect occurs most readily when light of a suitable frequency
(usually the visible or ultraviolet regions) illuminates the surface of an electro-
positive metal such as cesium or potassium. If the electropositive metal is made to
serve as a cathode (with a negative potential relative to a plate), there is a flow of
current from the cathode to the plate as long as the cathode is illuminated. In 1890
Stoletow?® was able to produce a continuous photocurrent by means of the arrange-
ment shown schematieally in Fig. 1-2. In 1889 Elster and Geitel® demonstrated that
the more electropositive the metal, the longer wavelength one could use to produce
the effect, the alkali metals responding quite well to visible light. In 1900, the
brilliant researches of Lenard* showed that the absorption of light by the metal is
followed (virtually instantaneously) by the emission of cathode rays (electrons)

1 H. Hertz, Ann. Physik, 31, 983 (1887). Cf. also P. Lenard, bid., 8, 149 (1902).
t A. G. Stoletow, J. Phys., 9, 486 (1890).

3J. Elster and H. Geitel, Ann. Physik, 38, 40 (1889).

4 P. Lenard, Ann. Physik, 2, 359 (1900).



