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CHAPTER 7 ELECTRIC FIELD
IN A VACUUM

7.1. Electric Charge, Coulomb’s Law

All bodies in nature are capable of becoming electrified, i e, acquiring an electric
charge, The presence of such a charge manifests itself jn that a charged body
interacts with other charged bodies, @ Two kinds of electric charges exist, They are
conventionally called positive and negative, Like charges repel each other, and unlike
charges attract each other,

An electric charge is an integral part of certain elementary particles*, The charge
of all elementary particles (if it is not absent) is identical in magnitude, It can be
called an elementary charge, We shall use the symbol ¢ to denote a positive
elementary charge,

The elementary particles include, in particular, the electron {carrying the
negative charge —¢), the proton {carrying the positive charge +¢), and the neutron
(cartying no charge), These particles are the bricks which the atoms and molecules
of any substance are built of,® therefore all bodies contain electric charges, The
particles carrying charges of different signs are usually present in a body in equal
numbers and are distributed over it with the same density,® The algebraic sum of
the charges in any elementary volume of the body equals zerc in this case, and each
such volume (as well as the body as a whole) will be neutral, If in some way or
other we create a surplus of particles of one sign in a body (and, correspondingly,
a shortage of particles of the opposite sign), the body will be charged, It is also
possible, without changing the total number of positive and negative particles, to
cause them to be redistribuled in a body so that one part of it has a surplus of
charges of one sign and the other part a surplus of charges of the opposite sign @
This can be done by bringing a charged body close to an uncharged metal one,

Since a charge ¢ is formed by a plurality of elementary charges, it is an inte-
gral multiple of e,

g=+ Ne, (7.1)

An elementary charge is so small, however, that macroscopic charges may be

*  Elementary particles are defined as such microparticles whose internal structure at the present
level of development of physics canunot be conceived as o combination of other particles,



considered to have continuously changing magnitudes,

If a physical guantity can take on only definite discrete values, it is said to be
guantized, The fact expressed by Eg,(7.1) signifies that an eleciric charge is guan-
tized, _

Electric charges can vanish and appear again, Two elementary charges of opposite
signs always appear or vanish simultaneously, however, For example, an eleciron
and a positron (a positive electron) meeting each other annihilate, i,e, transform

inio neutral gamma-photons, This is attended by vanishing of the charges -z and .

+¢, In the course of the process called the birth of a pair, a gamma-photon getting
into the field of an atomic nucleus transforms into a pair of particles-—an electron
and a positron, This process causes the charges —¢ and +¢& to appear,

Thus, the total charge of an electrically isolated system* cannot change, This
statement forms the law of elactric charge conservation,

The law obeyed by the force of interaction of point charges was established
experimentally in 1785 by the French physicist Charles A, de Coulomb (1736-1808),
A point charge is defined as a charged body whose dimensions may be disregarded
in comparison with the distances from this body to other bodies carrying an electric
charge, &

Using a torsion balance (Fig, 7,1), Coulomb measured the force of interaction
of two charged spheres depending on the magnitude of the charges on them and on
the distance between them, He proceeded from the fact that when a -charged metal
sphere was touched by an identical uncharged sphere, the charge would be distributed
equally between the twa spheres,

As a result of his experiments, Coulomb arrived at the conclusion that the force
of interaction between two stationary point charges is proportional to the magnitude
of each of them and inversely proportional to the squate of the
distance between them_ The direction of the force coincides with
the straight line connecting the charges,

Fn‘::' q’ R Y —--?f—_:a-Fn
’_‘L—r———
Fig, 7.2

Coulomb’ g Taw can be expressed by the formula

Fu:“"kq;-.?z?u- (7.2)

Fig, 7.1

% A system is referred to as electrically isolated if no charged particles

: can penetrate through the
surface copfining it,

1,
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Here  k=proportionality constant assumed to be positive,
g, and g,=magnitudes of the interacting charges,
r=distance between the charges,
P, =unit vector directed from the charge g, t0 g,, .
Fi,=force acting on the charpe ¢, (Fig, 7.2y the figure corresponds to the
case of like charges),
The force F,, differs from F,, in its sign,

Fai==k& q;.glfu- (7.3)

The magnitude of the interaction force, which is the same for both charges,
can be written in the form

Fup i (7.4)

Expetiments show that the force of interaction between iwo given charges does
not change if other charges are placed near them_, Assume that we have the charge

9, and, in addition, /¥ other charges g,, ¢,,-+-,9,, It can be seen from the above
that the resultant force F with which all the ¥ charges ¢, act on g, is

N
FEZIFMI’ (7.5)

where F_,, is the force with which the charge ¢, acts on g, in the absence of the
other [V ~- 1 charges,

All experimental facts available lead to the conclusion that Coulomd’s law holds
for distances from 10°'° m to at least several kilometres,® There are grounds to
presume that for distances smaller than 10716 m the law stops being correct @ For
very great distances, there are no experimental confirmations of Coulomb’s law, But

there are also no reasons to expect that this law stops being obeyed with very great
distances between charges, &

The SI unit of charge is the coulomb (C), Careful measurements showed that
an elementary charge is
e=1,60x10"1 C, (7.6)
In SI units we can measure 9,,q,,7, and F in Eq (7,4) in ways that do not
depend on Coulomb’s law, Numbers with units can be assigned to them_, There is
no choice about the proportionality constant %, it must have that value which makes
the right-hand side of Eq, (7,4) equal to the left-hand side, This value turns out
to be
k=04x10° N.m?/C?, (7.7)
The proportionality constant k2 is usually wriiten in a more complex way as
1/4ne,, Hence, Eq,(7,4) can be written in the form



F: ._1_ ]_qlgi. i ' (?.8)
4TE, .

Certain equations that are derived from Eq, (7.4), but are used more often than it
is, will be simpler in form if we do this, @

This modified way of writing formulas is called rationalized, Systems of units
constructed with the use of rationatized formulas are also called rationalized, They
include the SI system,

The gquantity €, is called the electric constant,

1 1

eﬂ:- =

nk aqor T 8-85 X107 C/Nem?, (7.9

7.2, Electric Field, Field Strength

Charges at rest interact through an electric field, A charge alters the properties
of the space surrounding it—it sets up an electric field in it, This field manifests
itself in that an electric charge placed at a point of it experiences the action of a
force, Hence, to see whether there is an electric field at a given place, we must
place a charged body (in the following we shall say simply a charge for brevity) at
it and determine whether or not it experiences the action of an electric force, We
can evidently assess the “strength” of the field according to the magnitude of the
force exerted on the given charge,

Thus, to detect and study an electric field,
we must use a “test” charge, For the force acting

on our test charge to characterize the field “at

yﬁF
the given peint”, the test charge must be a point .
one, //’/ '
Let us study the field set up by the station— o/
ary point charge g with the aid of the point ? '
test charge g,, We place the test charge at a Fig, 7.2

point whose position relative to the charge ¢ is determined by the position vector
r (Fig,7,3), We see that the test charge experiences the force

Fzg‘(Tnla., 2 (7,10)

(see Eqs, (7,3) and (7,8)). Here ¥ is the unit vector of the position vector r,
A glance at Eq,(7.10) shows that the force acting on our test charge depends
not only on the quantities determining the field (on ¢ and t), but alse on the
magnitude of the test charge ¢, @ If we take different test charges ¢/, ¢”, ete,,

_then the forces F/, F”, etc, which they experience at the given point of the field
4



..Ill

will be different, We can see from Eq, (7,10), however, that the ratio F/q, for
all the test charges will be the same and depend only on the wvalues of g and r
determining the field at the given point, Tt is therefore natural to adopt this ratio

as the guantity characterizing an electric field.

- F 7,11
qr - ( )

This vector guantity is called the electric field strength (or intensity) at a given
point (i,e, at the point where the test charge ¢, experiences the action of the
force F),

According to Eq, (7,11), the electric field strength numerically equals the force
acting on a unit point charge at the given point of the field, The direction of the
vector E coincides with that of the force acting on a positive charye,

It must be noted that Eg, (7,11) also holds when the test charge is negative
(4,203, In this case, the vectors E and F have opposite directions,

We have arrived at the concept of electric field strength when studying the field
of & stationary point charge, Definition (7,11), however, also covers the case of
a field set up by any collection of siationary charges, But here the following clar—
ification is needed, The arrangemeﬁt of the charges setting up the field being studied
may change under the action of the test charge, i This will happen, for example,
when the charges producing the field are on a conductor and can freely move within
its limits, Therefore, to avoid appreciable alterations in the field being studied, a
sufficiently small test charge must be taken,

It follows from Eqs, (7,11) and (7.10) that the field strength of a point
charge varies directly with the magnitude of the charge g and inversely with the

square of the distance » from the charge to the given point of the field,

B ey re (7.12)

The vector E is directed along the radial straight line passing through the charge
and the given point of the field, from the charge if the Iatter is positive and toward
the charge if it is negative,

The unit of electric field strength is the strength at a point where unit force
(1 N) acts on unit charge (1 C), The SI unit of electric field strength is called the
newton per coulomb (N/C)(or the volt per metre (V/m), see Eq,(7,54)),

According to Eq, (7,11), the force exerted on a test charge is

F=g,E,

It is obvious that any point charge g* at a point of a field with the strength E will

¥ In Eq. (7.12), q stands for the charge seiting up the field, In Eq. (7.13), q stands for the

charge experiencing the foree [ ag g point of strength IT,

2



experience the force

F=gE, (7.13)
If the charge g is positive, the direction of the force coincides with that of the
vector E_ If g is negative, the vectors F and E are directed oppositely,

We mentioned in the preceding section that the force with which a system of
charges acts on a charge not belonging to the system equals the vector sum of the
forces which each of the charges of the system exerts separately on the given
charge (see Eq, (7.5)).® Hence it follows that the field strength of a system of
charges equals the vector sum of the field strengths that would be produced by each
of the charges of the system separately,

‘ E=ZE,, (7.14)
This statement is called the principle of electric field superposition,

If the charge distribution is a continuous ome, the field it sets up at any point
P can’ be computed by dividing the charge into infinitesimal elements dg, The field
dE due to each element at the point in question is then calculated, treating the
elements as point charges, The magnitude of dE (see Eq,(7.12)) is given by

d
dE= 4::15., s (7.15)

where r is the distance from the charge element dg¢ to the point p, The resultant
field at p is then found from the superposition principle by adding (that is, inte—
grating) the field contributions due to all the charge elements, or

E=[dl—:, (7.16)

The integration, like the sum in Eq, (7,14),is a vector operation; in Example 7.1
we will see how such an integral is handled in a simple case,

Example 7,1

Ring of charge, Fig, 7.4 shows a ring of charge ¢ and radius a, Calculate E
for points on the axis of the ring a
distance x from its center,

Consider a differential element of
the ring of length d/, located at the top
of the ring in Fig, 7.4, It contains an
element of charge given by

dq:q _g.‘l_,
2na

Fig, 7.4
where 2nwa is the circumference of the ring, This element sets up a differential

6
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electric field dE at point p,

The resultant field £ at p is found by integrating the effects of all the elements
that make up the ring, From symmetry this resuitant field must lie along the ripg
axis, Thus only the component of dE parallel to this aXis contributes to the final
result, The component perpendicular to the axis is canceled out by an egual but
opposite component established bty the charge element on the opposite side of the
ting,

Thus the general vector integral (Eq, 7,16)

E=IdE

becomes a scalar integral E =IdE cos ),

The quantity dE foliows from Eq, (7,15), or
dE= 1 _“'_‘1_=__1_( g dl )_ 1

4mE, rt gne, \ 2ng a*yx? "
From Fig, 7,4 we have 0s =—75—
cOs .
E, 7,4 We¢ nav v @1t

Neoting that, for a given point p, X has the same value for all charge elements and
is not a variable and that ! is the variable of integration, we obtain

{1 _ 1 g di
Eﬁjdﬁ' cos B*I 4ﬂ8a T(2ma)(@*+x?) S arrat

= L z z zIdI
dng, (z-ra)(a +x?)/
The integral is simply the circumference of the ring(=2na), so that
S S .
are, (G’—i—l")a/z .
Does this expression for E reduce to an expected result for t=0; For r>»a we can
neglect ¢ in the denominator of this equation, yielding

~ . L 8
EZ 41180 :rz -
This is an expected result [compare Eq, (7.12)) because at great enough distances

the ring behaves like a point charge g,

Example 7,2

Infinite line of charge, Tig,7,5 shows a section of an infinite line of charge
whose linear charge density (that is, the charge per unit length, measured in C/m)
has the constant value }, Calculate the field E a distance y from the line,

The magnitude of the field contribution dE due to charge element dg(=) dx)
is given, using Eq,(7,15), by



1 dg _ 1 A dx
db= = - e -
f
The vector dE, as Fig, 7,5 shows, has the compo- I\ 9
nents - dEx
dE_=—dFE sin §, ,
dE,=dE cos @, *
The minus sign in front of ¢dE, indicates that JdE, .
; . L a2 s ol i e
points in the negative x direction, The x and y e o
components of the resultant vector E at point p are Fig, 7.5
given by

Loaokta L
E,zIdE,x—J sin § dE  and E.,=Jd£‘yaf cos § dE.
F, must be zero because every charge element on the right has a corresponding element
on the left such that their field contributions in the x direction cancel, Thus E points
entirely in the y direction, Because the contributions to £, from the right— and
left-hand halves of the rod are equal, we can write

o= ‘E“.Uzzj

T4

"cos gdE,.

=0
Note that we have changed the lower limit of integration and have introduced a
compensating factor of two,

Substituting the expression for Jd £ into this eguation gives

— ?x_j“’ _dr
B ong, Jemo cos § yritaxt

From Fig, 7,5, we see that the quantities § and x are not independent, We must
eliminate one of them, say ., The relation between x and § is (see figure)

Tr=y tan g,
Differentiating, we obtain dr=y sec? § dg.

Substituting these two expressions leads finally to

. h g=n,2

E= __—_.j cos § d9.
SUEYY Jo-o

You should check this step carefully, noting that the limits must now be on § and

not on x, For example, as x— 4-c=, (—>7/2, as Fig,

integrates readily to
E= . _h_ (i

7.5 shows, This equation

A

onELYy

27E, Y .

ng) | =

You may wonder about the usefulness of solving a problem involving an infinite
rod of charge when any actual rod must have a finite length, However, for points
close enough to finite rods and not near their ends, the equation that we have just
derived yields results that are so close to the correct values that the difference can

8
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be ighored in many practical situations,® It is wsually unnecessary to solve exactly
every geometry encountered in practical problems, Indeed, if idealizations or approx-
imations are not made, the vast majority of significant problems of all kinds

in
physics and engineering cannot be solved at all,
An electric field cap be described by indicating . ]
the magnitude and direction of the vector E for each L
of its points, The combination of these vectors forms -

the field of the electric field strength vector (compare
with the field of the velocity vector), The velocity

vector field can be represented very illustratively with

the aid of flow lines, Similatly, an electric field can
be described with the aid of strength lines, which we
shall call for short E lines or field lines, These lines are drawn so that a tangent
to them at every point coincides with the direction of the vector E, The density of
the lines is selecied so that their number passing through a unit area at right angles
to the lines equals the numerical value of the vector E, Hence, the pattern of field
lines permits us to assess the direction and magnitude of the vector E at various
paints of gpace (Fig, 7.8).

The £ lines of a point charge field are a collection of radial straight lines
directed away from the charge if it is positive and toward it if it is negative
(Fig,7,7). One end of each line is at the charge, and the other extends to infinity,
Indeed, the total number of lines intersecting a spherical surface of arbitrary radius
v will equal the produci of the density of the lines and the surface area of the sphere
ixr?, We have assumed that the density of the lines numerically equals F={(1/41¢,)
(g/r*}, Hence, the number of lines is (1/4ne,) (¢/r?) 4nri=g/e,, This result
signifies that the number of lines at any distance from a charge wil} be the same,
It thus follows that the lines do not begin and do not terminate anywhere except




for the charge, Beginning at the charge, they extend to infinity (the ‘charge is
positive), or arriving from infinity, they terminate at the charge (the latter is
negative), This property of the E lines is common for all electrostatic tields, i,e,
fields set up by any system of stationary charges, the field lines can begin or tetr—
minate only al charges or extend to infinity,

7.3. Gauss's Theorem

Before we discuss Gauss’s theorem we must develop 2 new concept, that of the
flux of a vector field,

Assume that the flow of a liquid is characterized by the field of the velocity
vector, The volume of liguid flowing in unit time through an imaginary surface S
is called the fiux of the liquid through this surface, To find the flux, let us divide
the surface into elementary sections of the gize AS, It can te seen from Fig, 7.8
that during the time Af a volume of liquid equal to

AV =(AS cos a) v Af \
will pass through section AS_ Dividing this volume \
by the time Af, we shall find the flux through sur-
face AS,

ﬁV - ' 1\

= = a} A N

Ad }ﬁ.f ,{'.\SU cos G, ‘ ,...jf_i._\lt.z-‘

Passing over to differentials, we find that Fig, 7.8

db=(v cos o) dS=v, dS. (7.17)
We can introduce the vector 43 whose magnitude equals that of area 45, while its
direction coincides with the direction of a normal n to the area,
d8=dSn,
Since the direction of the vector n is chosen arbitrarily (it can be directed to either
side of the area), thern 48 is not a true vector, but is a pseudo vector, - The angle
a in Eg, (7,17) is the angle between the vectors v and d$, Hence, this equation
can be written in the form
dd=ved3, (7.18)

By summating the fluxes through all the elementaty areas into which we have

divided surface S, we get the flux of the liguid through S,

o,=| v-as=|o, ds. : (7.19)
5 3
A similar expression writien for an arbitrary vector field a, i,e, the quantity
cpa:j-a.ds.:IGN ds (7.20)
3 5

10



is called the flux of the vector a through surface S, In accordance with this
definition, the flux of a liquid can be called the flux of the wvector v through the
relevant surface (see Eq, (7,19)],

The flux of a vector is an algebraic gquantity, Its sign depends on the choice
of the direction of a normal to the elementary areas into which surface S is divided
in calculating the flux, Reversal of the direction of the normal changes the sign of
a, and, therefore, the sign of the guantity {(7,20),

We can give an illustrative geometrical interpretation of the vector filux, For
this purpose, we shall represent a vector field by a system of lines a counstructed so
that the density of the lines at every point iz numerically equal to the magnitude of
the vector a at the same point of the field {(compare with the rule for constructing
the lines of the vector E set out at the end of the preceding section), let us find
the number AN of intersections of the field lines with the imagimary area AS, A
glance at Fig, 7,9 shows that this number equals the density of the lines (i,e, @)
multiplied by AS,=AS cos a,

AN(=)a AS cos a=qa, AS,
We are speaking only about the numerical equality between AN and @, AS, This is
why the equality sign is confined in parentheses, According to FEgq, (7.20), the
expression @, AS is Ad,—the flux of the vector a through area AS, Thus,
AN(=)AD., (7.21)

d T2
LF
“frasnsa
Fig, 7.9 - Fig, 7,10 Fig, 7,11

For the sign of AN to coincide with that of Ad,, we must consider those
intersections to be positive for which the angle ¢ between the positive direction of
a field line and a normal to the area is acute, @ The intersection should be considered
negative if the angle a is obtuse,

An outward norinal is considered to be positive for a closed surface (Fig,7,10),
Fherefore, the intetsections corresponding to outward protrusion of the lines (in this
case the angle o is acute) must be taken with the plus sign, and the ones appearing

when the lines enter the surface (in this case the angle o is obtuse) must be taken
with the minus sign,

11



