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Preface

This book is based on lecture-courses given by the author at the University of Paris.

Although designed to meet the needs of French undergraduates, it covers the

beginning algebra course in an American University and the average Honors

mathematics course in a British University. The book contains a thorough treatment

~of linear algebra and can therefore be used as an algebra textbook by the student
throughout his undergraduate career.

The topics covered in this book are those which are universally considered to be
essential for the future mathematician or physicist: sets and functions; groups, rings,
fields, complex numbers; vector spaces, linear mappings, matrices ; finite-dimensional
vector spaces, systems of linear equations, determinants, Cramer’s formulae;
polynomials, rational fractions, algebraic equations; reduction of ‘matrices. This
choice of subject-matter reflects the evolution of mathematics in the last half-century,
and we have thought it proper that this evolution should also be reflected by the use
of a style which hitherto has been reserved for treatises addressed to professional
mathematicians.

Many people—in particular the majority of those whose attitude to mathematics
is purely utilitarian—are of the opinion that, in textbooks designed to be read by
beginners, it is useless or even dangerous to put great emphasis on rigour, to prove
every statement, to introduce notions of great generality or to use carefully and
strictly defined terminology. If this view were correct it would imply that, contrary
to all professional mathematicians and to common sense, the worst-written textbooks
would be those most easily understood by the beginner. The: professional latinists
succeed in deciphering the truncated and incomplete inscriptions which are continual-
ly being dug up from the subsoil of Italy: this is their expertise: but no professor of
Latin has yet had the idea of using such texts for teaching the language to beginners.

- Instead he prefers to rely on a well-written grammar. 1t is just the same in mathe-
matics: when it is a question of interpreting correctly the sense of an obscurely
phrased definition, of filling in the gaps in an incomplete proof, or of uncovering the
real reasons why a certain theorem is true, it is unreasonable to expect the novice to
display the same flair as the professional. ’

It should also be remarked that the progress of mathematics in this century
has brought with it the possibility of a substantial renovation of mathematical teach-
ing. New concepts have emerged which by their generality and simplicity can con-
siderably enlarge the range of application of a traditional piece of mathematical
reasoning, and new proofs have been discovesed which hring. within the:reach of
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undergraduate students results which used to be considered too difficult for them.
Moreover, the concern for rigour, which has always been characteristic of the
great mathematicians of the theory of numbers, has in the last thirty years spread
through all branches of mathematics and is now filtering down (with varying success)
to the authors of textbooks, to the point that some of them are in this respect in
advance of the body of professional mathematicians . . . This renovation, and the
exaggerations which sometimes go with it, brings protésts from some users of
mathematics who are irritated that they have difficulty in understanding their child-
ren’s textbooks, and the reproach is sometimes heard that mathematicians exaggerate
the importance of their own contributions instead of directing the attention of their
students to more concrete problems. Undoubtedly there is a basis of truth here;
but from this point of view what is to be said of the space research specialists who
see nothing remarkable in expending vast sums of money to send a rocket probe to
Venus whilst hundreds of millions of their fellow human beings are on the edge of
starvation? At least mathematics has the advantage of being cheap.

At the risk of arousing in certain quarters the feelings of horror and consternation
so marvellously represented by Paolo Uccello in his Desecration of the Host, we feel
obliged—for the question arises more and more often—to record our disagreement
with the large number of public personalities at the present time who demand of
scientists in general and mathematicians in particular that they should devote their
energies to producing the legions of technologists whose existence is, it appears,
urgently indispensable to our survival. Things being as they are, it seems to us that
in the scientifically and technologically over-developed ‘‘great” nations in which
we live, the first duty of the mathematician—and of many others—is to produce
what is not demanded of him, namely men who are capable of thinking for them-
selves, of unmasking false arguments and ambiguous phrases, and to whom the
dissemination of truth is infinitely more important than, for example, world-wide
three-dimensional colour T.V.: free men, and not robots ruled by technocrats. It is
sad but true that the best way of producing such men does not consist in teaching
them mathematics and physical science; for these are branches of knowledge which
ignore the very existence of human problems, and it is a disturbing thought that our
most highly civilized societies accord them the first place. But even in the teaching
of mathematics it is at least possible to attempt to impart a taste for freedom and
reason, and to accustom the young to being treated as human beings endowed with
the faculty of reason. .

To return to the beginners in mathematics, to whom this book is addressed: we
have therefore sought to speak to them in the language of professional mathemati-
cians, by defining all technical terms unambiguously once and for all, by stating all
theorems explicitly, and by proving them all completely, with a few exceptions im-
posed by the need to keep within reasonable limits (*).

(*) Almost all of the theorems which are not proved are in §§0 to 5; it is clearly out of the question, in
an elementary textbook, 1o give an account of the theory of sets and formal logic without assuming many
“‘obvious” results. The purpose of § 0, on logical reasoning, is not only to explain to the beginner which
types-of argument are “legitimate” and which are not (anyone who has marked examination papers will
be convinced of the necessity of this), but also to show that the “philosophy of mathematics” does not
necessarily reduce to a verbalism devoid of structure. '



