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Preface

Each summer since 1996, algebraic geometers and algebraists in Norway have
organised a summer school in Nordfjordeid, a small place in the western
part of Norway. In addition to the beauty of the place, located between the
mountains, close to the fjord and not far from the Norway's largest glacier,
a reason for going there is that Sophus Lie was born and spent his few first
years in Nordfjordeid, so it has a flavour of both the exotic and pilgrimage.
It is also convenient: the municipality of Eid has created a conference centre
named after Sophus Lie, aimed at attracting activities to fill the summer term
of the local boarding school.

The summer schools are a joint effort of the four universities in Norway
— the universities of Tromsg, Trondheim, Bergen and Oslo. They are pri-
marily meant as training for Norwegian graduate students, but have over the
years attracted increasing numbers of students from other parts of the world,
adding the value of being international to the schools.

The themes of the schools have been varied, but build around some cen-
tral topics in contemporary mathematics. The format of the school has by
now become tradition — three international experts giving independent, but
certainly connected, series of talks with exercise sessions in the evening, over
five or six days.

In 2001 the organising committee consisted of Stein Arild Stromme from
the University of Bergen, Loren Olson from the University of Tromss, and
Kristian Ranestad and Geir Ellingsrud from the University of Oslo. We
wanted to make a summer school giving the students insight in some of the
new interactions between differential and algebraic geometry. The three topics
we finally chose, Riemannian holonomy and calibrated geometry, Calabi-Yau
manifolds and mirror symmetry, and Compact hyperkahler manifolds, are
parts of the fascinating current development of mathematics, and we think
they illustrate well the modern interplay between differential and algebraic
geometry.

We were fortunate enough to get positive answers when we asked Dominic
Joyce, Mark Gross and Daniel Huybrechts to give the courses, and we are
thankful for the great job the three lecturers did, both on stage in Nord-
fjordeid and by writing up the nice notes which have now developed into this
book.

Geir Ellingsrud
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1 Introduction

The holonomy group Hol(g) of a Riemannian n-manifold (M, g) is a global
invariant which measures the constant tensors on the manifold. It is a Lie
subgroup of SO(n), and for generic metrics Hol(g) = SO(n). If Hol(g) is
a proper subgroup of SO(n) then we say g has special holonomy. Metrics
with special holonomy are interesting for a number of different reasons. They
include Kdhler metrics with holonomy U(m), which are the most natural
class of metrics on complex manifolds, Calabi-Yau manifolds with holonomy
SU(m), and hyperkdhler manifolds with holonomy Sp(m).

Calibrated submanifolds are a class of k-dimensional submanifolds N of
a Riemannian manifold (M, g) defined using a closed k-form ¢ on M called
a calibration. Calibrated submanifolds are automatically minimal submani-
folds. Manifolds with special holonomy (M, g) generally come equipped with
one or more natural calibrations ¢, which then define interesting classes of
submanifolds in M. One such class is special Lagrangian submanifolds (SL
m-folds) of Calabi-Yau manifolds.

This part of the book is an expanded version of a course of 8 lectures
given at Njordfjordeid in June 2001. The first half of the course discussed
Riemannian holonomy groups, focussing in particular on Kéihler and Calabi-
Yau manifolds. The second half discussed calibrated geometry and calibrated
submanifolds of manifolds with special holonomy, focussing in particular on
SL m-folds of Calabi-Yau m-folds. The final lecture surveyed research on
the SYZ Conjecture, which explains Mirror Symmetry between Calabi-Yau
3-folds using special Lagrangian fibrations, and so made contact with Mark
Gross’ lectures.

I have retained this basic format, so that the first half §1-86 is on Rieman-
nian holonomy, and the second half §7-§12 on calibrated geometry, finishing
with the SYZ Conjecture. The principal aim of the first half is to provide a
firm grounding in K&hler and Calabi-Yau geometry from the differential geo-
metric point of view, to serve as background for the more advanced, algebro-
geometric material discussed in Parts II and III below. Therefore I have
treated other subjects such as the exceptional holonomy groups fairly briefly.

In the second half I shall concentrate mainly on SL m-folds in C™ and
Calabi-Yau m-folds. This is partly because of the focus of the book on Calabi-
Yau manifolds and the link with Mirror Symmetry, partly because of my own
research interests, and partly because more work has been done on special
Lagrangian geometry than on other interesting classes of calibrated subman-
ifolds, so there is simply more to say.

This is not intended as an even-handed survey of a field, but is biassed
in favour of my own interests, and areas of research I want to promote in
future. Therefore my own publications appear more often than they deserve,
whilst more significant work is omitted, through my oversight or ignorance.
I apologize to other authors who feel left out.
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This is particularly true in the second half. Much of sections 9, 11 and 12
is an account of my own research programme into the singularities of SL m-
folds. It therefore has a provisional, unfinished quality, with some conjectural
material. My excuse for including it in a book is that I believe that a proper
understanding of SL m-folds and their singularities will lead to exciting new
discoveries — new invariants of Calabi~Yau 3-folds, and new chapters in the
Mirror Symmetry story which are obscure at present, but are hinted at in the
Kontsevich Mirror Symmetry proposal and the SYZ Conjecture. So I would
like to get more people interested in this area.

We begin in §2 with some background from Differential Geometry, and
define holonomy groups of connections and of Riemannian metrics. Section
3 explains Berger’s classification of holonomy groups of Riemannian man-
ifolds. Section 4 discusses Kahler geometry and Ricci curvature of Kéhler
manifolds and defines Calabi-Yau manifolds, and §5 sketches the proof of
the Calabi Conjecture, and how it is used to construct examples of Calabi-
Yau and hyperkahler manifolds via Algebraic Geometry. Section 6 surveys
the exceptional holonomy groups G2 and Spin(7).

The second half begins in §7 with an introduction to calibrated geometry.
Section 8 covers general properties of calibrated submanifolds in R™, and §9
construction of examples of SL m-folds in C™. Section 10 discusses compact
calibrated submanifolds in special holonomy manifolds, and §11 the singular-
ities of SL m-folds. Finally, §12 briefly introduces String Theory and Mirror
Symmetry, explains the SYZ Conjecture, and summarizes some research on
the singularities of special Lagrangian fibrations.

2 Introduction to Holonomy Groups

We begin by giving some background from differential and Riemannian ge-
ometry, principally to establish notation, and move on to discuss connections
on vector bundles, parallel transport, and the definition of holonomy groups.
Some suitable reading for this section is my book [113, §2-§3].

2.1 Tensors and Forms

Let M be a smooth n-dimensional manifold, with tangent bundle TM and
cotangent bundle T*M. Then TM and T*M are vector bundles over M. If
E is a vector bundle over M, we use the notation C®(E) for the vector
space of smooth sections of E. Elements of C*®°(T M) are called vector fields,
and elements of C®°(T* M) are called 1-forms. By taking tensor products of
the vector bundles TM and T*M we obtain the bundles of tensors on M.
A tensor T on M is a smooth section of a bundle @* TM ® ®' T*M for
some k,l € N.

It is convenient to write tensors using the indez notation. Let U be an
open set in M, and (z!,...,z") coordinates on U. Then at each point z € U,
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%, cees 'a%- are a basis for T,U. Hence, any vector field v on U may be
uniquely written v = Y o_, v“b% for some smooth functions v!,...,v"
U — R. We denote v by v®, which is understood to mean the collection of n
functions v!,...,v", so that a runs from 1 to n.

Similarly, at each z € U, dz!,...,dz" are a basis for T;U. Hence, any
1-form a on U may be uniquely written @ = ¥_;_, asdz’ for some smooth
functions aj, . ..,an : U = R. We denote a by ab, where b runs from 1ton.
In t,he same way, a general tensor T in C®( ® TM ® ® T* M) is written
T, p*, where

T= E Tol b‘:“ gzer O az‘h ®dz” ® - ®dz.

1<ai<n, 1Ki<k
1<b; <, 1<5<

The k* exterior power of the cotangent bundle T* M is written A*T*M
Smooth sections of A¥T*M are called k-forms, and the vector space of k-
forms is written C®(A*T* M). They are examples of tensors. In the index no-
tation they are written Tj, s, , and are antisymmetric in the indices by, .. ., bx.
The exterior product A and the ezterior derivative d are important natural
operations on forms. If a is a k-form and j an [-form then aAB is a (k+H)-form
and da a (k+1)-form, which are given in index notation by

(Cl A ﬂ)al‘..ap.“ = a[al...a,,ﬂa.+1...a;.+;] a'nd (da)al...a,,“ = a—z[“—‘am"'m’“]’

where |- - -] denotes antisymmetrization over the enclosed group of indices.
Let v, w be vector fields on M. The Lie bracket [v, w] of v and w is another
vector field on M, given in index notation by

pow° o i ' )
ozt Ozt
Here we have used the Finstein summation convention, that is, the repeated

index b on the right hand side is summed from 1 to n. The important
thing about this definition is that it is independent of choice of coordinates

(z,...,z").

[v,w]* =v

2.2 Connections on Vector Bundles and Curvature

Let M be a manifold, and E - M a vector bundle. A connection VE on E
is a linear map V2 : C®(E) - C*(E ® T* M) satisfying the condition

VE(ae) = aVFe +e®da,

whenever e € C®(E) is a smooth section of E and a is a smooth function
on M.

If V& is such a connection, e € C*(E), and v € C*(TM) is a vector
field, then we write VZe = v-VZe € C™(E), where ‘-’ contracts togéther the
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TM and T* M factors in v and VZe. Then if v € C*°(TM) and e € C™(E)
and a, B are smooth functions on M, we have

Vav(Be) = afVie +a(v- Pe.

Here v - f is the Lie derivative of § by v. It is a smooth function on M, and

could also be written v - dS.
There exists a unique, smooth section R(V=) € C*°(End(E) ® A*T* M)
called the curvature of VE, that satisfies the equation

R(VF)-(e®@vAw)=V;Vie-ViVie- V[ ,e (2)

for all v,w € C®(TM) and e € C®(E), where [v, w] is the Lie bracket of v, w.

Here is one way to understand the curvature of VZ. Define v; = §/0z
for i = 1,...,n. Then v; is a vector field on U, and [vi,v;] = 0. Let e be
a smooth section of E. Then we may interpret V7 e as a kind of partial
derivative Oe/Ox* of e. Equation (2) then implies that

9% B d%e
rifz  Ozridzt’

R(V®)-(e®v; Av;) = 3 (3)
Thus, the curvature R(V*®) measures how much partial derivatives in E fail
to commaute.

Now let V be a connection on the tangent bundle TM of M, rather
than a general vector bundle E. Then there is a unique tensor T = T2 in
C®(TM @ A’T*M) called the torsion of V, satisfying

T-(vAw)=Vyw—-Vy,v—[v,w] forallv,we C®(TM).

A connection V with zero torsion is called torsion-free. Torsion-free con-
nections have various useful properties, so we usually restrict attention to
torsion-free connections on TM.

A connection V on T'M extends naturally to connections on all the bun-
dles of tensors ®k TM ® ®' T*M for k,l € N, which we will also write V.
That is, we can use V to differentiate not just vector fields, but any tensor
on M.

2.3 Parallel Transport and Holonomy Groups

Let M be a manifold, E = M a vector bundle over M, and V¥ a connection
on E. Let v : [0,1] =& M be a smooth curve in M. Then the pull-back v*(E)
of E to [0,1] is a vector bundle over [0,1] with fibre E ) over t € [0,1],
where E, is the fibre of E over z € M. The connection VZ pulls back under
% to give a connection on v*(E) over [0,1].

Definition 2.1 Let M be a manifold, E a vector bundle over M, and V? a
connection on E. Suppose v : [0,1] = M is (piecewise) smooth, with y(0) = z
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and (1) = y, where z,y € M. Then for each e € E,, there exists a unique
smooth section s of v*(E) satisfying Viys(t) =0forte [0,1], with s(0) = e.
Define P,(e) = s(1). Then P, : E; = E, is a well-defined linear map, called
the parallel transport map.

We use parallel transport to define the kholonomy group of VE.

Definition 2.2 Let M be a manifold, E a vector bundle over M, and V% a
connection on E. Fix a point z € M. We say that v is a loop based at z if
v :[0,1] = M is a piecewise-smooth path with 4(0) = ¥(1) = z. The parallel
transport map P, : E; — E; is an invertible linear map, so that P, lies
in GL(E;), the group of invertible linear transformations of E,. Define the
holonomy group Hol,(VE) of VZ based at z to be

Hol (V") = {P, : v is a loop based at z} C GL(E;). (4)
The holonomy group has the following important properties.

o It is a Lie subgroup of GL(E;). To show that Hol,(V*) is a subgroup of
GL(E.), let 7,4 be loops based at z, and define loops 78 and y~! by

_)é(2) teo,3) “1y — (1 —
v8(t) = {7(2t— D te [%,21] and y7'(t) =vy(1-t) forte[0,1]

Then Pys = Pyo Ps and Py-i = P;!, so Hol:(V") is closed under
products and inverses.

¢ It is independent of basepoint £ € M, in the following sense. Let z,y € M,
and let v : [0,1] = M be a smooth path from z to y. Then P, : E; — E,,
and Hol,(V*) and Hol, (V*) satisfy Hol, (V=) = P,Hol.(V=)P;}.
Suppose E has fibre R*, so that GL(E;) = GL(k,R). Then we may
regard Hol,(V*) as a subgroup of GL(k,R) defined up to conjugation,
and it is then independent of basepoint z.

e If M is simply-connected, then Hol;(V?) is connected. To see this, note
that any loop 7 based at z can be continuously shrunk to the constant
loop at z. The corresponding family of parallel transports is a continuous
path in Hol;(VZ) joining P, to the identity.

The holonomy group of a connection is closely related to its curvature.
Here is one such relationship. As Hol(V#) is a Lie subgroup of GL{E. ), it has
a Lie algebra hol (V=), which is a Lie subalgebra of End(E, ). It can be shown
that the curvature R(V*); at z lies in the linear subspace hol, (V=)@ A2T: M
of End(E;) ® A’T2 M. Thus, the holonomy group of a connection places a
linear restriction upon its curvature.

Now let V be a connection on TM. Then from §2.2, V extends to con-
nections on all the tensor bundles ®" TM ® ®' T*M. We call a tensor S
on M constant if VS = 0. The constant tensors on M are determined by the
holonomy group Hol(V).
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Theorem 2.3 Let M be a manifold, and V a connection on TM. Fiz z €
M, and let H = Hol.(V). Then H acts naturally on the tensor powers
QR T.M ® @' T: M. Suppose S € C*(Q*TM ® @' T*M) is a constant
tensor. Then S|, is fized by the action of H on @* T.M & ®' T;M. Con-
versely, if S|. € ®k T:M® ®‘ T:M is fized by H, it extends to a unique
constant tensor S € C®(Q“TM @ @' T*M).

The main idea in the proof is that if S is a constant tensor and 7 :
[0,1] = M is a path from z to y, then P,(S|.) = Sl,. Thus, constant tensors
are invariant under parallel transport.

2.4 Riemannian Metrics and the Levi-Civita Connection

Let g be a Riemannian metric on M. We refer to the pair (M, g) as a Rie-
mannian manifold. Here g is a tensor in C®(S*T* M), so that g = g in
index notation with g,; = g»,. There exists a unique, torsion-free connection
V on TM with Vg = 0, called the Levi-Civite connection, which satisfies

29(Vyv,w) =u-g(v,w) + v- g(u,w) — w- g(u,v)
+ g([u, v]’w) - 9([”: w],u) - g([u,w],v)

for all u,v,w € C®°(TM). This result is known as the fundamental theorem
of Riemannian geometry.

The curvature R(V) of the Levi-Civita connection is a tensor R%,_, on
M. Define Ropcd = gqaeRoy.q- We shall refer to both R%, 4 and Rapca as the
Riemann curvature of g. The following theorem gives a number of symmetries
of Rasce- Equations (6) and (7) are known as the first and second Bianchi
identities, respectively.

Theorem 2.4 Let (M, g) be a Riemannian manifold, V the Levi-Civita con-
nection of g, and R,pcq the Riemann curvature of g. Then

Rabed = —Ravde = —Rbged = Rcdab; (5)
Rabed + Radbe + Racap = 0, (6)
and VeRabcd + VeRapde + VaRapee = 0. (7)

Let (M, g) be a Riemannian manifold, with Riemann curvature R%;_;. The
Ricci curvature of g is Rgy = R, It is a component of the full Riemann
curvature, and satisfies Rgp = Rp,. We say that g is Einstein if Rqp = Agap
for some constant A € R, and Ricci-flat if R, = 0. Einstein and Ricci-flat
metrics are of great importance in mathematics and physics.
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2.5 Riemannian Holonomy Groups

Let {M, g) be a Riemannian manifold. We define the holonomy group Hol;(g)
of g to be the holonomy group Hol, (V) of the Levi-Civita connection V of g,
as in §2.3. Holonomy groups of Riemannian metrics, or Riemannian holonomy
groups, have stronger properties than holonomy groups of connections on
arbitrary vector bundles. We shall explore some of these.

Firstly, note that g is a constant tensor as Vg = 0, so g is invariant under
Hol(g) by Theorem 2.3. That is, Hol;(g) lies in the subgroup of GL(T; M)
which preserves g|.. This subgroup is isomorphic to O(n). Thus, Hol,(g) may
be regarded as a subgroup of O(n) defined up to conjugation, and it is then
independent of z € M, so we will often write it as Hol(g), dropping the
basepoint z.

Secondly, the holonomy group Hol(g) constrains the Riemann curvature
of g, in the following way. The Lie algebra hoi, (V) of Hol.(V) is a vector
subspace of T M ® T; M. From §2.3, we have R%,_,|. € hol, (V) ® A2T; M.

Use the metric g to identify T, M ® T; M and ®?T; M, by equating T¢,
with T,p = 94T This identifies hol (V) with a vector subspace of RT:M
that we will write as hol,(g). Then hol,(g) lies in AT} M, and Rgpcdl: €
hol,(g) ® A2T; M. Applying the symmetries (5) of Rgpcq, We have:

Theorem 2.5 Let (M, g) be a Riemannian manifold with Riemann curva-
ture Rasca. Then Rgpea lies in the vector subspace S?hol,(g) in A2T:M ®
A’T:M at each z € M.

Combining this theorem with the Bianchi identities, (6) and (7), gives
strong restrictions on the curvature tensor Rgp.q4 of a Riemannian metric g
with a prescribed holonomy group Hol(g). These restrictions are the basis of
the classification of Riemannian holonomy groups, which will be explained
in §3.

2.6 Exercises

2.1 Let M be a manifold and u,v,w be vector fields on M. The Jacobi
identity for the Lie bracket of vector fields is

[u, [v,w]] + [v, [w, u]] + [w, [u,v]] = 0.

Prove the Jacobi identity in coordinates (z',...,z") on a coordinate
patch U. Use the coordinate expression (1) for the Lie bracket of vector
fields.

2.2 In §2.3 we explained that if M is a manifold, E - M a vector bundle
and V& a connection, then Hol(V*) is connected when M is simply-
connected. If M is not simply-connected, what is the relationship be-
tween the fundamental group 7, (M) and Hol(V*)?

2.3 Work out your own proof of Theorem 2.3.
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3 Berger’s Classification of Holonomy Groups

Next we describe Berger's classification of Riemannian holonomy groups,
and briefly discuss the possibilities in the classification. A reference for the
material of this section is [113, §3]. Berger’s original paper is [18], but owing
to language and notation most will now find it difficult to read.

3.1 Reducible Riemannian Manifolds

Let (P, g) and (Q, k) be Riemannian manifolds with positive dimension, and
P x Q the product manifold. Then at each (p,q) in P x Q we have T(, ¢)(P x
Q) = T,P & T,Q. Define the product metric g x hon P x Q by g x hl,q) =
glp + hlg for all p € P and ¢ € Q. We call (P x Q,g x h) a Riemannian
product.

A Riemannian manifold (M, g') is said to be (locally) reducible if every
point has an open neighbourhood isometric to a Riemannian product (P x
Q, g x h), and irreducible if it is not locally reducible. It is easy to show that
the holonomy of a product metric g x h is the product of the holonomies of
g and h.

Proposition 3.1 If (P x Q, g x h) is the product of Riemannian manifolds
(P,g9), (@, h), then Hol(g x h) = Hol(g) x Hol(h).

Here is a kind of converse to this.

Theorem 3.2 Let M be an n-manifold, and g an irreducible Riemannian
metric on M. Then the representation of Hol(g) on R™ is irreducible.

To prove the theorem, suppose Hol(g) acts reducibly on R", so that R"
is the direct sum of representations R*, R! of Hol(g) with k,I > 0. Using
parallel transport, one can define a splitting TM = E @ F, where E, F are
vector subbundles with fibres R*, R'. These vector subbundles are integrable,
so locally M 2 P x Q with E = TP and F = TQ. One can then show that
the metric on M is the product of metrics on P and @Q, so that g is locally
reducible.

3.2 Symmetric Spaces
Next we discuss Riemannian symmetric spaces.

Definition 3.3 A Riemannian manifold (M, g) is said to be a symmetric
space if for every point p € M there exists an isometry s, : M — M that
is an involution (that is, sf, is the identity), such that p is an isolated fixed
point of s,.

Examples include R™, spheres S™, projective spaces CP™ with the Fubini~
Study metric, and so on. Symmetric spaces have a transitive group of isome-
tries.
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Proposition 3.4 Let (M,g) be a connected, simply-connected symmetric
space. Then g is complete. Let G be the group of isometries of (M, g) gener-
ated by elements of the form sy 0, for g, € M. Then G is a connected Lie
group acting transitively on M. Choose p € M, and let H be the subgroup of
G fizing p. Then H is a closed, connected Lie subgroup of G, and M is the
homogeneous space G/H.

Because of this, symmetric spaces can be classified completely using the
theory of Lie groups. This was done in 1925 by Elie Cartan. From Cartan’s
classification one can quickly deduce the list of holonomy groups of symmetric
spaces.

A Riemannian manifold (M, g) is called locally symmetric if every point
has an open neighbourhood isometric to an open set in a symmetric space,
and nonsymmetric if it is not locally symmetric. It is a surprising fact that
Riemannian manifolds are locally symmetric if and only if they have constant
curvature.

Theorem 3.5 Let (M,g) be a Riemannian manifold, with Levi-Civita con-
nection V and Riemann curvature R. Then (M, g) is locally symmetric if and
only if VR =0.

3.3 Berger’s Classification
In 1955, Berger proved the following result.

Theorem 3.6 (Berger) Suppose M is a simply-connected manifold of di-
mension n, and that g is a Riemannian metric on M, that is irreducible and
nonsymmetric. Then ezactly one of the following seven cases holds.

(i) Hol(g) = SO(n),
(ii) n =2m with m > 2, and Hol(g) = U(m) in SO(2m),
(i) n = 2m with m > 2, and Hol(g) = SU(m) in SO(2m),
(iv) n = 4m with m > 2, and Hol(g) = Sp(m) in SO(4m),
(v) n=4m with m 2 2, and Hol(g) = Sp(m) Sp(1) in SO(4m),
(vi) n =7 and Hol(g) = G, in SO(7), or
(vii) n = 8 and Hol(g) = Spin(7) in SO(8).

Notice the three simplifying assumptions on M and g: that M is simply-
connected, and g is irreducible and nonsymmetric. Each condition has con-
sequences for the holonomy group Hol(g).

e As M is simply-connected, Hol(g) is connected, from §2.3.
o As g is irreducible, Hol(g) acts irreducibly on R" by Theorem 3.2.
e As g is nonsymmetric, VR # 0 by Theorem 3.5.



