INSTRUMENTAL ROOMTEW SISYLAMA FO

Fifth Edition

Hobart H. Willard Lynne L. Merritt, Jr John A. Dean

INSTRUMENTAL METHODS OF ANALYSIS

Fifth Edition

HOBART H. WILLARD Professor Emeritus of Chemistry
University of Michigan

LYNNE L. MERRITT, JR. Professor of Chemistry Indiana University

JOHN A. DEAN Professor of Chemistry University of Tennessee at Knoxville

D. VAN NOSTRAND COMPANY

New York Cincinnati Toronto London Melbourne

D. Van Nostrand Company Regional Offices: New York Cincinnati Millbrae

D. Van Nostrand Company International Offices: London Toronto Melbourne

Copyright © 1974 by Litton Educational Publishing, Inc. Library of Congress Catalog Card Number: 73-9122 ISBN: 0-442-29479-4

All rights reserved. Certain portions of this work copyright © 1965, 1958, 1951, 1948 by Litton Educational Publishing, Inc. No part of this work covered by the copyrights hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without written permission of the publisher. Manufactured in the United States of America.

Published by D. Van Nostrand Company 450 West 33rd Street, New York, N.Y. 10001

Published simultaneously in Canada by Van Nostrand Reinhold Ltd.

10 9 8 7 6 5 4 3

Atomic Weights

(Based on Carbon-12)

Element	Symbol	Atomic Number	A tomic Weight
Actinium	Ac	89	(227)
Aluminum	Al	13	26.98154
Americium	Am	95	(243)
Antimony	Sb	51	Ì21.75
Argon	A r	18	39.948
Arsenic	As	33 ·	74.9216
Astatine	At	85	(210)
Barium	Ba	56	Ì37.34
Berkelium	Bk	97	(247)
Beryllium	Ве	4	9.01218
Bismuth	Bi	83	208.9804
Boron	В	5	10.81
Bromine	Br	35	79.904
Cadmium	Cd	48	112.40
Calcium	Ca	20	40.08
Californium	Cf	98	(251)
Carbon	C	6	12.011
Cerium	Ce	58	140.12
Cesium	Cs	55	132,9054
Chlorine	Cl	17	35.453
Chromium	Cr	24	51.996
Cobalt	Co	27	58.9332
Соррег	Cu	29	63.546
Curium	Cm	96	(247)
Dysprosium	Dy	66	162.50
Einsteinium	Es	99	(254)
Erbium	Er	68	167.26
Europium	Eu	63	151.96
Fermium	Fm	100	(257)
Fluorine	F	9	18.99840
Francium	Fr	87	(223)
Gadolinium	Gd	64	157.25
Gallium	Ga	31	69.72
Germanium	Ge	32	72.59
Gold	Au	79	196,9665
Hafnium	Hf	72	178.49
Helium	He	$\bar{2}$	4.00260
Holmium	Но	67	164.9304
Hydrogen	H	i	1.0079
Indium	In	49	114.82
Iodine	ī	53	126,9045
lridium	Īr	77	192.22
Iron	Fe	26	55.847
Krypton	Kr	36	83.80
Lanthanum	La	57	138.9055
Lawrencium	Li-	103	(255)
Lead	Ръ́	82	207.2
Lithium	ii ii	3	6.941
Lutetium	Lu	71	174.97
Magnesium	Mg	iż	24.305
Manganese	Mn	25	54.9380
Mendelevium	Md	101	(258)
			(200)

Atomic Weights (Continued)

Element	Symbol	Atomic Number	Atomic
	•		Weight
Mercury Molyhdonum	Hg	80	200.59
Molybdenum	Мо	42	95.94
Neodymium Neon	Nd	60	144.24
Neptunium	Ne	10	20.179
Nickel	Np	93	237.0482
Niobium	Ni Ni	28	58.71
Nitrogen	Nb	41	92.9064
Nobelium) N	7	14.0067
Osmium	No	102	(255)
Oxygen	Os	. 76	190.2
Palladium	0	8	15.9994
Phosphorus	Pd	46	106.4
Platinum	P	15	30.97376
Plutonium	Pt	78	195.09
Polonium	Pu	94	(242)
Potassium	Po	84	(210)
Praseodymium	K	19	39.098
Promethium	Pr	59	140.9077
Protactinium	Pm	61	(147)
Radium	Pa	91	231.0359
Radon	Ra Rn	88	226.0254
Rhenium	Ro Re	86 76	(222)
Rhodium	Rh	75 45	186.2
Rubidium	Rh Rb	45 37	102.9055
Ruthenium	Ru	44	85.4678
Samarium	Sm	62	101.07
Scandium	Sc	62 21	150.4
Selenium	Se Se	34	44.9559
Silicon	Si	34 14	78.96
Silver	Ag	47	28.086
Sodium	Na	11	107.868
Strontium	Sr	38	22.98977
Sulfur	Š	16	87.62 32.06
Tantalum	Ta	73	180.9479
Technetium	Tc	43	98.9062
Tellurium	Te	52	127.60
Terbium	Тъ	65	158,9254
Thallium	Tl	81	204.37
Thorium	Th	90	232.0381
Thulium	Tm	69	168,9342
Tir	Sn	50	118.69
Titanium	Ti	22	47.90
Tungsten	W	74	183.85
Uranium	U	92	238.029
Vanadium Vana	${f v}$	23	50.9414
Xenon Ytterbium	Xe	54	131.30
Yttrium	Yb	70	173.04
Zinc	Ÿ	39	88.9059
Zirconium	Zn	30	65.38
Zireomuni ()	Zr	40	91.22
•			

Numbers in parentheses are mass numbers of most stable or most common isotope.

Profee

The Fifth Edition continues to survey modern instrumental methods of chemical analysis. Most of the chapters have been extensively revised and some have been completely rewritten.

Changes in order of presentation now place molecular fluorescence and phosphorescence methods after ultraviolet and visible absorption methods, Raman spectroscopy after infrared spectroscopy, and flame emission and atomic absorption spectrometry before emission spectroscopy. This arrangement is more logical than the order of presentation in the earlier editions.

Among the new topics treated in this edition are: turbidimetry and nephelometry, the vacuum ultraviolet, reflectance measurements, Fourier transform infrared, laser-Raman spectroscopy, Mössbauer spectroscopy, interfacing gas chromatography with mass spectrometry, and all classes of selective ion electrodes. Atomic absorption has been expanded and integrated with flame emission methods. Classical polarography has been absorbed within an enlarged chapter on voltammetry, polarography, and related techniques. Emphasis continues to be placed on structural identification of compounds through infrared and Raman spectra, nuclear magnetic resonance and electron spin resonance spectroscopy, ultraviolet absorption spectra, and mass spectrometry.

Individual chapters are designed, in general, to stand alone. Consequently, the order of presentation is not critical. Instructors will be able to select material for several levels of achievement. References to the literature and collateral readings are included in each chapter. The book should also be suitable as a reference manual.

Numerous examples are incorporated within the text, including those illustrating mathematical operations. These introduce the student to the unit of measurement and reduce, and possibly eliminate, the dependence upon additional problem books. There are 390 numerical problems; answers to virtually all are given separately at the end of the text. Many of these problems contain data that would be obtained in the laboratory experiments and are thus of particular value for schools unable to furnish equipment for specific areas of instrumentation, for supplementing experiments when laboratory periods are limited in number, or for self-study.

Experiments have been selected to illustrate the principles discussed in the theoretical portions of each chapter. Some experiments are described in considerable detail and thus are suitable for use by less experienced undergraduate students. Others are merely sketched outlines or suggestions for work to give instructors in advanced courses flexi-

anp53//

(vi) Preface

bility in eliciting from students a degree of independence and originality in the outline and execution of experimental work.

Because some confusion may arise over the meanings of abbreviations and the uses of symbols, particularly the overlapping uses of certain symbols in the diverse techniques covered in this book, separate listings of abbreviations and symbols are included in pages xii to xix. Whenever available, recommendations of concerned nomenclature commissions have been followed. In addition, the Appendices provide a fairly comprehensive tabulation of standard-reduction potentials in aqueous solution, polarographic half-wave potentials and diffusion-current constants, acid dissociation constants, formation constants of some metal complexes, flame emission and atomic absorption spectra, and a conversion table involving values of absorbance for percent absorption. A four-place table of common logarithms, a table of 1971 atomic weights, and a periodic chart of the elements facilitate computations and provide ready reference data.

The authors remain greatly indebted to the manufacturers who have so generously furnished schematic diagrams, photographs, and technical information of their instruments. Thanks are expressed also to many colleagues who have kindly helped with suggestions and improvements.

HOBART H. WILLARD LYNNE L. MERRITT, JR. JOHN A. DEAN

Abbreviations

absorption	Abs
alpha particle	α
alternating current (adj.)	ac
ampere	A
angstrom	Å
atmosphere	atm
atomic weight	at. wt
attenuated total reflectance	ATR
barn	b
beta particle	β
boiling point	bp
calorie	cal
capacitance	Cai C
conductance	1/R
coulomb	C, Q
counts per minute (second)	c/m 1, cpm (c/s)
cubic centimeter	cm ³
curie	Ci
cycles per second (hertz)	Hz
day	d
decibel	db
degree Celsius	°C
degree Kelvin	°Ř
deuteron	ď
diameter	diam
differential scanning calorimeter	DSC
differential thermal analysis	DTA
direct current (adj.)	dc
disintegrations per minute (second)	dpm, d/m; dps, d/s
dropping mercury electrode	dme
dyne	dyn
electromotive force	emf
electron	e¯,e
electron paramagnetic resonance	epr
, y	- 1 : -

```
electron spin resonance
                                                   esr
electron volt
                                                   eV
equivalent weight
                                                   equiv wt
ethyl
                                                   Et
ethylenediamine
                                                   en
ethylenediamine-N, N, N', N'-tetraacetic acid
                                                   EDTA
                                                   Y4-
  (the anion)
exempli gratia (for example)
                                                   e.g.
exponential
                                                   exp
farad
                                                   F, f
                                                   \boldsymbol{F}
formal (concentration)
                                                   f
frequency
gamma radiation
                                                   γ
gas (physical state)
                                                   g
                                                   G
gauss
gram
                                                   g
hertz
                                                   Hz
                                                   hr, h
hour
ibidem (in the same place)
                                                   Ibid.
id est (that is)
                                                   i.e.
inch.
                                                   in.
indicator
                                                   ind
inductance
                                                   L
infrared
                                                   İT
inside diameter
                                                   i.d.
joule
                                                   j
kilo-(prefix)
                                                   k-
kilocalorie
                                                   kcal
liquid (physical state)
                                                   liq, l
liter
                                                   liter (alone), I (with prefixes)
logarithm (common)
                                                   log
logarithm (natural)
                                                   ln
maximum
                                                   max
meg- (prefix)
                                                   M-
melting point
                                                   mp
meter
                                                   m
methyl
                                                   Me
micro- (prefix)
                                                   μ-
micrometer (micron)
                                                   μm
milli- (prefix)
                                                   m-
milliequivalent
                                                   mequiv
milliliter
                                                   mi
millimole
                                                   mM
minimum
                                                   min
```

(xiv) Abbreviations

minute	min, m
molar	М
mole	mol
molecular weight	mol wt
nano- (prefix)	n-
nanometer (millimicron)	nm
Naperian base	e
negative	neg
neutron	n
normal (concentration)	N
normal hydrogen electrode	NHE, SHE
nuclear magnetic resonance	nmr
ohm	Ω
optical speed	<i>f</i> /number
outside diameter	o.d.
oxidant	ox
page(s)	p. (pp.)
parts per billion, volume	ng/ml
parts per billion, weight	ng/g
parts per million, volume	μ g/ml
parts per million, weight	μg/g
percent	%
phenyl	ϕ , Ph
pico- (prefix)	p-
positive	pos
potential	E
positron	β ⁺
proton	p
proton magnetic resonance	pmr
quantum (energy)	ĥν
radiofrequency	rf
reciprocal ohm	$mho\left(\Omega^{-1}\right)$
reductant	red
reference	ref
resistance	R
revolutions per minute	rpm
saturated calomel electrode	SCE
second	sec, s
solid (physical state)	S
specific gravity	sp gr
standard hydrogen electrode	SHE, NHE
standard temperature and pressure	STP
temperature	temp, T
thermal gravimetric analysis	TGA
J,	

Abbreviations • (xv)

torr (mm of mercury)	torr
tritium	t, ³ H
ultraviolet	uv
vacuum	vac
vacuum tube voltmeter	VTVM
versus	vs.
volt	. V
volume	vol, V, v
volume per volume	v/v
volume per weight	v/w
watt	W
wavenumber	cm ⁻¹
wavenumber difference (Raman)	$\Delta \mathrm{cm}^{-1}$
year	yr, y

Symbols

```
A
                 absorbance; activity (radiochemistry); area; atomic weight
A_{nm}
                 transition probability of spontaneous emission (m \rightarrow n \text{ energy level})
                 specific absorptivity
а
                 hyperfine coupling constant (esr)
a_i
a_{r}
                 activity of species x
B
                 source brightness
B_{mn}
                 transition probability of absorption (n \rightarrow m \text{ energy level})
                 transition probability of induced or stimulated emission
B_{nm}
                 (m \rightarrow n \text{ energy level})
b
                 distance, optical path length, thickness
C
                 concentration; capacitance
C_{M}
                 concentration of solute in mobile phase
                 concentration of solute in stationary phase
C_{\mathcal{S}}
c
                 velocity of light
D
                 dielectric constant; diffusion coefficient
D_{MO}
                 dissociation energy (of metal oxide)
d
                 diameter, distance, or spacing
d_f
                 thickness of liquid film
d_p
                 particle diameter
                 electrode potential; potential of a half-reaction; energy
E^{\circ}
                 standard electrode potential
E_{1/2}
                 half-wave potential
E_i
                 ionization potential; energy of electronic state
E_i
                 junction potential; energy of electronic state
е
                 electronic charge; Naperian base (logarithms)
\boldsymbol{F}
                 faraday; fluorescence
F_c
                 volume flow rate of gas
F_T
                 total flux transmitting power
f
                 focal length; fractional abundance
f_{nm}
                 oscillator strength (n \rightarrow m \text{ energy level})
                 activity coefficient of species x
f_{\mathbf{x}}
f/number
                 effective aperture ratio
                 high-frequency conductance
\Delta G^{\circ}
                 Gibbs free energy
```

```
g
                spectroscopic splitting factor; statistical weights of particular energy levels
H
                magnetic field strength, plate height (chromatography)
\Delta H
                enthalpy change; peak-to-peak separation (esr)
h
                height; Planck constant
1
                radiant intensity; spin quantum number
I_d
                diffusion current constant
                emission line intensity
I_{\nu}
                angle of incidence; current
i
i_d
                diffusion current
                limiting current
i<sub>lim</sub>
                residual current
i,
J
                spin-spin coupling constant
j
                compressibility factor (gas chromatography)
K_{\alpha}
                acid dissociation constant
K_d
                partition coefficient
K_f
                formation constant
K_{i}
                ionization constant (gaseous state)
K_{sp}
                solubility product
K_{\mathbf{w}}
                ion product of water
k
                Boltzmann constant; partition ratio and capacity factor (chromatography);
                force constant (ir); general constant
k_{\nu}
                absorption coefficient (optical)
\boldsymbol{L}
                length or distance; lightness (color), inductance
М.
                angular momentum quantum number
                mass of mercury (dme); order number (optical); metastable
m
m^+
               ionized mass fragment
m/e
                mass-to-charge ratio
N
               noise; plate number (chromatography); total number of something
N_A
                Avogadro number
N_i, N_m
               number of species in excited energy state
N_n, N_0
               number of species in ground energy state
n, n_D
               refractive index (at D sodium line)
               number of electrons transferred in an electrode reaction; unshared
n
               p-electrons
P
               pressure; radiant power
P_{M}
               parent mass peak
               incident radiant power
P_0
               pressure; type of electron; depolarization ratio (Raman)
р
p-
               (prefix) negative logarithm of, pico-
Q
               flow rate; heat capacity
R
               gas constant; resolving power
R.I.
               retention index (Kovats)
               radius; counting rate; resolution (recorders); angle of diffraction
r_D
               specific refraction
```

(xviii) Symbols

```
S
                 electron spin; saturation factor (radiochemistry)
S_1
                 first excited singlet state
S_{0}
                 ground electronic state
\Delta S
                 entropy
S/N
                 signal-to-noise ratio
\boldsymbol{T}
                 temperature; transmittance
T_{i}
                 spin-lattice relaxation; first excited triplet state
T_c
                column temperature
                 time; prism base length
t_{1/2}
                half-life
t_R
                retention time
\nu
                volume; voltage
V_g^{\circ}
                specific retention volume at 0°C
 V_{M}
                volume of mobile phase
V_N
                net retention volume
 V_R
                retention volume
V_R'
                 adjusted retention volume
                volume; velocity
υ
W
                weight; zone width at base line (chromatography)
W_{1/2}
                zone width at ½ peak height
W_f
                flux
W_L
                weight of liquid phase
w
                effective aperture width
X_C
                capacitive reactance
X_L
                inductive reactance
\boldsymbol{Z}
                atomic number
                valence
z
z_+, z_-
                ionic charge
                degree of ionization; relative retention ratio
α`
[\alpha]
                specific rotation
β
                blaze angle; buffer value; volumetric phase ratio
\beta_N
                Bohr magneton
                activity coefficient; emulsion characteristic (photography); ratio of
γ
                specific heats at constant pressure and constant volume; surface tension
Δ
                (prefix) symbol for finite change
δ
                chemical shift (nmr); thickness of diffusion layer
б
                (prefix) partial derivative
\epsilon
                molar absorptivity
\epsilon_{\max}
                molar absorptivity at wavelength of an absorption maximum
                viscosity
η
                refractive index (D line of sodium)
\eta_D
                cell constant (conductance)
[\theta]
                molecular ellipticity
к
                specific conductance
```

Symbols (xix)

Λ equivalent conductance Λ_{∞} . equivalent conductance at infinite dilution λ decay constant (radioactivity); wavelength $\lambda_+, \lambda_$ ionic conductance wavelength of an absorption maximum λ_{max} ionic strength; linear absorption coefficient; magnetic moment μ mass absorption coefficient μ_m mass absorption coefficient μ/ρ frequency; designation of vibrational levels $\bar{\nu}$ wavenumber Δv_D Doppler broadening Lorentz broadening $\Delta \nu_L$ pi (3.1416 . . .); type of electron or bond π density; resistivity ρ capture cross section; shielding constant (nmr); standard deviation σ reciprocal lattice vectors σ_{hkl} chemical shift (nmr); mean emission lifetime; resolving time; time constant velocity υ Φ neutron flux φ quantum efficiency Pauling electronegativity χ ω chopping frequency; overpotential

 ω_c

angular velocity

molar concentration of

Periodic Chart

1 H 1.0079 3 Li 6.941 11 Na 22.98977	4 Be 9.01218 12 Mg 24.305	M8		VB	VI B	VII B			
19 K 39.098 37 Rb 85.4678 55 Cs 132.9054 87 Fr (223)	20 Ca 40.08 38 Sr 87.62 56 Ba 137.34 88 Ra 226.0254	21 SC 44.9559 39 Y 88.9059 57 *La 138.9055 89 †AC (227)	22 Ti 47.90 40 Zr 91.22 72 Hf 178.49 104 § (260)	23 V 50.9414 41 Nb 92.9064 73 Ta 180.9479 105 § (260)	24 Cr 51.996 42 Mo 95.94 74 W 183.85	25 Mn 54.9380 43 TC 98.9062 75 Re 186.2	26 Fe 55.847 44 Ru 101.07 76 Os 190.2	27 Co 58.9332 45 Rh 102.9055 77 Ir 192.22	28 Ni 58.71 46 Pd 106.4 78 Pt 195.09

() Numbers in parentheses are mass numbers of most stable or most common isotope.

Atomic weights corrected to conform to the 1971 values of the Commission on Atomic Weights.

© by Fisher Scientific Company. Used by permission.

*Lanthanum Series

58	59	60	61	62	63
	Pr				
140.12	140.9077	144.2	(147)	150.4	151.96

'Actinium Series

90 Th	91 Pa 231.0359	_	_		95 Am
232.0361	231.0339	230.027	237.0462	(277)	(245)

of the Elements

IB	ШВ	MA	IYA	VA	AIA	ATTA	INERT GASES	
		\bigwedge		\bigwedge		1 H 1.0079	2 He 4.00260	2
	$/ \setminus $	5 B	6 C 12.011	7 N 14.0067	8 0 15.9994	9 F 18.99840	10 Ne 20.179	2
$/ \setminus$		13 A 26.98154	14 Si 28.086	15 P 30.97376	16 S 32.06	17 CI 35.453	18 Ar 39.948	2 8 8
29 Cu 63.546	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 AS 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80	2 8 16 6
47 Ag 107.868	48 Cd 112.40	49 In	50 Sn	51 Sb 121.75	52 Te 127.60	53	54 Xe 131.30	2 6 18 18
79 AU 196.9665	80 Hg 200.59	81 Ti 204.37	82 Pb 207.2	83 Bi 208.9804	84 PO (210)	85 At (210)	86 Rn (222)	2 8 18 32 18 8

64 Gd	65 Tb	66 Dy	67 HO		69 Tm	Yb	71 Lu
157.25	158.9254	162.50	164,9304	167.26	168.9342	173.04	174.97
			1				
96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

3