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ON THE CLASSES OF SEMI-HOMEOMORPHIC
SPACES AND SEMI-TOPOLOGICAL
PROPERTIES

Yanc ZHoncouane (5 E1)

(Department of Maothematios, Shaanyi Normal University, Xi'an)

Reeeived December 22, 1887,

I. INrrOLUCTIGN

The eoncepts of semi-homeomorphisms and semi-topological propertics were intro-
duced by 8. . Crossley in 1972. Since then. a series of papers concerning them
have been published" ., In this note we shall discuss the structure of the class [/ ]
eosisting of all topologies on 4 set X which has the same semi-open sets as (X, ).
Al first, we shall give two new constructural forms of the finest topelogy in |27 ].
Tren we shall turn to deal with the conditions for the existence of the coarsest topol-
ogy in [/ ]. Furthermore, some necessary and sufficient conditions for twe topolog-
feel spaces being semi-hemeomorphic will be oblained and some new semi-topological
properlies will be given. In aldition, the results in Refs. [1 -3] ean be simplified
by using the results obtained.

Now, we introduce the main definitions. For tho other unimportant definttions,
see Refs. [4—T7]. We do nol assume that regular and normal spaees are T'\-spaces.

A set & 1s saild semi-open if there exists an open set 7 sacli that 'S i,
A set P is said regular open if P70 =P, Tet f be a one-to-one mapping of a
space X ontv a space ¥ and, for every SCX, § is semi-open in X iff F(8) is semi-
open in V, then f is said to be a semi-homeomorphic mapping from X onto ¥, and
X snd Y are suaid to be semi-homeomorphic™. A property which is preserved by
semi-homeomorphie mappings is ecalled semi-topological property™. (X, /) and (¥,
%) are semi-homeomorphie iff there is a topology ¥ on X such that (X, ) and
(X, 2/) have the same collections of semi-open sels and the spuces (X, ) and
(¥, %) are homcomorphic. Hence, we always think that every pair of semi-home-
omorphic spaces are delined on the same sot.

In tae following, (X, %/) will always be a twopological space. let AT X and &
be 4 topology om X. Denote by Ay and A% the closure and the interior of the set
4 in the space (X, @) respectively. We shall abbreviate (43)3 and (A% )5 to
A" and Ay respectively. Assume that &y, Ny, Dy and Hy are collections of
all semi-open sets, nowhere dense sets, dense sets and regular open sets of (X, )
respoctively. If %7 = @7, the subscript % will be omitted. Let [/ ]1={¥"| 52y —
&'}, For convenience, we shall usc the same symbol [/ ] to express the family { (X,
¥ )| &y = &}. The mesning of [9/] is clear from the context.
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Proposition. Property P is o semi-topological property iff for every (X, %),
(X, @) hoving property P implics that svery space of (%) has property P.

II. Tue ConstTRUCTION OF THE Fmest Tororocy

Theorem 1. F(Z/) =—=1iVe &|¥Sec &, V(I8¢ &}
is the finest topolugy tm |7 ).

Lemma 1. If 8¢ &7, thrn S7™S¢ 4.

Lemma 2, If Ve F(2/), then VOV °

The Proof of Theorem 1. It is casy to see that F(%/) is a topology on X. And
every topology of [@/] is coarser than the topology F(Z/) because the intersection
of an open set and 2 semi-open set is semi-open™. Hence, we have only to show
that & pay=5&7. For every S € Sy, there exists ¥ € F( %/ )T & such that VO ST
Viia and bhence VICSC VP, 1.0, 8§ € 27, Thus &Prian ", To prove that & C P rran.
it is sufficient that U7 CUF(a holds for cvery V€ %¢. For every z€ U7 and every
We P(¢) such ihat W 22, by virtue of Lemma 2 we have W™° DO W 32, hence
W™NU is a nonempty open seg in (X, @7), and by Lemma 1, we have WNT =
(WPNUNW™\W) = . Thus z€ U5,

Corollary 1. Let . he a femily of some subsets of a set X which is closed with
reapect Lo arbitrary anion and ¢, X € .7, then F s the sef of all semi-open sefs of
seme topclogy on X iff 7 satisfies the following conditions:

VS8eF, ave T, YA, Be F(ANVE T ) and if BNSe T, BNSxN
then BV &= 1.
Theorem 2. F(%/) = {Ve &F|VCV™} is the finest topology in [ 97 1.

Til. ConpiTions FoR THE ExmsstEnce or The CoaesesT ToroLocy
Lemma 3. ff ¥ ¢ [ %], then ¥8€ &,

Sy =87, 8 =58

Corollary 2. YV ¢ [P/, Ky =K.

Corollary 3. The semi-regularizations of all the spaces of [ D71 are ome and
the sams.

Corollary 4. The collections of the clopen subseis of all the spuees of [ 2/ ] are
one and the some,

Theorem 3. If there is a semi-regular 'spacc in [%/), then the scmi-regular
spaee 18 the coarsest topology i [ 27\

Theorem 4. There cuxists at most one topological spuce in [ 2B/ ] which is semi-
regular.

It is shown by example that none of regularity, normality, 7., T2, and 7,
compactness ete, iy a semi-topelogical property. Theorem 4 explains the faet theoreti-
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Lemma 4. 7/ (X, %/ ) is T, and X dx,, then the spacc (X, %) with topology
generated by B = {Ue @/ 1 Um or U =17 as a base belongs to [Dr].

This lemiua implies
Theorem 5. If (X. 27} is 1\, then {8 08¢ &) =10 VL e @/} s a base for
the spuce (X, 1) [@¢r]), where NP ] = ﬂ iy i

relwl

Corollary 5. 7+ (X, @) i3 T, and (@] contains the coarsest topology ¥,
then {87°|8€ &} = {1 U €@} s a base for 7 and (X, 3) is o« semi-regular
sraee.

EBemark 1, In Theorem 5 the assumption that X s a 7-space cannot he re-
placed by the assumption that X is a Ty-space.

Bemark 2. The fact that (X, 2/) is a 7,-space, even if (X,%/) is a Urysohn
space, docs not imply the exigtence of the coarsest topology.

Example 1. Let X be thsz set of all real numbers and @ the set of all rational

numbers. Yor every x€ X, define 2% (.ﬁ:)={{x}U K;t — 1—, x,—i—i) N Q}
n n

n==1,2,

- } as a loeal base at point . The topological space generated by the neighbourheod

system {5 (@) ;e is o Urysohn spuce but the coarsest topology in [€7] does not
a3ist,

Theorem 6. A sufficient condition for the coistence of the coursest topology in
L%/] is that every nonempty open set of (X, @) includes a nonempty reguler open
set. If (X,@/) is T, then this condition is also wecessary.

Theorem 6 will he proved in the mext scction.

IV. Some Semi-Tororocicar 1’roprrrins

Lemma 5. . — (NCX|VDe &, N'NDeD}.

Theorem 7. Let @7. % be two topologics on X, then the following statements
are cquialent:

() & = Fy;
(ji) .@ - \@y and @ =@y;
(i) & = Fy and N = Ny

The following examples show that nome of the fucts K = FH,, F =D, or
A= ANy implies &F = 57,

Ezample 2. Let X be an infinite set and </ the finite-complement topology on
X and %7 the anti-discecte fopology on X, then B=Fy=1{¢, X}, but & = &7y,

Ezample 3. Let X be the set of all reul numbers and ¢ be the natural topol-
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ogy on X. Tet (X,%) be the Sorgenfrey line™. Then & = Py and A =
Ay, it & = &7,

The Proof of Theorem 6. Sufficiency. By Ref. [5] and the assumption, we
have directly shown that the space (X, ) with topology generated by {87°[5S¢€ ¢}
as & base satisfies that &£ = Hy and & = &,

Necessity, Let (X, /) be a T,-space. By Theorcm 7 and Corollary 5§, we
know that if " is the coarsest topology in {277, then {878 €@} ={U"°T e g}
is a bagc for the spave (X, %) and & — Py . Hence, every nonempty open set of
(X, 9¢) includes a nonempty regular open set.

Theorem 8. 7, almost regular, T,, extremal discommective and S-closed are all
semi-topologicul properties.

Theorem 9. H-closed is o semi-topological property,

Theorem 10. The property of o spuce having cellularity equel to m is a  senm-
topological property.

The anthor wishes to express his gratitude to the reviewer for the giving of
Corollary 1,
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ESTIMATE OF COMPLETE TRIGONO-
METRIC SUMS

Qr Mmnceao (ginss)  anp D Pwe (T )

(Qinghne TUniversity, { Institute of Mathematics, Aeademia
Beijingy Sinica, Beifing)
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Let g be an integer 2> 1 and f(2) = mua* + -+ + @z + @, be a polynomial of
degree k with integral coefficients such that (e, --+, ax, ¢) =1. By a complete
trigonometric stim we mean a sum of the form

I3
Sg, f(z)) = Z Nz
2=

Since for k=1, 8(g, f(x)) =0, and the case k¥ = 2 can be settled by the theory
of (Gaussian sums, we only consider & == 3.

n 1940, Prof. Hua™ first proved that

1
8(g, f(2) = 0(g *), (1)
wher2 the constant implied by “0” depends only on % and . The main order 1 —

—;- 1s the best possible. Afterwards, some mathematicians arve interested in the im-
i
provements of the constant implied by “0%. [n 1977, Prof. Chen™ and C. B. Creq-

kuu™ proved respectively that
_1
18(g, fx))| <e*%q %, (kz23),

and

18Cq, F(=))| < B()g*,

where

B(k) < exp {k+o( k )} k — co.
logk

Recently, Lu Minggao' has proved that
i
-% c
{8(g, 7o) <e*g *, (=3).

Our object in this note is to prove the Following

Theorem. Let f(z) = apz® + -+ + ayz+0, be o polynomial with dntegral of-
froients such that (e, +-+, @y, gy = 1. Then for k= 3 wc have
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o ik 1'—%
|8(a, flz})]|<e¢¥q *.

Lemma 1%, Lot & be an integer > 3 and f(z) =+ -~ + ez + & be @
polynomial with integral cocfficients such that (@, --+, an, p) =1, where p is «
prime = k. Then for 1 2= 1, we have

1, p > (k— 1)77;
T (kR it < E-DF
Ry, z))ip MV

", (h— DF 7 < p< (k— 1%

2
(k—-1L)p" , kE<p< (k-l)" ‘.

Lemma 2. Let k be o integer == 3 and p be a prime << k. Again let f{x) —
ayck + -+ + ax + ay be a polynomial with integral coefficients such that (a,, ---,
ey, ) =1. Then for I =1, we hove

S 5 06D
8@, @) < G— kD" p" ¥
Prcof. We define ¢ by p'i|(kay, +--,2a,, a,). Lel gy, -, g be the different
zeros modulo p of the congruence p~*f () =0 (mod p), (0 <<z << p), and let m,,
<+, m, be their multiplicities. Putting my + + -+ -+ m, = m, we get obviously m =
P — 1.
(i) 1=.9¢. It iz obvions that the lemma is true.

(i) 1=2¢t + 1. Tf {=0, then the lemma is true. If £ = 1, we have the substi-
tution that « ==y + p "'z, where y and 2 run independently through the values

y:],...,p}—,‘_1’ zmol.__,p:ﬂ.__l_
Thus we have
AW
S @) = X et () 3 e (2 FE + o)
¥=1 =0

If either p is an odd prime and ¢ 21, or p =2 and £ 2= 2, then 2p[f"(y), (1=
Yy <= p'” 7). Henee we have

AR ONEDS 35 et <
v—ujcmod £
_1
= (& — ])k"pk p‘-(l ").
It p=2 and ¢ =1, then I = 3. FHenee we have

2 1,
18C, E)| < p =250 < e — Dbt PR,
(iii) I == 2(f + 1). We make a substitution as (ii), then we have

’ pt

$(0', 7)) = 20 20 et(F@Y = 2 Bt ()
i=1¥=1 i=1
=pjimed £)
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It pill(f(py + ) — f(m)), then we pus g, (y) = p~"1(F(py + w) — f(w)).

We now apply the method of indueiien on I to proving that if 1220 + 1),
then

S, 1(2)) | < mbipr " pCE), 3

For any f(«) satislying the conditions of the lemma, when I = 2(¢ - 1), it follows
from (2) that (3) holds.

Let t; satisfy p#llgn;(y). For 1> 2(¢ + 1), les
o= {1 U220+ 2t 4 2],
and oy =1{jr =0+ 24+ 1},
s = {j: 1< o5 + 2]
3
Patting M; = Z mi(e =1, 2, 3), we havez M;,=m. It is easily seen that
Je =1

| Suppf | = 0T 8(p™%, gu,(y))|. (4)
By the inductive hypothesis and (4}, we have

2 1 8ustl = 25080 g (0)]

i€t jeat
2z i
< aratptt p08) (5)
For 8(p™"1, g.;(9)). we apply the method similar to (ii), then we have

20 1wl = 3TETNSG, g ()]
J ey jEwa

: £ 2-1 d(1-F
< M, kFp¥ lp(‘ A)‘ (6)
Finally, it is obvious that
!
- ]
D20 Bt == > IZ et (f (uj + pY))
jeu, jeay 'U=1
2 3_ I _l
< it R, (7)
It follows from (5)—(7) that (3) holds, hence the lemma is true.
In view of Lemmas 1 and 2, and by computation. we complete the proof of the
theorem.
REFERENCES
Hoa Loogeng, J. Chinese Math. Sec., 2019407, 301— 312,
Chen Jingrun, Setentic Sintca, Z0C1977), 6: T11—719.

i]
2]
f83 Creukwm, C. B., Tp Mar. HH-Ta An. CCCP, 143(2077), 188—207.
(4] PR, XTFEE= ki —aEinoeis.
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COMPARISON OF LINEAR MODELS ON
AN ESTIMABLE SUBSPACE

Wanc Songaur (F-fiE)
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Recelved January 11, 19835,

[. InTropUCTION
A linear model denoted by ! == L(Xpg,d'I,) is a structure
y=Xg+¢, E(e)=0, Cov(c)=7d1,, (1.1)

where y 18 an » X 1 veelor of observations, X is an » X p design matriz, # is a
p X 1 vector of parameters, ¢ 18 an n X 1 vector of random ervrors, and ¢’ is a
known error variance.

For two linear models I, = L(X, oll,) i=1, 2, with common parameter §,
their comparison might be made in terms of the varianees of BLUE (the Best Linear
Unbiased Estimator) of all linear functions ¢’ which are ostimable in (i =1, 2).
For a matrizx 4. denvte 118 column space by u(A). Under the condition u(X}) <
u(X}) comparison of the models (1.1) is studied in [1]. Tn view of applieation,
however, the condition w(X;) © (X)) is too stringent. One often would like to
compare two linear models based on the performunce of BLUE of some specially
chosen estimable functions. The present note is devoted to this topic. We first give
some characterizations for three types of relationships of linear models with nuisance
parameters (defined in Definitions 1 and 2 below) in terms of the variances of
BLUE of the estimable funetions in a subspace a(A)Cu(X]) N p{X7), and as a spe-
cial ease, then, analogous characterizations for models {1.1) are cobtained.

I, Mam Rasurrs

In this section we first consider the following linear models with nuisance param-
eters

?.l = L(Ilﬂ +- Zlv, !’T%I,.‘): ¥ = Xﬂ? + Zl” + £y E(e’l) == 01 GO'V(SI) = UfIﬂl’ (21)

l, = L(Xzﬁ + Z,5, O-:;Iﬂg): , =X,8+ Z,6 +e,, E(e,) = 0, ODV(&;) = 0‘%[.,:, (2.2)

. . . 8 8-
where (X;, Z;), t=1,2 are design matrices, ( ) and (6) are unknown veetors
i

of parameters, » and & are nuisance parameters. o7 is known.

1

X, X A
Lot w(A4) p(z,l) M ( ZZ)’ and denote by £ the least {squares solution of &
1 2
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under I;, i =1, 2.

Definition 1. If for any o€ u(A), Var(e'd) < Var(¢',), we say that 7, is at
Jeast as good as I, with respeet to # ou w(Ad), and write I, 2=1,, (8, »(4)). Fur-
ther, if there exists ¢, € p(A) such that the striet incquality holds, we say that I, is
gtricily better than {, with respect to § on u(4), aud write L, >, (8, w{4))

Definition 2. If I, =1, (p, wlA)) and §, =1, (¢, w(A)), we say that I, is
equivalent 1o I, with respeet to 8 on u(A), and write I, &= 1,, (8, p(4)).

X; Zy
We partition X, Z;, into X; = (Y”), %= (7”>, +=1, 2. Bince v and &
e {2 <1

are nuisance parameters, we arc only interested in the estimable functions with form
¢'8 for comparison of (2.1) and (2.2). Suppose that we are to compare the models
in terms of the variances of BLUE of ¢'g, where ¢ lies in the subspace &(X}) =
#(X.). Observe that ¢'8, c¢€ w(X,) is estimable in [, iff ¢ € (X, Z8%), where A*
is a matrix with maximum rank sueh that A°A+ ==0.  Therefore the estimable sub-
space used can be taken as u(4) = p(X ) Z1) = u(X,Z75). Tt is easy to show that
El ;lu (18: @‘(A)) iff

(Z3Y Xy MiXuZ5 2 (Z8) Xy My X024, (2.3)

where M; == o}( XX, — X32/{Z.Z;y Z:X,), i=1, 2, A~ is a generalized inverse of
A, and A2 B means A — B =0

There are two situations we shall consider,

(u) Let
w(X)Nu(Xpy = {0}, i=1, 2 (2.4)
a(Zy) Neu(Zy) = {0}, i=1, 2 (2.5)
#(XuZ) = p(X5Zi) Dpu(d). (2.6)

Theorem 1. For twe lLinear models (2.1) and (2.2), under the conditions
(24)—(2.6), L =1, (8, u(A)) iff H, > H,, where

fj! = {X:'LX:"I - —X;lzfl(z:'lzil)_z:’lxel].Ho‘f:a 5 = 1, 2» (2.7)

FProof. We first prove that
Xﬂl(X;X;’)—XZ’l = Xn(X£1Xn)-X;1; (2.8)
X (X:X.) X, =0. (2.9)

In fact, from (2.4) there exists a nonsingular matrix P'=(P;P,P}), such that (X)) =
w(P) and w(X) = u(F)). Thus,

Xn = (Q‘l 0 O)P,- Xy = (0 QJ O)Ps

where € and €, are of full rank of eolumns. Therefore
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Q¢ 0 0\ /e

le(xéxz)_le = (Ql 0 O) O Q;Qg 0 0
v 0 0 0 1]

[ Ql e

:(QEUO) 0)(9100) 0)

Y a/

= X (X X)) Xa,
this proves (2.8). And (2.9) can be proved in a similar manner. Denote by P,
the projcctor maotrix onto #(B). In view of Theorem 2.18 of Pringle and Raynerl?!
and (2.8) auc (2.9), we cbtuin
X M7Xy = ol X (XX, X5 — Xy (XX X5Puir (T + Py Puxn Puzy) ™
- P,‘[sz‘:X;Xz) Xy

. . S By 21 0
= UEXZI[(XZLXMD - (Xn(xzxxn) X 0)( W )
. 0 Pp(zn)

(I + PuunPux,oF pize & "]_1
0 1+ Pﬂ(zn}Pﬂ(xn)Pﬁl(zn} ’

(Py(z,.u 0 ) X.n(xglx‘al)dx:’.;)—l X;
- 0 P,;(z,:) - 0 - “

= i X [(X 50X 0) ™ — Xa(QA0Xn) XaPuro(I + Puz,yPux, s Puz,) ™'

) Pp(Z:.)Xﬂl(Xélle)“Xél]X;l

= X, H X),.

By using (2.3), (2.9} and (2.6), it i{s easy lo prove that
Xp( X' X)X, = Xn(XX ) Xy, Xp(XX) X, = (X0 Xw) Xy,
X}Z(I;Xl)-_x;l = 0.
Accordilg o these fauts snd in a similar faghien, we ean prove X, M; X =
X, Hr X, MHence, {, =1, (ﬁ; p(4)) iff
(Z3) Xy H; X026 = (Z4) XuHT X075, (2.10)
Denote vy w(A)* the orthogonal complement of @(A4). Note that H; = X, P 7,1 X},
2 =1,2. Therefore
plH;) = p(XnPot) == {u: uw= X,t, Zyt =0 for some t}

From this fact, it is casy to see that (2.10) i equivalent to

H, = H,H H,. (2.11)

To complete the proof of Theovem 1, it is sufficient to show that (2.11) is equivalent
to H, 22 H,, As I, 220, §=1,2 with the same rank, there exists a nonsingular
mateix I, sueh that H, = 7 DT, ¢ = 1,2, where D);, ¢ ==1, 2, are diagonal matrices
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with the same number of nonzero elements. Therefore H, = H,<3>D, =D, &<
D, 22 D,DID, <= H, = H. IO H,, where DY is the Moore-Penrose inverse of D,. 'This
completes the proof of Theorem 1.

Theorem 2. Under the comditions of Theorem 1, 1, =1, (8, u(A)) iff H, =
H,, H,+ HH H,

Proof. From Definition 1 and (2.10), I, =1, (3, u(4)) iff H, = H, and
ol Z5)' X Hy X0 2y > ed( Z25) X BT X Zhie, Tor some . {(2.12)

Sines w(H,) = p(XHZi), (2.12) is equivalent to ¢'Hjf>t'H.H;Hi for some ¢&.
Note the fact I, 2= H,<=>H, > H,JI[I, proved in Theorem 1, this eompletes the
proo’ of Theorem 2.

Corollary 1. Under the conditions of Theorem 1. 1, e L, (8, u(A)) iff H,=H,.
(h) Let
(X Nu(Xy) = {0}, w(Z) N u(Zy,) = {0}, (2.13)
w( X Z;) = n(XpZh)Lu(B). (2.14)
Theorem 3. Supposc that (2.13) and (2.14) hold, then 1,21, (8, w(B)) iff
M, = H,.

Theorem 4. Under the conditions of Theorem 3, 1, > 1, (8, u(B)) iff M, =
H;y H, = H,M{H,.

The pryot of Theorems 3 and 4 can be carried out in the same way as that of
Theorems 1 aud 2, with suitable modifications.

Corollary 2. Under the conditions of Theorem 3, {, 22 1,, (8, u(BY) iff M\=H,.
Next, we consider the comparison of the limear models
I, = L(X.8, U%In,:): ¥ =X+ e, E(e;} =0,
Cov{e,) = oil,,, t=1,2. (2.15)

It is easy to sec that (2.15) is a special case of (2.1) and (2.2) with Z, =0, i=1,
2. Hence, the results below can he obtained direetly from the preceding theorems
and corollaries for the models (2.1) and (2.2).

Some obhvious modifications of Definitions 1 and 2 for the model (2.15) is need-
ed. [f we consider the comparison of [;=L({X,8, oil,), ¢=1,2, on an estimable
subspace u(C), then for three oriering relationships, the mnotations I, =1, (u(€)),
o>, (u(0)} and L e 1, (p(€)) will be employed.

TLet

X
L=( ),@mhz
X,

and p(Xy) = p(X}) and denote p(€) = w(X}). Then I, =L, (u(C)) iff
Xy (X3X,) " X5 =2 olX (X1 X)X,
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Corollary 3. Suppose w(Xi)Np(X:) = {0}, i=1, 2. u(X) = p(X3). and
denote p(C). Then

( . ) i, =1y, (“(C,)) == 00X, /e = X;HYA/UEI;

Yol 29

o * . L]
Xllx-l-ulgl = XYoo

(i) & > 1. C @{ . . . .
) l (”( )) lﬁX:uX:i_-\_‘U'gleXsl(Xu-Y;J_-".anL;

(11) I'Il =4 \'12) (#(C)) ‘@X;LXI a"fgf = X;— 'n/o'j-

Corollary 4. Suppose p(X3)Np(X.)={0}, w(V))=u(Xy), and denote u(D).
Then

( i ) I, =1, (“(D)) 'ﬁjr;xl}rgi > X;an/(ff;

W

XX /ol 2{;1‘1—‘;1,‘{0’}';
O-EXEIX‘H % oiX X, (X;JYL\)WJY;Xn;

\

() &> b, (D)) = {

it

(i) &4 =1, (u(D)) <= X \X,jo} = X\ X,/0t.

The author is indebted to Prof. Chen Xiru for his gnidance and to Dr. Bai
Zhidong for his helpful discussions.
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In this note, the bandwidth of the product of two I'-type condensed grapls is
obtainzd, and the relevant conclusions in Refs. [2-—6] are generalized sinee the path,
the eyele and the complete graph are the three kinds of the T'-type condensed
graphs.

[ Dermamions anp Exampirs orF I'-Tyre Conoensen (Graphs

In this note, the common concepts and symbols in ordinary works on graph the-
ory are employed. The senses of the symbols Lr], [r], |S|, 88 (or 8:8) can be
found in Ref. [1], aud the definition of the product of graphs in Ref. [7]. Besides,
J denotes the set of all integers. For integers n == m>=1, write J[m. n]— {m,
m+1 -}, J,=J(n) =J[1, n], and writc J, = ¢.

Defimition 1.1, Let ¢ be a graph, and let |V(G)| =n>2. Tf there is k€
Jny and a nwobering f: V(G)—J, such that |8W| = min { W[. %} for ANy prop-
er subset W of V(&) and f(8(;(J)))=J[i—k+ 1,i] for any i€ Jlk, n—
11, then & is called a I'-type condensed graph (shortly called T graph below) of
kth order, and f is called a condensed numbering on ¢ (or V(&)).

Erample 1.1. The path P, (only » =2 is considered). the evele €, (only n ==
3) and the complete graph K, (only n 3= 2) are T eraphs of the 1st, 2nd and (n—
1)th orders, respectively.

Example 1. 2. Suppose that graph G,C6CH, V{G) = V(G). It is not Jdifti-
cult to prove that if both @ and @, are zll T graphs of the kih order, then so is
1, and each condensed numbering on G is the same on Lo

Definition 1. 2. For atiy # >k =1, construct a graph G, V(G = {v, ---.
toty F@n) ={vwy: 1<i< j<<min {4k n}}, then G is a T gruph of kth
order. Every graph isomorphis o G, is called a maximum T oraph. It ig easy to
verify that every T graph is a subgraph of a2 maxisam T graph having the sane
vertexes and the same order.

Egample 1. 3. Let (7. be the same as in  Definition 1.2, and let @ ok,
V{GE) = V(G,). Tt is not difficndt to show that if way€ E(G) for 1ei< j=ik
or n—i+1lssi<tj<un and ew,. € E(F) when o0, 6 E(G) for i€ S, JEJI4,
t+ %], then & is 2 T graph of the kth order.
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Ezamplc 1. 4. From Example 1.3 we can derive that the product P, X K, of
the path P, and the complete graph Ag is a T graph of the kth order.

11. Some ProrerTEs OF ToE FPropuct or I (GRAPHS

Definition 2. 1. Let g and A be condensed numberings on T' graphs G and H
respeciively, f and f, b2 numberings on V(G X H). If {(f(u, v) — f(w’, v))
(g(u) — g(u)) = 0 and F(V(G) K {v}) = £{F (@) x {v}) for any {u, w'}C V(&)
and v€ V(H), then f is called a numbering on & X H harmonions with g, and the
rearranging of f, in the direction of g.  Simidlarly, we also have the concepts about
the numbering on € X H harmonious with 2 and the rearranging of f, in the dives-
tion o k. Now we prove

Theorem 2. 1. Let 1, I and g, h bc the same as in Definition 2.1. (i) If § is
the rexrranging of f, in the direction of g (or R), then B(f) << B(f,): (i1} B(@ x
H) =win {B(f):f i¢ ¢ numbering on & X II harmonicus with g and k).

Theorem 2. 2. If I' graphs @ end H, have the same mwmber of wertexes und
the sawme order, (=1, 23, then B(G, X G.,) = B{I, x H,).

ITI. Ter Banpwiotit oF THE Propuct or I' Grapus

Let m, n, & and ! Dbe all positive infegers, k<< m,1 <<xn.  In this seetion it is

always assumed that 4 = L?—:J, o= l%J, ¢ =m—2k, 'b=n — ul. For any non-

negative integers ¢ and 7, put 8(s, 7) = [min {(—1)7 -i,(—1)7 - j}!. Let
B2 L oa, b) = L+ 5 (L4 b)+ L (e, 1 — ),

b

B]l(;{-, ;“l’: Z:. i, b) = -Lkl -+ E h

1
F— g
2 (a, b},

B.(2, & I, a, b)=(l—1)ki+% (k+a)(l+b)+%~ 8k —a, I — b),

B2, k1, a, b)) =min {B,;{4, k I, a, b): i=1, 2},
(i +a)l=ml, if g2=1+ 2,
B g, B, 0,0, B) = (B4, %, 0, 0,0), if p=2+435=0o0r 1;
Blu, 1, L, kb ay, if p=<<1i,
Theorem 3. 1. Lot Gy dencte the T graph of the gth order having p vertexes,
then
B(G.x X G,) =B, un, k, I, a2, b),

The essentials of the proof of Theorem 3.1 is to be presented. For convenience,
et us assume that the p vertexes of Gp, are all on the real number axis: V{F,;) =
J», and on Gy, there is a chosen condensed numbering gpq, gre{i) = i{¥i€ J,).
According tc Theorem 2.2, we might assume that @, is a maximum T graph as
well, Let G =G X &,), T=V{() =J,%X J,, andl 8§ =8;. Obviously, under



