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PREFACE

The digital computer has become one of the most important and versatile togls
available to chemists., Crystallographeras and quantum chemists were among the first .
to use computers on a large scale. Today chemists are using computers not only for
such classlcel "number-crunching” applications as crystal structure determination
and ab initio calculations, but also for routine data reduction, on-line data
acquisition and control of experiments, computer-assisted instruction, information
retrieval, and even synthesis of organic compounds. An operational knowledge of
computers and computer programming is rapidly becoming a requirement for chemists.

This book is intended to serve primarily as a textbook for a numerical methods
and computer applicatione course for chemistry students. The emphasis is on soft-
ware (computer programming) rather than hardware. Also, the results of numerical
analysis and linear algebra ard presentéd and applied to the solution of chemistry
problems. The mathematics have not been derived. There are more shan 50 computer
programs in this book, 43 of which have been fully documented.

The book can be logica.liy divided into three parts, Chapters 1 and 2 provide
a review of the Fortran programming language and a collection of programs which have
closed-form solutions. Chapters 3 throogh 8 intreduce and apply various numerical
methods to the solution of chemistry problems. Chapter 9 contains an overview of
some additlonal applicatlons of computers in chemistry, and includes a relatively
extensive bibliography.

The computer programs are all written in Fortran. The particular dialect of
Fortran is Fortran-10, provided by the Digltal Equipment Corporation. The progranms
have been implemented on a DECSystem-1099 computer. Slight modifications may be
required to implement some of these programs on other computers. The execution
times cited do not include compilation time.

This book has evolved with the senlor-level elective course, "Numerical Methods
in Chemistry,” which has been offered several times at the University of Pittsburgh.
I am deeply indebted to the students who have particlpated in the development of
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this course. I particularly wish to acknowledge my graduate and undergraduate student
collaboraters who have helped me develop the software documented in these pages, I
an happy to acknowledge the Pltt Computer Center staff for their cooperation and
assistance, 'a.nd the Univeraiiy for the computer time. I am mté:ful to my colleagues
for providing me the opportunity to write this book. Mrs, Barbara Hunt deserves
speclal commendation for typing this book and its earllier draft, Finally, I am
particularly grateful to my wife, Sharyn, for her patlence and encouragement.

K. Jeffrey Johnson
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CHAPTIER 1
COMPUTER PROGRAMMING AND FORTRAN

A block dlagram of a relatively large, general pta'pose‘computer is given in Figure
1.1. The "brain" of the computer is the central processing unit (CPU). The "muscle
'i1s the arithmetic and logical unit. The CPU is the \cont.rol center for all computer
the arithmetic and logical units. The CPU is the control center for all computer
operations. These operations are executed using the binary number system (0,1).

The rate of executlion of »theae binary operations is on the order of a million to a

billion operations per second.

The memory of the computer can be divided into two types, core memory and
auxiliary memory. Core memory is a rapid-access device for storage and retrieval
of information under control of the CPU. Auxiliary memory is slower (and less
expensive) and consists of tapes, disks, drums, and other devices. Core memory
consists of an array of computer words, each wbrd consisting, in turn, of a fixed
number of bistable memory elements, or bits (binary digits). These unique magnetic
or electronic states are correlated with the 0 and 1 of the binary number system.
The IECSystem-10 computer contains 36-bit words., The Digital Equipment Corporation
sells core memory units for the DECSystem-10 computer in 64k blocks (k = 210 = 1024),
Each of these 64k words is addressable by the CPU. '

All large computer centers have extensive awxiliary storage facilities. These
include magnetic tapes, disks, drums, etc. These devices have slower access time
than-core memory because the Information is stored sequentially on the device.

For e')_mnxple, magnetic tape must be moved to the appropriate location on the tape
to access information. The time required to retrieve information from core memory
using the DECSystem-1099 computer is less than 1 msec. Access times for auxiliary
devices range from microssconds to seconds. The auxillary devlices are used for
long-term storage of computer programs and data.

The computer outlined in Flgure 1.1 is configured for three types of operations:
(a) batch processing, (b) remote job entry (RJE), and (c) time sharing. The input
and output {(I/0) devices for a batch-processing computer usually consisti of card
readers, magnetic tape drives, and line printers. The jobs (computer programs)
are queued a.nd. executed sequentially according to some schedullng algorithm
(computer-based procedure). Except for large compute-bound (as opposed to I/0-




2 COMPUTER FROGRAMMING AND FORTRAN
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Figure 1.1 Block diagram of a computer showing (a) batch processing, (b) remote
job entry, and (c) time sharing.

bound) jobs, the CPU is idle much of the time in batch processing because the CPU
" is several orders of magnitude faster than the mechanical I/O devices.,

RJE 1s an extension of batch processing designed to ilpcrease the utilization
of the CPU ard to facilitate access to the system by the users, Each RJE station
contains I/O devices. In an RJE configuration the CPU has a series of I/O queues
to process. The Jjobs are read, executed sequentially according to the priority
assigned by the scheduling algorithm, and the results directed io the appropriate
RJE station for printing. However, a powerful CPU will still be idle for a signif-
icant fractlion of the time, and therefore can support a number of remote terminals,
providing a time-sharing environment. The arrow in Figure 1.1 revolves around the
ring making contact with each remote user for a small fraction of a second.



1.2 EIEMENTS OF THE FORTRAN LANGUAGE 3

During that time informatlon can be read from the teriuinal, processing of informa-
tion can be completed, or results printed at the terminal. If the average response
time for the time-sharing system ls less than L sec, it appears to the user at the
terminal that he is the sole user of the system. He may in reality be sharing the
computer with 50 other time-sharing users, 10 RJE statlons, and a background batch

queue.

1.1 PROGRAMMING LANGUAGE

Users communicate with computers using one of four classes of computer languages.
The most primitive of these is machine language, in which the instructions (store,
add, branch, etc.) are ¢oded in blnary or some other numeric code. The second
class of computer languages 1s assembly language, where the lnstructions are coded
using mnemonics to represent the numeric codes, for example, STR for store. Each
computer has its own set of assembly instructions. Programs written in the
assembly language are complled, that is, translated into machine language by a
program called the assembler. The resulting machine language program is then
executed. The third class is the compiler languages, for example, Fortran, COBAL,
and PL/1. These higher level languages contain key words, for example, READ, GO
TO, and DO. Programs written in Fortran (source programs) are translated by a
Fortran compiler into machine code (the object program) which is tixen executed.
The fourth class is the set of interpretive languages, for example, BASIC and APL.
These languages operate in tlne—shﬁring mode, are relatively easy to learn and use,
and allow the user a maxinmum of control over the writing, debugging, and execution
of the progranm. )

Fortran is the programming language most yidely used by scientists and
englneers in the United States. The word Fortiran derives from formula iranslation,
and indeed Fortran statements closely resemble algebralc formulas. For example,
the formulas P = nRT/V and A = Aoe_kt are coded ln Foriran as follows:

P=N*R*T/Y  and  A=AG*EXP(-K*T)

Here "*" is the multiplication symbol, "# 1= used to differentiate the number
zero and the letter "0," and "EXP" refers to the exponential function. Each com-
puter has its own dialect of Fortran. The programs in this book have been compiled
using the Fortran-10 compiler on a DECSystem-1099 computer. Some modifications may
be required for successful compilation on other computers.

1.2 ELEMENTS OF THE FORTRAN LANGUAGE

The Fortran compiler reads Fortiran statements and translates them into machine-

réa.da.b;l.e code. The set of Fortran statements will be called the source deck and

the output of the Foriran compller will be called the object deck. Source decks
i
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are frequently punched on 80-column cards. The following column convention is
used:

Column 1 A "C" in column 1 indicates a comment card; comment cards are
ignored by the compiler.

Columns 1-5 Statement number; statement numbers may range from 1 to 99999.

Column 6 Continuation; any character {except a blank) in column 6
identifies the card as a continuation of the preceding card.

Columns 7-12 The Fortran source statement,

Columns 73-80 Available for identification, sequence numbers, remarks, etc.;
these elght columns are ignored by the Fortran compiler.

Consider the following Fortran statements:

CALCULATE THE DETERMINANT OF A 3X3 MATRIX !

10 20 30 40 50 60
2345676901234 5678901234 56789012345678901234 5678901 234567890

100 DETOFA=A(1,1)*A(2,2)*A(3,3) + A(1,2)*A(2,3)*A(3,1)
1+ A§1,3;*A§2,1gﬂ.§3,2g - A{i.zgugz,ig*xpag
2 - A(1,1)*A(2,3)*A(3,2) - A(1,3)*A(2,2)*A(3,1
The first six cards are comment cards. The first character of the Fortran
statement starts in column 7. The _"1".1n column six of the second statement
indicates that it is a continuation of the preceding statement. The Fortran-10
compiler will accept up to 19 consecutive continuation cards. The stateasent
"DETOFA=..." has been arbitrarily assigned the statement nuwber 100.

loNoNeNeNeNe]

1.2.1 Constants

Six types of constants are considered here: integer, real (single precision),
double precision, complex, logical, and literal. Integer constants are signed
numbers without a decimal point. The IECSystem-10 computer has a 36-bit word (36
binary digits per word). The sign of the integer 1s stored in the first bt (0 for
positive, 1 for negative). The binary equivalent of the lnteger value is stared in
the-remaining 35 bits. The available range is

-235 < integer value < 235-1
or .
-34,359,736 < integer value < 34,359,738,367
The following are examples of valid and invalld integer constants,




1.2 ELEMENTS OF THE FORTRAN LANGUAGE 5
s Valid Invalid i Reason

101 135. Decimal point

-67 -6,830 Conma

34359738367 3359738368 Too large

Real constants are signed numbers written either with a deéiml point or in
exponential nctation. Exponential notation is 1llustrated by the following
exampless '

0.157 = 1.5@‘1 W56 = 9'75&3
= 15,88-2 = 97.5682
= 157.E-3 = 975.681

The 36-bit word is divided into two parts to represent real constants. The
first 9 bits contain the binary equivalent of the signed exponential part, and the
remaining 27 digits contain the blnary equivalent of the signed fractional part of
the constant. The precision of 27 binary bits 1s approximately 8 decimal digits.
The range {(in absolute value) of real constants is

1.4 x107% < real constant < 1.7 x 10

The followlng are exanmples of valid and invalid real constants.

Valid Invalid Reason

1.72-5 =3.4E41 Exponent too large
1.76.937 96,457.02 Comma

1.2345678 107 No decimal point

Double-precision constants use two 36~bit words. Only 9 bits are assigned to
the exponential part, so the range of magnitude of double- and single-precision
values is the same. However, the preision is inecreased to approximately 16 digits.
Double-precision constants contain the letter "D" rather than "E,"” Examples of
’_va.lid and invalid double-prscision constants follow.

Valid Invalid Reason

1.00D-3 6.7 D missing

0.0D0 0.0E0 D missing
6.63D-27 0.64074 Exponent too large

Complex constants are represented by a palr of integer or real constants
separated by a comma and enclosed in parentheses, The first rmumber is the real

part, and the second number is the imaginary part of the complex constant., For
examnple,

Valid Invalid Reason

20.0,0.0) 6.3,2.4 Parentheses missing

-5.®-4,6,3-3) (6.%-4) Imaglnary part missing

(2,-5) (8. 8E72 9.68-67) Exponents too large in magnitude

ke et a2 2 g e S 1
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The two logical constants are .TRUE. and .FALSE. The logical constants
must be delimited by periceds.

Literal constants are denoted either by a palr of apoetrcphes or with the
specification "nH," where n denotes the number of characters in the llteral con-
stant and H stands for “Hollerith." Literal constants can contain one or more of
the 26 alphabetic letters, the nine numerals, and/or the set of speclal characters
(",#,$,%,8,8tc.). For example,

Valid Invalid Reason
'DATA' 'Y (0BS) Closing apostirophe missing
10H 62 PART A 6HY (CALC) Should be 7H...

1.2.2 Variables and Specification Statements

Variable names in Portran consist of between one and six alphameric (alphabetic
and numeric) characters, the first of which pust be alphabetic., PFive types of
variables will be considered heres integer, real, double-precision, complex and
logical. By convention, varlable names which begin with one of the letters I, J,
K, L, M, or N are considered integer variables. Variable names which begln with
‘any other letter in the alphabet are real (single-precision) vé.ria‘ble names ,
Valid integer variable names include KJJ, MASS, IGO, J100, and LETITB, Valid
real variable names include X, DATA, ENTROP, Q74, and Z18XY.

Other types of variables must be explicitly declared using a specification

statement. The general form is

type vl'v2"v3’ e
where TYPE is INTEGER, REAI,, DOUBLE PRECISION, COMPIEX, or LOGICAL, and v
etc,; are variable names. For example,

1! vz!

INTEGER SUM, 210, R20

REAL J,K10,IJUMP

DOUBIE FRECISION A,R,C

COMPLEX C1,02,03,2Z

LOGICAL L, LOG, FLAG
The IMPLICIT specification statement can be used to override the standard Fortran
convention, This statement allows the user to declare all variable names starting

with a given letter to be of an arbitrary type. For example,
IMPLICIT INTEGER (A-Z)

The effect of this statement is io declars all variable names in the program to be
of integer type. All variables that are single precision (real) by default can be
declared double precision by the statement

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
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Variables may be subscripted by the DIMENSION statement
DIMENSION INDEX(25),Y(100),4(10,10)

The effect of thls statement is to allocate 25 integer values to the subscripted
name INDEX, 100 real values to be stored in the vector Y, and 100 real values to

be stored (columnwise) in the array A.

1.2.3 Operators and Expressions

The five arithmetic operators and a subset of the functions available in Fortran
are given in Table 1.1,

Arithmetic expressions consist of arithmetic operators, constants, variables,
and function references. Some examples of assignment statements containing
expressions are

1. DISCR=B*B-4 ,*A¥C

2. ROOT1=(-B + SQRT(DISCR))/(2*A)

. J=IH

. P=(A*B)/(C*D)

. ASAO*EXP(-CONST*T)
Z(1)=(X(1)-Y (1)) *ABS (SIN(J*PI*Z))

o F o

Statement 1 contains only real variable names and a real constant (4.). Statement
2 1s & mixed-mode expression because it contalns both real variable names and the
integer constant 2. When this statement is compiled, Fortran-10 converts the
integer constant to a real constant. Statement 3 is a mathematical absurdity,

but in Fortran it simply means the repla.cement of the value of J by the value of
J + 1, Statement 4 contalns parentheses to avoid the following ambiguity:
Equivalent algebralc expression

Fortran expression

A*B/C*D ABVC
4*B/C/D AB/CD
(a*B)/(C*D) AB/CD

Table 1,1 Arithmetic Operators and Some Functlons

Operator or function Definition Example Comment
+ Addition Y=A+4B
- Subtraction Y=A-B
* Multiplication Y=A*B
/ Division Y=A/B B not O
* Expcnentiaticn Y=A%%B
ABS(arg) Absoclute value Y=ABS(A)
SQRT (arg) Square root Y=SQRT(A) arg > 0
E)CPgarg; Exponential, e Y=EJCPEA;
SIN(arg Sine Y=SIN(A arg in radians
ALOG(arg) 1n Y=ALOG(A) arg > 0
ALOG10(arg) log Y=ALOG10(A) arg > 0




8 COMPUTER PROGRAMMING AND FORTRAN

Statements 5 and 6 show the two versions of the "-" operavur. In statement 5, the
"_" indicates the unary operation of negation, and statement 6 contains the binary

operation of subtractlon.

Care should be taken when mixing modes with the exponentlation operator, If
the exponent is real, the base must be positive to avold imaglnary numbers. For
example, --4*%0,5 15 21, where 1 is the square root of -1. Also, A™B and A**I are
evaluated differently. The former uses the identity,

AP = exp(Blnd)

and the latter will use repetitive multiplicatlon of I < 10.

Logical expressions consist of relational and logical operators, constants,
variables and arithmetic expressions. Six relational operators and five logical
operators are given in Tabie 1.2. The truth table for the five logical operators
is given in Table 1.3. Examples of logical expressions assuming I and J are
integers, X and Y are single precision, and P and Q@ are logical variables are

I.LT.J
(x.LT.Y) .OR. (X.EQ.0.)
P .AND. (I.EQ.J)

If a Fortran statement contains several operators, the execution is determined
by the following hierarchy: ‘

functions > #» (*,/) > ("‘,—) > (<,s,>,=,=,f)
> ,NOT. » .AND. > .OR. > (.EQV.,.XOR,)

In the case of equal operator precedence, computation proceeds from left to right.
For example, the statement

Y=A+B/SQRT(C ) *D**E+CCS (F)

Table 1.2 Relational and Loglcal Operators

.Example
Relation or operation Operator (X and Y are single precision;
P and Q are logical)

> .GT. X.GT.Y

= .GE. X.GE.Y

< AT, X.IT.Y

< AE, X.1E.Y

- Q. X.EQ.Y

* JE. X.NE.Y
AND .AND. P.AND.Q
Inclusive OR .OR. P.OR.Q
Exclusive OR XOR. P.XOR.Q
Equivalence ~EQV. P.EQV.Q
Complementation .NOT, P.NOT.Q
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Table 1.3 Truth Table (T = true, F = false)

P Q P.AND.Q P.OR.Q P.XOR.Q P.EQV.Q
T T T T F T
T F F T T F
F T F T T F
F F F F P T

is executed as follows. Let G=SQRT(C) and H=COS(F),

then Y=A4B/GRDAEH
Now let P=D*E,

then Y=A+B/G¥PHH
Next, let Q=B/G,

then Y=A+P*QHi
Finally,-let R=P*q,

then Y=A+R4H

1.3 CONIROL STATEMENTS

The following Fortran statements are considered in this sections GO TO (branching),
IF (conditional branching)', DO (looping), CONTINUE, PAUSE, STOP, and END. The
execution of a Fortran program proceeds sequentially from the first statement to
the last (END) unless one of these control statements is encountered.

1.3.1 The GO TO Statement

Branching is accomplished in Fortran programs with one of three variants of
the GO TO statements

1. Unconditional GO TO ni

2. Computed ¢0 TO (nt, n2,n3,...,nk),1
3. Assigned ASSIGN 25 to 1
GO TO i '

or -
GO TO 1, (12,25,24)

Here ni1, n2, ..., nk are statement numbers and i is an integer variable name. The
unconditional GO TO statement causes control to branch to the specified statement
number., The computed GO TO transfers control to nl if 1 =1, to n2 Af 1 = 2, etc.
If 1 is not in the range 1 <1 < k, then the next statement is executed. The
assigned GO TO transfers control to the statement number corresponding to the
value of 1. If i is not assigned one of the values in the list (12,25,24), then
the next statement 1s executed. Some examples of GO statemsnts follow.

GO TO 100 ASSIGN 85 to JJ

160=4 GO TO 33

Go 1o (10,20,15,75,88),IG0 GO To JJ, (15,35,85,75)
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In these examples control is branched to statement number 75 by the computed GO TO,
and to statement number 85 by the assigned GO TO statement.

1.3.2 The IF Statement

There are two IF statements in Fortran for conditional branching, the
arithmetic IF and the logical IF. The general form of the arithmetic IF is

IF ( arithmetic expression ) nl,n2,n3
Control is branched as follows:

If the arithmetic expression is <0, branch to statement ni,

If the arithmetic expression is =0, branch to statement n2,

If the arithmetic expression is >0, branch to statement n3.
Statement numbers ni and n2, or n2 and n3 may be equal, providing the conditions
£ and 2, respectively. For example,

IF(FOFX)20,25,25
IF((ABS{X-XOLD)/X)-TOL) 95, 95,91

The general form of the loglical IF is
IF(loglical expression) statement

Here 1f the logical expression is true, then the statement is executed. Otherwise,
control passes to the next statement. Consider the following examples:

1. IF(N.LE.Q)STOP
2. IF(IPLT.EQ.1)CALL PLOT(X,Y,N,M)

3. X=P4Q
IF(X.GE.Y)X=P-Q

In the third example, the value assigned to X is P + Q if J(is less than ¥, P - Q

otherwise,

1.3.3 The DO and CONTINUE Statements

Loops (iterative procedures) are coded in Fortran using the DO statement,
DO n i=J1,J2,33

Here n is the statement number designating the terminal statement of the loop, 1
is an integer variable name, referred to as the index variable, and j1, 32, and
j3 are integer constants or variables denoting, respectively, the initial value,
final value, and increment of the index variable, The increment is 1 by default.
For example,

SUM=0
DO 10 I=1,N
SUM=SUM+X(I)

10 CONTINUE

20 AVG=SUM/N

]
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