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Preface

Until recently, algorithmic sophistication in and diversity among regional
and basin-scale ocean circulation models were largely non-existent. De-
spite significant strides being made in computational fluid dynamics in
other fields, including the closely related field of numerical weather pre-
diction, ocean circulation modeling, by and large, relied on a single class
of models which originated in the late 1960’s. Over the past decade, the
situation has changed dramatically. First, systematic development efforts
have greatly increased the number of available models. Secondly, enhanced
interest in ocean dynamics and prediction on all scales, together with more
ready access to high-end workstations and supercomputers, has guaranteed
a rapidly growing international community of users. As a result, the algo-
rithmic richness of existing models, and the sophistication with which they
have been applied, has increased significantly.

In such a rapidly evolving field, it would be foolhardy to attempt a
definitive review of all models and their areas of application. Our interest
in composing this volume is more modest yet, we feel, more important.
In particular, we seek to review the fundamentals upon which the prac-
tice of ocean circulation modeling is based, to discuss and to contrast the
implementation and design of four models which span the range of cur-
rent algorithms, and finally to explore and compare the limitations of each
model class with reference to both realistic modeling of basin-scale oceanic
circulation and simple two-dimensionai idealized test problems.

The latter are particularly timely. With the expanded variety and ac-
cessibility of today’s ocean models, it is now natural to ask which model
might be best for a given application. Unfortunately, no systematic com-
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viii Preface

parison among available large-scale ocean circulation models has ever been
conducted. Replicated simulations in realistic basin-scale settings are one
means of providing comparative information. Nonetheless, they are expen-
sive and difficult to control and to quantify. The alternative — the devel-
opment of a set of relatively inexpensive, process-oriented test problems on
which model behavior can be assessed relative to known and quantifiable
standards of merit — represents an important and complementary way of
gaining experience on model performance and behavior.

Although we direct this book primarily towards students of the marine
sciences and others who wish to get started in numerical ocean circulation
modeling, the central themes (derivation of the equations of motion, pa-
rameterization of subgridscale processes, approximate solution procedures,
and quantitative model evaluation) are common to other disciplines such
as meteorology and computational fluid dynamics. The level of presenta-
tion has been chosen to be accessible to any reader with a graduate-level
appreciation of applied mathematics and the physical sciences.

Ocean Models Today

There are, at present, within the field of ocean general circulation modeling
four classes of numerical models which have achieved a significant level
of community management and involvement, including shared community
development, regular user interaction, and ready availability of software
and documentation via the World Wide Web. These four classes are loosely
characterized by their respective approaches to spatial discretization and
vertical coordinate treatment.

The development of the first oceanic general circulation model (OGCM)
is typically credited to Kirk Bryan at the Geophysical Fluid Dynamics Lab-
oratory (GFDL) in the late 1960’s. Following then-common practices, the
GFDL model was originally designed to utilize a geopotential (z-based)
vertical coordinate, and to discretize the resulting equations of motion us-
ing low-order finite differences. Beginning in the mid-1970’s, significant
evolution in this model class began to occur based on the efforts of Mike
Cox (GFDL) and Bert Semtner (now at the Naval Postgraduate School).
At present, variations on this first OGCM are in place at Harvard Univer-
sity (the Harvard Ocean Prediction System, HOPS), GFDL (the Modular
Ocean Model, MOM), the Los Alamos National Laboratory (the Parallel
Ocean Program, POP), the National Center for Atmospheric Research (the
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Preface ix

NCAR Community Ocean Model, NCOM), and other institutions.

During the 1970’s, two competing approaches to vertical discretization
and coordinate treatment made their way into ocean modeling. These
alernatives were based respectively on vertical discretization in immisci-
ble layers {“layered” models) and on terrain-following vertical coordinates
(“sigma” coordinate models). The former envisions the ocean as being
made up of a set of non-mixing layers whose interface locations adjust in
time as part of the dynamics; the latter assumes coordinate surfaces which
are fixed in time, but follow the underlying topography (and are therefore
not geopotential surfaces for non-flat bathymetry). In keeping with 1970’s-
style thinking on algorithms, both these model classes used (and continue
to use) low-order finite difference schemes similar to those employed in the
GFDL-based codes.

Today, several examples of layered and sigma-coordinate models exist.
The former category includes models designed and built at the Naval Re-
search Lab (the Navy Layered Ocean Model, NLOM), the University of
Miami (the Miami Isopycnic Coordinate Ocean Model, MICOM), GFDL
(the Hallberg Isopycnic Model, HIM), the Max Planck Institute in Ham-
burg, FRG (the OPYC model), and others. In the latter class are POM
(the Princeton Ocean Model), SCRUM (the S-Coordinate Rutgers Uni-
versity Model), and GHERM (the GeoHydrodynamics and Environmental
Research Model), to name the most widely used in this class.

More recently, OGCM’s have been constructed which make use of more
advanced, and less traditional, algorithmic approaches. Most importantly,
models have been developed based upon Galerkin finite element schemes —
e.g., the triangular finite element code QUODDY (Dartmouth University)
and the spectral finite element code SEOM (Rutgers). These differ most,
fundamentally in the numerical algorithms used to solve the equations of
motion, and their use of unstructured (as opposed to structured) horizontal

grids.
General Description of Contents

The goals of this volume are, first, to present a concise review of the fun-
damentals upon which numerical ocean circulation modeling is based; sec-
ond, to give extended descriptions of the range of ocean circulation models
currently in use; third, to explore comparative model behavior with refer-
ence to a set of quantifiable and inexpensive test problems; and lastly, to
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demonstrate how these principles and issues arise in a particular basin-scale
application.

Our focus is the modeling of the basin-scale to global ocean circulation,
including wind-driven and thermohaline phenomena, on spatial scales of the
Rossby deformation radius and greater. Smaller-scale processes (mesoscale
eddies and rings, sub-mesoscale vortices, convective mixing, and turbulence;
coastal, surface and bottom boundary layers) are not explicitly reviewed.
It is assumed from the outset that such small-scale processes must be pa-
rameterized for inclusion of their effects on the larger-scale motions.

The related concepts of approzimation and parameterization are central
themes throughout our exposition. As we emphasize, the equations of mo-
tion conventionally applied to “solve for” the behavior of the ocean have
been obtained via a complex (though systematic) series of dynamical ap-
proximations, physical parameterizations, and numerical assumptions. Any
or all of these approximations and parameterizations may be consequential
to the quality of the resulting oceanic simulation. It is therefore important
for new practictioners of oceanic general circulation modeling to be aware
of sources of solution sensitivity and potential trouble. We provide many
examples of each.

Chapter 1 offers a brief introduction to the derivation of the oceanic
equations of motion (the hydrostatic primitive equations) and various often-
used approximate systems. Beginning with the traditional equations for
conservation of mass, momentum, mechanical energy and heat, we show
how these equations are modified within a rotating, spherical coordinate
system. These continuous equations have many conservation properties;
conservation of angular momentum, vorticity, energy and enstrophy are
discussed. Various approximations are necessary to arrive at the accepted
equations of oceanic motion. We review the arguments for the traditional,
Boussinesq, and hydrostatic approximations, and the assumption of incom-
pressibility, and how they relate to conservation properties such as energy
and angular momentum. Lastly, additional approximations yield further-
simplified systems including the beta-plane, quasigeostrophic and shallow
water equations.

Chapter 2 discusses why we cannot solve the oceanic equations of mo-
tion directly. Instead, we must find approximate solutions using discrete
numerical solution procedures. Two levels of discretization are involved —
the approximation of functions and the approximation of equations; we re-
view a variety of approaches to each. Solutions of the discretized equations
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Qf motion can differ, sometimes dramatically, from the solutions of the origi-
nal continuous equations. Sources of approximation error, with illustrative
examples drawn from the one-dimensional heat and wave equations, are
given. Alternative approaches to time differencing (e.g., explicit-in-time,
implicit-in-time and semi-implicit) are also reviewed.

Additional numerical considerations arise when seeking solutions in two
or more spatial dimensions (Chapter 3). Among these are the occurrence
of tighter time-stepping stability restrictions, the need for fast solution
procedures for elliptic boundary value problems, and the possibility of hor-
izontally staggered gridding of the dependent variables. The latter is of
particular interest in that different choices for the horizontal lattice have
direct effects on numerical approximation errors and discrete conservation
properties. As an example of these effects, the propagation characteris-
tics of a variety of wave phenomena (inertial-gravity, planetary waves) are
examined on several traditional staggered grids, showing the types of nu-
merical approximation errors that can occur.

Four well-studied ocean models of differing algorithmic design are de-
scribed in detail in Chapter 4. Among these are examples utilizing alternate
vertical coordinates (geopotential, isopycnal, and topography-following),
horizontal discretizations (unstaggered, staggered grids), methods of ap-
proximation (finite difference, finite element), and approximation order
(low-order, high-order). The semi-discrete equations of motion are given
for each model, as well as a brief summary of model-specific design features.

Chapter 5 describes why the “complete” equations of motion derived in
Chapter 1 arc not really complete. Because of omitted, though potentially
important, interactions between resolved and unresolved scales of motion
(the “closure problem”), we must specify parameterizations for these unre-
solved phenomena. Processes for which alternative parameterizations have
been devised include vertical mixing at the surface and bottom oceanic
boundaries, lateral transport and mixing by subgridscale eddies and turbu-
lence, convective overturning, and topographic form stress. The origin and
form of these parameterizations are reviewed.

Simple two-dimensional test problems are introduced in Chapter 6 to
demonstrate the range of behaviors which can be obtained with the four
models of Chapter 4 even under idealized circumstances. The process-
oriented problems address a range of processes relevant to the large-scale
ocean circulation including wave propagation and interaction (equatorial
Rossby soliton), wind forcing (western boundary currents), effects of strat-
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ification (adjustment of a vertical density front), and the combined effects
of steep topography and stratification (downslope flow, alongslope flow).
Substantial sensitivity to several numerical issues is demonstrated, includ-
ing choice of vertical coordinate, subgridscale parameterization, and spatial
discretization.

Chapter 7 examines the current state of the art in non-eddy-resolving
modeling of the North Atlantic Ocean. After a brief review of simula-
tion strategies and validation measures, we describe three recent multi-
institutional programs which have sought to model the North Atlantic and
to understand numerical and model-related dependencies. Taken together,
these programs provide further illustration of the controlling influences of
the numerical approximations and physical parameterizations employed in
the model formulation. Nonetheless, model validation against known obser-
vational measures shows that, with care, numerical simulation of the North
Atlantic Basin can be made with a considerable degree of skill.

Finally, Chapter 8 speculates briefly on promising directions for ocean
circulation modeling, in particular the prospects for novel new spatial ap-

proximation treatments.
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