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Abstract. The visualization ol avoided and under-represented strings in some bacterial complete
genomes raises & combinatorial problem which may be solved either by using the Goulden—
Jackson cluster method or by construction of the minimal finite automaton defined by the set ol
forbidden words of the corresponding language.
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1. Introduaction

The heredity information of organisms {except for so-called RNA-viruses) is encoded
in their DNA sequence which is a one-dimensional unbranched polymer made of four
ditferent kinds of monomers (nucleotides): adenine {(a), cytosine (¢), guanine (g), and
thymine (#). As far as the encoded information is concerned, we can ignore the fact
that DNA exists as a double helix of two “conjugated” strands and only treat it as a
one-dimensional symbolic sequence made of the four letters from the alphaber T =
{a,¢,8,1}. Since the {irst complete geneme of a free-living bacterium Mycoplasma
genitalium was sequenced in 1995, an ever-growing number of complete genomes has
been deposited in public databases. The availability of complete genomes opens the
possibility to ask some global questions on these sequences. One of the simplest con-
ceivable questions consists of checking whether there are short sirings of letters that are
absent or under-represenied in a complete genome. The answer is in the aflirmative and
the fact may have some biological meaning [4].

The reason why we are interested in absent or under-represented strings is (wofold.
First of all. this is a question that can only be asked in the preseni day when complete
genomes are at our disposal. Second, the question makes sense as one can derive a
Juctorizable language from a complete genome which would be entirely defined by the
set of forbidden words.

We start by considering how to visualize the avoided and under-represented strings
in a bacterial genome whose length is usually the order of a million letters.

* Pantially Supporied by the Chinese Natural Science Foundation and the Project on Nonlinear Science
" On leave ftom the Department of Mathematics, Suzhou University, Jangsu 215006, China.
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2. Visualization of Under-Represented Strings

There are 4% different strings of length K made of four letters. In order to check whether
all these strings appear in 4 genome we use 45 counters to be visualized as a 25 x 2%
square array on a cemputer screen. These can be realized as a direct product of K
identical 2 x 2 matrices:

ME —pMaMe. .o M,

where

£ c
a t

M:

We call this 25 x 2% square a K-frame. In practice it is convenient to use binary
subscripts for this 2 x 2 matrix and it is casy to develop an algorithm that depends only
on the total length of the genome but not on the string length K. Put in a frame of fixed
K and described by a color code biased towards small counts, each bacterial genome
shows a distinctive pattern which indicates on absent or under-represented strings of
certain types [4]. For example, many bacteria avoid strings containing the string cfag.
Any string that contains ctag as a substring will be called a crag-tagged string. If we
mark all ctag-tagged strings in frames of different X, we get pictures as shown in
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Figure |: Ctag-tagged strings in X = 6 to 9 frames.

Figure 1. The large scale structure of these pictures persists but more details appear
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Figure 2: The pattern of ¢g-tagged strings showing the overlaps.

with growing K. Excluding the area occupied by thesc tagged strings, one gets a fractal
in the X — oo limit. It is natural to ask what is the dimension of this fractal for a given
1ag_
In fact, this is the dimension of the complementary set of the tagged strings. The
simplest case is that of g-tagged strings. As the pattern has an apparently selt-similar
structure. the dimension is easily calculated to be

_log3
o log2’

Moreover, the dimension of all other cases must lie in between log3/log?2 and 2.
However. the calculation of these dimensions is somewhat tricky as one must take inlo
account the overlap of patterns precisely (see. for example the case of cg-tagged strings
shown in Figure 2.

Now let ax be the number of all strings of length X that do not contain the given
tag. As the linear size 8k in the K-frame is 1/2K, the dimension may be calculated as:

P logax . logax!'/X
Koo —logdy Ko log2

Suppose the generating function of gy is known:
f(s) = Z axs.
K::ﬂ

Then, according 1o the Cauchy criterion ol convergence, we have

1/K l
= |k| = |50|’

lim a
Koo K
where A is the radius of convergence of series expansion of f(s) and sy is the minimal

niodule zero of /(). This finally determines the dimension

toglal
T log2
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Table 1: Generating function and dimensien for some single tags.

Tag f(8) D Tag F(s) D
I log 3 L4+
& = oy | 888 oIy 198235
. 1 . |
i ﬁr 1.92266 | ggey Tsl:;;—Tr 1.99438
oo ! I~ 14+s°
Bt v 1.97652 | gcge JET ] 1.99463
aeg T}:T;_Tj 1.978 LEEE bt 1.99572

The generating {unction for the numbers of strings of various length made of the four
letters that do not contain certain designated strings (“‘bad words™ as called in [6])
may be calculated by using the Goulden—jackson cluster method [2], well-described by
Neonan and Zeilberger [6]. In particular, the case of a single tag—one “bad word”
only—is easily treated and some of the resulis are shown in Tuble 1,

A related question is the number G{n) of difterent types of generaling functions for
& given tag length n. These numbers turn out to be independent upon the size of the
alphabet ¥ as long as there are more than two letters in X [3]:

n 1 2 3

4 5 6 7 8 9 10 il
4 8

Gn) 1 2 3 6 10 13 17 21 27

In fact, these G{n) are so-called correlations of # as given by the integer sequence
MO555 in [7] (sce also |3)).

3. Redundant and True Avoided Strings

Once we know that there arc avoided strings in the complete genomes from the visu-
alization scheme, one can perform a direct search for these strings. The direct search
has the merit not being significantly limited by the string length K. However, another
combinatorial problem arises which is closely related to the problem discussed in the
previous section. Take, for example, the complete genome of £ cofi, At K = 7. the first
avoided siring gecragg is discovered. At the next K = 8 level. a total of 173 avoided
strings arc identified. However, these 173 strings ure not all true avoided strings as some
must be the consequence of the absence of the K = 7 string gectagg. A naive eslimate
of the redundant avoided strings without taking into account any possible overlap of
substrings would lead to 4°(i + 1): If there is only one avoided string at the K + 0 level.
it would take away 8, 48, 256, 1280, ... strings at the next K +i levels. This estimate
warks well for E. cofi until K = 13 when the overlap of the first and the last letter g in
the true avoided string gecfagg would show ofl. Applying the Goulden—Jackson closter
method to the case of only one “bad word™ greragg leads to the foliowing generating
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function:

_ 14 4°
fls) = 1 —ds+ 63477

The nummber of redundant aveided strings are given by

1—1—4 — f(s) = 57 + 8% 4+ 485" + 2565 + 1280s"" + 61445
— &5

+286715"7 + 1310635+
The deviation from the naive cstimate appears from s'3.
For a non-irivial example, we consider the newly published complete genome of the
hyperthermophilic bacterium Aguifex aeclicus [1]. For this. 155 1335-letter sequence
four avoided strings arc identificd at X = 7. They form the set B of “bad words™

B={gegcgeg, gegegra, cgegege, tgegege}.

As there arc significant overlaps among these strings. the naive estimate of redun-
dant avoided words can hardly work. The application of the Goulden—Jackson clhus-
ter method requires the solution of a system of four linear equations and leads 1o the
following generating {unction:

| 457+ 5750 sf sl 412

Fls) = | —ds+s2—42 4+ — 45 4 50— 458 _ 4510 4,17
The numbers of redundant avojded strings are given by:
1
TR F(s) = 45" + 2758 + 15257 + 7845'% 1 38405 4 -
— _s'

In what follows we show that these results may be obtained by an entirely different
method, namely, by making use of formal language theory, For cenvenience of presen-
tation. we first collect a few notions from lunguage theory without proofs. The details
may be found, e.g., in [9] and referenccs therein.

4. Some Notions from Formal Language Theory

In formal language theory onc starts with an alphabet, e.g., £ = {a, ¢, 5, ¢}. Let T*
denote the collection of all possible strings made of letters from I, including the empty
string £. Any subset L C Z* is called a language over the alphabet =, Theset L/ =X — L
defines the complementary language. A language L is a factorizable language if any
substring of a word x € L also belongs to L. A factorizable language has 1 minimal set
of forbidden words or Distinctive Excluded Rlocks [8] (DEBs) L™ such that. if x e 1",
then any proper substring of x belongs to L. A factorizable language is completely
determined by its set of DEBs:

L=X-31"%"

A prominent example of factorizable language is given by the admissible symbolic
sejuences in the symbolic dynamics of a dynamical system (see, e.g., ]5.9]). Another
class of factorizable languages may be obtained from a complete gcnome as follows.
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Let & be a complete genoine of an organism: it may consist of one or more linear or
cirgular sequences. All possible substrings of G, including the empty string £ and &
itself, obviously form a subset of £ and thus detine a language which js factorizable
by construction,

Any language {. C Z* introduces an equivalence relation R; in Z* with respect 1o L.
For any pair x, vy € £ xRy if and only if for each z € £*, either both xz, yz € L or both
xz, vz ¢ L. The number of equivalence clusses in £* with respect to L defines the index
of Ry, denoted by index(R,).

An important theorem (Myhill-Nerode) says that 7. is a regular language if and only
if index(Ry) is fintic and L being regular implies that the minimal deterministic automa-
ton corresponding to L, minDFA(L), is unique up to an isomorphisimn, i.c., to renaming
of the states. Moreover, the number of states in minDFA(L) equals to index{&;.).

Let L be a factorizable language and L” its set of all DER’s. Define a set

V= {v|v is a proper prefix of some ye L'}

For each word x € L, there exists a string v € V such that xR;v. 1n other words, all
equivalence classes of 1. are represented in the set V. In order to find all equivalence
classes of ¥ with respect o L. it is enough to start from L. [n addition, L' is an
equivalence class of Z*. For two given strings u, v € V, uR;v if and only if for each
z € Z* yg contains u DEB as its suffix & vz € L7 and vice versa. This statement sets
the computation rule to identify all equivalence classes. Each equivalence class may
be pamed after a member x; € /. and be denoted as [x;]. The transfer function between
states of minDFA(L) is defined as 8([x)], ) = [x;s] forx; € Land s € Z.

5. Finite Automaton and Incidence Matrix

Now we apply what has just been said to the complete genome of Aquifex aeolicus with
its set B of four avoided strings at length K = 7. Although there are longer avoided
strings we take B to be its I for the time being. From the proper suffixes of these
strings, we get the set

V = {g, gc. geg, gege, gegeg, gegege, ¢, g, g, cgeg,
CBCEC, CRCECY, 1,18, 1RC, 18CR, Igege, tgegeg )
By checking the equivalence class of these strings, only 13 out of these 18 strings are

kept as representatives of each class. Adding the class [L'] C *, we get the following
14 equivalence classes of Z°:

€] [g] [zc] [gcg]l lgege] [gegeg] [gegege]
le] [esg) [ege) fegeg) [egege] [egegeg) (L]

The transfer function &{[x;], s} = [xs], x, € V and s € £, is determined by attributing
[x,5] to the existing equivalence classes. It is listed in Table 2. The particular transfer
function 8([x,], s) = [L'] leads to a “dcad end™.

By counting the number of tines leading from one state to another, we write down




Avoided Strings in Complete Genomes 253

Table 2: The transfer function for the minimal deterministic automaton for Aquifex
aeolicis.

' [x] \s‘ a ¢ g t
le] [e [¢] (¢] [¢]

[g]  [e] [2¢] [g] [e]

lge] e [e] [geg] ]

[geg]  [E]  [gegd] [g] [d]
[gege]  [g] [e]  {ecgeg] [e]
[eczeg]  [e]  [gegege] le] [
[gegege] (L] [¢] (][]

[e] [l [e] [eg]  [e]
[eg] [l [eg¢] [«] el

[cge]  [e] [e]  fegeg] [d]
[cgeg]  [&]  [cgegc] [g] [e]
[cgege] ] [e]  [egeges] [e]
[cgegeg]  [g] (] [e] ]

an incidence matrix:

[ 2 T
111 1
1 1 2
11 ! |
1 12
11 11
M= 2
1 21
1o r
| 2 1
11 1 |
{ 2 |
11 |

One draws the minimal deterministic automalen according to the above transfer
function. As il is no longer a planar graph, we do not show it here. The columns
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and rows of the matrix M are ordered as elements in the first column in Table 2 of the
trunsler funclion.
To make connection with the generating function

f(f) = iak-gK:
0

obtained by using the Goulden—Jackson cluster method. we note that the sum of ele-
ments in the first row of the Kth power of M is nothing but a* [8]:

15
ax = 3, (M.

s=i

The summation runs over all equivalence classes except for L. We list the clements of
the first row of M¥ in columns of Table 3.

The negative numbers in the last row of Table 3 show the difference of ax and 45,
They are precisely the coefficients in the expansion of 1/{1 —4s) — £(5) as shown at
the end of Section 3. We see that the transfer function and the incidence matrix contain
more detailed information on the combinatorial problem than the generaling function
alone. The consequence of this approach has to be further clucidated in the future.

Table 3: Elements of the first rows of My and their sum.

K= 1 2 3 4 5 6 7 8 9 10 1l
| 4 16 6 256 1024 4095 16378 65501 261960 1047664
t 2 8 iz 128 512 2048 8190 32756 131002 523920
0 1 2 8 32 128 312 2048 B190 32756 131002
0 0 1 2 5 32 128 al2 2048 8140 32756

0 0 | 2 -3 32 128 512 MR R190

] 0 0 1 2 g 32 128 312 2048
0 0 0 0 ] | 2 8 32 128 512
2 7028 112 448 1792 FI6R 28665 114640 438483 1833624
{ 2 7 28 Iz 448 1792 7168 28665 114640 458483
I { 2 28 112 448 1792 TI68 2B66HS5 11464}
4 } 0 2 7 28 112 448 1792 T8 28663
0 } 0 0 2 7 28 112 448 1792 7168
0 0 0} 0 2 7 24 112 448 1792

Sum: 4 16 64 250 1024 4096 16380 63309 261992 1047792 4190464

-4 =27 -152 -TH4 -3840
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