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This view of the Earth - extending from the Mediterranean Sea arca to the Antarctica ic
cap — was photographed by Apolle 17 crewmen during their journey toward the Moon. (NASA.



Preface

The extraordinary growth and development of atmospheric sciences during the last dec-
ades, and the concern for certain applied problems, such as those related to the environ-
ment, have prompted the introduction of college and university courses in this field. There
is consequently a need for good textbooks.

A few appropriate books have appeared in the last few years, aimed at a variety of
levels and having different orientations. Most of them are of rather limited scope; in par-
ticular, a number of them are restricted to the field of dynamics and its meteorological
applications. There is still a need for an elementary, yet comprehensive, survey of the
terrestrial atmosphere. This short volume attempts to fill that need.

This book is intended as a textbook that can be used for a university course at a second
or third year level. It requires only elementary mathematics and such knowledge of
physics as should be acquired in most first-year general physics courses. It may serve in
two ways. A general review of the field is provided for students who work or plan to work
in other fields (such as geophysics, geography, environmental sciences, space research),
but are interested in acquiring general information; at the same time, it may serve as a
general and elementary introduction for students who will later specialize in some area of
atmospheric science. The book is quite comprehensive, as a perusal of the table of con-
tents will indicate; for instance, chapters on chemistry and electricity — usually absent in
this type of book — have been included. Indeed, it tries to introduce most of the basic
concepts and facts about the atmosphere that do not require any previous specialization.
The variety and organization of the included topics are such that a lecturer can always
choose to exclude specific subjects described, without losing continuity. Lists of questions
and problems have been added to each chapter; these, even if elementary in nature, should
help the reader to acquire some insight into the various subjects.

In summarizing from different sources, we owed much to such excellent elementary
texts as those by Dobson and by Goody and Walker, as also to monographs written at a
higher level. A short bibliography with some brief comments has been included ; we hope
that it may provide useful orientation toward further reading.

We are indebted to Profs. R. List and C. Hines and Dr. R. E. Munn for kindly reading and
commenting on parts of the manuscript. For facilitating the use of photographic material,
we would like to express our thanks to Prof. R. List (Toronto), Prof. R. Montalbetti
(Saskatoon), Prof. G. Soulage (Clermont-Ferrand), Dr. J. Joss and Mr. H. Binz (FKH,
Switzerland), Prof. T. Fujita (Chicago), Drs. Ch, and N. Knight (NCAR), scientists of the
Atmospheric Environment Service of Canada (in particular Dr. R. Schemenauer and
Messrs. Ch. Taggart and A. A. Aldunate), EROS Data Center, and NASA. Thanks are also
due to Mrs. C. Banic for her help in the preparation of the collection of problems, and to
Miss J. Cooper for her efficient secretarial assistance.
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Table of Constants

Fundamental Physical Constants

Gas constant

Avogadro’s number
Boltzmann’s constant
Planck’s constant

Velocity of light in vacuum
Elementary charge
Gravitational constant

Earth

Standard acceleration of gravity
Solar constant

Earth’s mean radius

Earth’s surface area

Mean Earth—Sun distance

Mean Earth—Moon distance
Angular velocity of rotation

Atmosphere

Standard atmospheric pressure
Total mass of atmospheric air
equivalent to
Average molecular weight of atmospheric
air, up to 100 km altitude
Dry adiabatic temperature lapse rate

Atomic and Molecular Weights™

H : 1.01
He : 400
Ne :20.18
Ar :3995

R =8.314J)/mol K

Ny =6.02x 102 mol™
k=138x 1072 J/K
h=663x10"%]s
c=3.00x 10%m/s
e=160x10"C

G = 6.67 x 107" Nm?¥/kg?

£o = 9.81 m/s?

S = 2.0 cal/cm?.min == 1400 W/m?
R =637 x10°m

5.1 x 10" m?

1.49 x 10%km

3.80 x 10°km
Q=729x%x105s1

1 atm=1.01325 x 10°Pa
5.3 x 10"% kg
4.1 x 10™® m® at STP (M = 28.964 g/mol)

M = 28.964 (g/mol)

B4 =9.76 K/km
C :12.01
N :14.00
O :16.00
S :3206

* These constants enter the formulas as conversion factors with units of mass per mole. E.g. My,0=

18.0 g/mol = 0.018 kg/mol.



Air :see above
H,O :18.02
Na(Cl: 5844
CO, :4401

Thermodynamic

50, :64.06
H,S :34.08
NH, :17.02

Heat capacity of air, at constant pressure
Heat capacity of air, at constant volume
Heat capacity of water

C,=129.1J/mol K = 1005 J/kg K
C, =20.8J/molK =718J/kg.X
C, =76J/molK =4218J/kg K

Latent heat of melting (water) (0°C)
Latent heat of vaporization (water) (0°C)
Latent heat of sublimation (water) (0°C)
Saturation water vapour pressures:
At 0°C:
At other temperatures:

Others

Density of water
Density of dry air at 0°C and 1 atm (STP)
Surface tension of water: 0°C
20°C
Viscosity of air (0°C)
Pemmittivity of free space
Permeability of free space
Stefan—Boltzmann constant
Mass of the electron

L; =601 x 10° J/mol
L,=4.50 x 10* J/mol
L, =5.10 x 10 J/mol

6.11 mb
See Figure I1, 1

10° kg/m?3

1.29kg/m?

0= 0.0756 N/m

o= 0.0727N/m
n=1.71 x 1075 Ns/m?
€0 = 8.854 x 10712 F/m
Uo = 41 x 107" H/m
0= 56.7nW/m?K?*
9.11 x 10~ kg



Units

The International System (SI) is used in general. This implies MKS mechanical units
(based on the fundamental units metre, kilogram and second for length, mass and time,
respectively), Kelvin (K) for absolute temperature, Ampere (A) for electric current, and
mole (mol) as a chemical unit of mass.

Other units used are summarized below.

Temperature:

Degrees Celsius (°C), defined by ¢# = T'—273.15, where ¢ is the temperature in °C and T
is the absolute temperature in K.

Pressure:

Atmosphere (atm). 1atm = 1.01325 x 10°Pa, where Pa = Pascal = N/m? (N = Newton)
is the SI unit.

Millibar (mb). 1 mb = 100 Pa.

Energy:

Calorie (cal). 1 cal = 4.184 J, where J (Joule) is the SI unit.

Electron-volt (eV). 1eV =16 x107°].

(If the energy is referred to one mole, 1 eV corresponds to 96.3 kJ/mol).

The SI system uses prefixes to indicate a multiplying factor. Some names, symbols and
corresponding factors are given in the following table:

tera (T) :x 10'2 milli (m) : x 1073
giga (G) :x 10° micro (u):x 107
mega (M) : x 10° nano (n) :x 10°°
kilo (k) :x 10° pico(p) :x 10712
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. General Description of the Atmosphere

1. Regions and Extension of the Atmosphere

The atmosphere is a gaseous envelope surrounding the Earth, held by gravity, having its
maximum density just above the solid surface and becoming gradually thinner with dis-
tance from the ground, until it finally becomes indistinguishable from the interplanetary
gas.

There is, therefore, no defined upper limit or ‘top’ of the atmosphere. As we go away
from the surface of the Earth, different regions can be defined, with widely different
properties, being the seats of a great variety of physical and chemical phenomena. If we
want to understand the atmosphere, our first concern will be to introduce some sort of
classification that will help to consider separately all these phenomena. Let us consider
the pictorial representation of Figure 1.

First of all, Iet us observe that, apart from the first kilometre, the scale used is a logar-
ithmic one, so that the upper regions are in fact much thicker, in comparison with the
lower ones, than suggested by the picture.

There is a scale of pressures at the right side. The pressure, at each level, is given by the
weight of all the air above it, per unit area of surface, and this weight is given by

rgpdz

where p = density, g = acceleration of gravity, z = height (mass times acceleration of
gravity, integrated above the level z). The value of g varies only slowly with height. There-
fore, the pressure can be taken as roughly proportional to [ o dz, i.e. to the total mass
above that level z. We can see, by comparing the pressure scale with the height scale at the
left, that:

90% of the mass is contained within the first ~ 20km (top at 100 mb level)
99.9% of the mass is contained within the first ~ 50km (top at 1 mb level)

At 100km, the pressure has dropped to about 103 mb, i.e. only a fraction of the order
of 107¢ (one miilionth) of the atmospheric mass will be above that level. And only a frac-
tion 107 above 1000 km. These distances are to be compared with the Earth radius,
~ 6370km. It is clear that from the point of view of its mass, the atmospheric envelope,
although of diffuse limits, is a very thin sheath around the planet.

2. Homeosphere and Heterosphere, Scale Height

The ‘thickness’ of the atmosphere can be characterized by a parameter called the scale
height, which we shall now define. We can consider the atmosphere essentially as a fluid

1
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Fig. I-1. The atmosphere. Pictorial representation showing the rnain features of the terrestrial atmo-
sphere. The explanation of this figure is developed in Ch. 1.

in hydrostatic equilibrium, This means that for every infinitesimal layer of unit cross
section we shall have the following relation {cf. Figure 2):

upward force due to pressure gradient = weight
—dp =g-p-dz (1)

This relation (1) (where p = pressure) is called the kydrostatic equation.

We observe now that air, at the temperatures and pressures of the atmosphere, behaves
like a mixture of ideal gases, within at most a few percent of error. For lower and lower
pressures, the behaviour approaches more and more that of an ideal gas. For each com-
ponent we shall then have

p;V = mRT (2)

where p; = partial pressure of component i; ¥ = volume; #; = number of moles of com-
ponent i; R = universal gas constant; 7 = absolute temperature.
And for the mixture

p=2Zp; (Dalton’s law)
pV = nRT 3)

where p = total pressure and n = total number of moles. An average molecular weight is
defined as M =m/n = (Z n;M;)/n where m = mass and M; = molecular weight of com-
ponent i,

Equation (3) can also be written

RT

P=rP “4)

p+ap

UWIT CROSS SECTION Z

p

Fig. 1-2. Layer of air column of unit cross section and thickness dz.



Eliminating p between (1) and (4), we can express the hydrostatic equation as

M
S 5
dlnp Rsz (5)
which can be integrated to
F-4 F4
M [ dz
f— —_— el = — —_ 6
2 poexp( .L Rsz) poexp( IR H) (6)

where we have defined the parameter H = RT/gM, which we call the (local) scale height
of the atmosphere. As we shall see, M can be considered as a constant up to 100 km; g
depends on z, but it varies only about 3% for every 100 km. H therefore varies roughly
proportionally to T up to 100km. For T= 273K, we obtain (¢ = 9.8 m/s*, M = 28.96)

H = 8km (7
So, if the temperature was uniform, (6) could be written
P = Do Cht (8)

and H would indicate the height at which the pressure has decreased by a factor ™' =
0.37, i.e. the height within which about % of the atmosphere mass would be contained.
Actually, as T varies with height, so does H;but up to 100 km, only within the range of 5
to 9 km.

So far, we have assumed that the atmospheric air is a mixture of gases of constant
composition, perfectly mixed, so that M is a constant in Equation (6). But this is not the
situation throughout the whole atmosphere. Let us consider the problem more closely. If
we have a mixture of gases in the gravitational field and wait for the equilibrium distri-
bution, the Statistical Mechanics predicts that there will be a separate distribution for
each kind of molecules;i.e. each gas will obey its own equation:

Di = Do, €Xp (‘L 272) )

according to its own value of M, This leads to a predominance of the heavier molecules in
the lower levels, and of the lighter molecules in the higher levels. To understand this
clearly, let us imagine, for simplicity, that g and T are constant, so that A varies only
through the value of M, and let us consider a mixture of only two gases.

RT _
gasl, f, = M, P1 = Do,¢ H,
RT
gasza H2 = 9 P2 = Po e_Z/H2
&M, :

M, >M, H, <H,

Let us also imagine that gas 1 is predominant at the surface. Then the two distributions,
i.e. the distributions of the two partial pressures p, and p,, will be such as is shown in
Figure 3. Because of the different values of H in the exponent in Equation (9), the two
curves intersect at a certain level, above which the lighter gas 2 becomes predominant.
The reason we did not consider this in the previous argument is that this type of equi-
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