PHYSICAL PROCESSES IN RED GIANTS

Edited by Icko Iben Jr. and Alvio Renzini -

VOLUME 88
PROCEEDINGS

D. REIDEL PUBLISHING COMPANY

DORDRECHT, HOLLAND / BOSTON, U.S.A. / LONDON, ENGLAND

PHYSICAL PROCESSES IN RED GIANTS

PROCEEDINGS OF THE SECOND WORKSHOP, HELD AT THE ETTORE MAJORANA CENTRE FOR SCIENTIFIC CULTURE, ADVANCED SCHOOL OF ASTRONOMY, IN ERICE, SICILY, ITALY, SEPTEMBER 3-13, 1980

Edited by

ICKO IBEN, Jr.

Department of Astronomy, University of Illinois at Urbana-Champaign, U.S.A.

and

ALVIO RENZINI

Osservatorio Astronomico, Università di Bologna, Italy

D. REIDEL PUBLISHING GOMPANY
DORDRECHT HAZLAND / BOTTON: U.S.A.
LONDON: UNGWAND

Library of Congress Cataloging in Publication Data Main entry under title:

Physical processes in red giants.

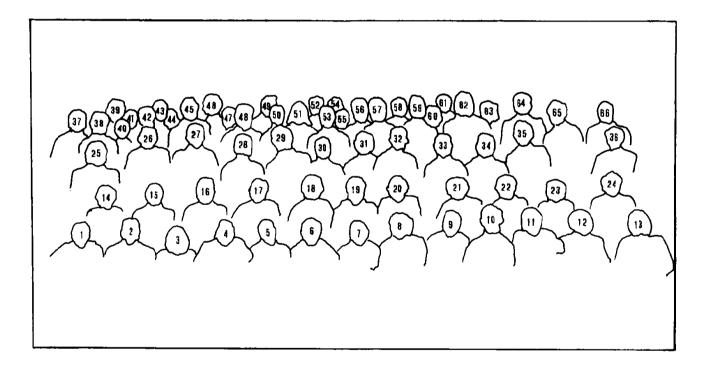
(Astrophysics and space science library. Proceedings; v. 88) Organized by the Advanced School of Astronomy. Includes indexes,

1. Red giants—Congresses. I. Iben, Icko, 1931—
II. Renzini, Alvio. III. Ettore Majorana International Centre for Scientific Culture. Advanced School of Astronomy. IV. Series.
QB843.R42P49 523.8'2 81-5882
ISBN 90-277-1284-0 AACR2

Published by D. Reidel Publishing Company, P.O. Box 17, 3300 AA Dordrecht, Holland.

Sold and distributed in the U.S.A. and Canada by Kluwer Boston Inc., 190 Old Derby Street, Hingham, MA 02043, U.S.A.

In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, Holland.


D. Reidel Publishing Company is a member of the Kluwer Group.

All Rights Reserved

Copyright © 1981 by D. Reidel Publishing Company, Dordrecht, Holland No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner

Printed in The Netherlands

- 1. Clegg, 2. Wing, 3. Serrano, 4. Littleton, 5. Preite-Martinez, 6. Iben, 7. Schönberner, 8. Peimbert, 9. Voli,
- 10. Iijima, 11. Olnon, 12. Renzini, 13. Bienaymé, 14. Natta, 15. Woodrow, 16. Despain, 17. Richer,
- 18. Cacciari, 19. Altamore, 20. de la Reza, 21. Malagnini, 22. Magalhães, 23. Bianco, B. M., 24. Blanco,
- V. M., 25. Fujimoto, 26. Becker, 27. Rood, 28. Caloi, 29. Tornambè, 30. Marilli, 31. Chieffi, 32. Linsky,
- 33. Pottasch, 34. Weidemann, 35. McCabe, 36. Capuzzo-Dolcetta, 37. Castor, 38. Kwok, 39. Draine,
- 40. Rieu, 41. Wood, 42. Rocca-Volmerange, 43. Olofsson, 44. Willson, 45. Elitzur, 46. Toelle, 47. Erikson,
- 48. Unidentified, 49. Feast, 50. Morossi, 51. Engels, 52. Ridgway, 53. Strazzulla, 54. Gallino,
- 55. Castellani, 56. Lub, 57. Herman, 58. Goldberg, 59. Kinman, 60. Unidentified, 61. Frogel, 62. McCarthy,
- 63. Unidentified, 64. Reimers, 65. Gustafsson, 66. Eggleton.

P R E F A C E

In recent years, it has become clear that the red-giant phase is one of the most dramatic periods in a star's life, when all of its parts become involved in ways that have both direct and indirect observational consequences. This is most particularly true of low- and intermediate-mass stars during the second ascent of the giant branch. Such stars bring to their surfaces products of nucleosynthesis currently taking place in their deep interiors, they pulsate as Mira variables, develop extended outward-flowing atmospheres that may exhibit maser properties, and shed great quantities of matter, sometimes highly processed, into the interstellar medium.

The manner in which processed matter is brought to the surface is far from being completely explained, and the precise mechanism or mechanisms whereby matter is ejected from the stellar surface (whether by deposition of Alfven waves, radiation pressure on grains, or as a consequence of some large scale envelope instability) has yet to be elucidated to everyone's satisfaction.

The purpose of the second workshop in Astrophysics, organized by the "Advanced School of Astronomy", was to bring together experts on all the physical processes occurring in red giants in an effort to emphasize the interrelatedness of these individual processes, and to encourage a dialogue among experts that might serve to initiate a synthesis, or at least sharpen our understanding of the most important problems to address in the future.

The workshop was held in Erice, Sicily, at the "Ettore Majorana Centre for Scientific Culture", during the period September 3 through 13, 1980, and was organized about a sequence of review lectures, each followed by contributed talks related to the preceding review. Discussion during and after talks was spirited, and all participants were urged to incorporate, in the written versions of their contributions, insights they may have gained as a consequence of their participation.

It is hoped that this volume will reflect some of the excitement in learning new things that many of us experienced during the workshop, and that many of the articles, though written ostensibly by one person, exhibit those positive characteristics of multiple authorship that the organizers hoped to promote. This volume also includes the review lecture

хi

I. Iben Jr. and A. Renzini (eds.), Physical Processes in Red Giants, xi-xii. Copyright © 1981 by D. Reidel Publishing Company.

xii PREFACE

that Dr. J.M. Scalo would have given if he had not been impeded from coming at the last minute to attend the meeting.

Icko Iben Jr.
Editor,
Director of the Workshop

Alvio Renzini
Editor,
Director of the
"Advanced School of Astronomy"

PARTICIPANTS

Altamore, A.

Andriesse, C.D.

Becker, S.A.

Bedijn, P.J.

Bienaymé, O.

Blanco, B.M.

Blanco, V.M.

Cacciari, C.

Caloi, V.

Castellani, V.

Castor, J.I.

Capuzzo-Dolcetta, R.

Catalano, S.

Chieffi, A.

Chiosi, C.

Clegg, R.E.S.

D'Antona, F.

de la Reza, R.

Despain, K.H.

Draine, B.T.

Eggleton, P.P.

Elitzur, M.

Engels, D.

Erikson, K.

Feast, M.W.

Frogel, J.A.

Fujimoto, M.Y.

Gallino, R.

Goldberg, L.

Greggio, L.

Gustafsson, B.

Herman, J.

Iben, I.Jr.

Iijima, T.

Kafatos, M.

Roma, Italy

Groningen, Netherlands

Pasadena, CA, U.S.A.

München, W. Germany

Nice, France

La Serena, Chile

La Serena, Chile

Villafranca, Spain

Frascati, Italy

Frascati, Italy

Boulder, CO, U.S.A.

Roma, Italy

Catania, Italy

Frascati, Italy

Padova, Italy

Leiden, Netherlands

Roma, Italy

Rio de Janeiro, Brazil

Haverford, PA, U.S.A.

Princeton, NJ, U.S.A.

Cambridge, England

Lexington, KY, U.S.A.

Bonn, W. Germany

Uppsala, Sweden

Cape, South Africa

La Serena, Chile

Urbana, IL, U.S.A.

Torino, Italy

Tucson, AZ, U.S.A.

Padova, Italy

Uppsala, Sweden

Leiden, Netherlands

Urbana, IL, U.S.A.

Asiago, Italy

Fairfax, VA, U.S.A.

Kinman, T.
Kwok, S.
Lambert, D.L.
Linsky, J.L.
Littleton, J.E.

Lub, J.
Magalhaes, A.M.
Malagnini, M.L.
Marilli, E.
Matteucci, F.

Mazzitelli, I. McCabe, E.M. McCarthy, M.F. Morossi, C. Mullan, D.J.

Natta, A.
Olnon, F.M.
Olofsson, H.
Paternò, L.
Peimbert, M.

Pottasch, S.R.
Preite-Martinez, A.
Reimers, D.
Renzini, A.
Richer, H.B.

Ridgway, S.T.
Rieu, N.-Q.
Rocca-Volmerange, B.
Rodonò, M.
Rood, R.T.

Rumpl, W.M.
Schmid-Burgk, J.
Schönberner, D.
Serrano, P.A.
Strazzulla, G.

Tucson, AZ, U.S.A.
Ottawa, Canada
Austin, TX, U.S.A.
Boulder, CO, U.S.A.
Morgantown, WV, U.S.A.

La Silla, Chile Sao Paulo, Brazil Trieste, Italy Catania, Italy Padova, Italy

Frascati, Italy
Brighton, England
Castelgandolfo, Italy
Trieste, Italy
Newark, DE, U.S.A.

Frascati, Italy
Leiden, Netherlands
Onsala, Sweden
Catania, Italy
Mexico, Mexico

Groningen, Netherlands Frascati, Italy Hamburg, W. Germany Bologna, Italy Vancouver, BC, Canada

Tucson, AZ, U.S.A.
Paris, France
Paris, France
Catania, Italy
Charlottesville, VA, U.S.A.

Greenbelt, MA, U.S.A. Bonn, W. Germany Kiel, W. Germany Mexico, Mexico Catania, Italy Toelle, F.

Tornambè, A.

Voli, M.

Weidemann, V.

Willson, L.A.

Wing, R.F.

Wood, P.R.

Woodrow, J.

Heidelberg, W. Germany

Frascati, Italy

Bologna, Italy

Kiel, W. Germany

Ames, IA, U.S.A.

Columbus, OH, U.S.A.

Canberra, Australia

Vancouver, BC, Canada

TABLE OF CONTENTS

CONFERENCE PHOTOGRAPH PREFACE	x xi
LIST OF PARTICIPANTS	xiii
EVOLUTION AND COMPOSITION PECULIARITIES OF RED GIANTS	
Icko Iben Jr. ON THE INTERIOR PROPERTIES OF RED GIANTS	3
Bengt Gustafsson THE PHOTOSPHERES OF RED-GIANT STARS	25
Robert F. Wing COLOR TEMPERATURES OF RED GIANTS AND THEIR RELATION TO THE EFFECTIVE TEMPERATURE	41
S.T. Ridgway, G.H. Jacoby, R.R. Joyce, D.C. Wells CARBON STAR EFFECTIVE TEMPERATURES	47
Robert T. Rood THE EFFECT OF [CNO/FE] ON EVOLUTION OF EXTREMELY METAL POOR RED GIANTS	51
Jay A. Frogel, S.E. Persson, Judith G. Cohen GLOBULAR CLUSTER GIANT BRANCHES AND THE HELIUM FLASH: A COMPARISON BETWEEN OBSERVATION AND THEORY	55
Jay A. Frogel M GIANTS IN THE NUCLEAR BULGE OF THE GALAXY	63
T.D. Kinman, Robert P. Kraft, Nicholas B. Suntzeff ON THE METAL ABUNDANCE OF GIANTS IN THE DRACO DWARF GALAXY- PRELIMINARY RESULTS OF A SPECTROSCOPIC SURVEY	71
John M. Scalo OBSERVATIONS AND THEORIES OF MIXING IN RED GIANTS	77

David L. Lambert THE CHEMICAL COMPOSITION OF RED GIANTS - THE FIRST DREDGE-UP PHASE	115
Peter R. Wood THE CONDITIONS FOR DREDGE-UP OF CARBON DURING THE HELIUM SHELL FLASH AND THE PRODUCTION OF CARBON STARS	135
Stephen A. Becker MORE DETAILS ON THERMAL PULSES AND THE THIRD DREDGE-UP PROCESS IN INTERMEDIATE-MASS STARS	141
Victor M. Blanco, Martin F. McCarthy LOW DISPERSION SURVEYS FOR CARBON STARS	147
Harvey B. Richer THE LUMINOSITY FUNCTION OF CARBON STARS IN THE LARGE MAGELLANIC CLOUD	153
Jay A. Frogel, Judith G. Cohen, S.E. Persson, Jonathan H. Elias OBSERVED BOLOMETRIC LUMINOSITIES OF CARBON STARS	159
Alvio Renzini CARBON STARS IN THE MAGELLANIC CLOUDS: THEORY VS. OBSERVATIONS	165
Keith H. Despain ON THE STABILITY OF NUCLEAR-BURNING REGIONS IN RED GIANTS	173
Peter P. Eggleton, John Faulkner WHY DO STARS BECOME RED GIANTS?	179
Cesare Chiosi MASS LOSS FROM MASSIVE STARS THROUGHOUT THE HR DIAGRAM	183
RED-GIANT VARIABILITY AND ENVELOPE DYNAMICS	
Michael W. Feast RED VARIABLES OF SPECTRAL CLASS M	193
Peter R. Wood THEORETICAL ASPECTS OF PULSATION AND ENVELOPE EJECTION IN RED GIANTS	205

TABLE OF CONTENTS	vii
Lee Anne Willson THEORETICAL RELATIONSHIPS BETWEEN OBSERVABLE QUANTITIES FOR MIRA VARIABLES	225
Antônio M. Magalhães LINEAR POLARIZATION CHANGES ACROSS TIO BANDS IN COOL VARIABLES: V CVn	231
Friso M. Olnon THE EXPANSION VELOCITIES IN MIRA ENVELOPES	237
John E. Littleton RADIATION PRESSURE ON MOLECULES IN MIRA VARIABLE ATMOSPHERES	241
WINDS: CHROMOSPHERES, GRAINS, OR WHAT?	
Jeffrey L. Linsky OUTER ATMOSPHERES OF LATE-TYPE STARS	247
Minas Kafatos, A.G. Michalitsianos, W.A. Feibelman, R.W. Hobbs ULTRAVIOLET OBSERVATIONS OF τ^4 SERPENTIS (M5 IIb-IIIa)	263
Dieter Reimers WINDS IN RED GIANTS	269
John I. Castor ORIGIN OF WINDS IN COOL GIANTS AND SUPERGIANTS	285
Leo Goldberg ACCELERATION OF MASS FLOW IN THE CHROMOSPHERE OF α ORIONIS	301
Stephen T. Ridgway TIMESCALE OF POSSIBLE EPISODIC BEHAVIOR IN MASS LOSS FROM COOL STARS	305
Carla Cacciari, Kenneth C. Freeman MASS LOSS IN POPULATION II RED GIANTS	311
Bruce T. Draine DUST FORMATION PROCESSES AROUND RED GIANTS AND SUPERGIANTS	317

Robin E.S. Clegg SPECTOSCOPY AND CHEMICAL KINETIC STUDIES OF THE CIRCUMSTELLAR SHELL IRC + 10216	335
V. Pirronello, G. Strazzulla, G. Foti EROSION OF N FROZEN GAS BY MEV HELIUM IONS	337
Johannes Schmid-Burgk, Michael Scholz WHY NOT MAKE DUST IN PHOTOSPHERES OF M STARS?	341
Janice E.J. Woodrow TIME-DEPENDENT MODELS OF GRAIN-FORMING ATMOSPHERES	347
C.D. Andriesse A STATISTICAL THEORY OF STELLAR WINDS	351
Dermott J. Mullan MASS LOSS FROM WARM GIANTS: MAGNETIC EFFECTS	355
RED-GIANT MASERS	
Moshe Elitzur RED GIANT MASERS	363
J. Herman, H.J. Habing TIME VARIATIONS OF OH MASERS IN LATE-TYPE STARS	383
Hans Olofsson, O.E.H. Rydbeck DETECTION OF A NEW SiO MASER LINE	391
Nguyen-Quang-Rieu OH AND IR EMISSION FROM RED GIANTS	395
Dieter Engels, G.V. Schultz, W.A. Sherwood INFRARED OBSERVATIONS OF OH/IR STARS	401
RED-GIANT REMNANTS: PLANETARY NEBULAE	
Manuel Peimbert PLANETARY NEBULAE AND STELLAR EVOLUTION	409

TABLE OF CONTENTS	ix
Sun Kwok	
FROM RED GIANTS TO PLANETARY NEBULAE	421
Antonella Natta, Nino Panagia	
THE PROPERTIES OF DUST IN PLANETARY NEBULAE	427
Alvio Renzini	
RED GIANTS AS PRECURSORS OF PLANETARY NEBULAE	431
Stuart R. Pottasch	
THE POSITION OF THE CENTRAL STARS OF PLANETARY NEBULAE IN THE HERTZSPRUNG-RUSSELL DIAGRAM	447
Detlef Schönberner, Volker Weidemann	
MASSES AND EVOLUTION OF CENTRAL STARS OF PLANETARY NEBULAE	463
NAME INDEX	469
OBJECT INDEX	485

EVOLUTION AND COMPOSITION PECULIARITIES OF RED GIANTS

Icko Iben, Jr. University of Illinois at Champaign-Urbana

I. INTRODUCTION

If one focuses solely on the excursions which they make in the Hertzsprung-Russell diagram on an evolutionary, nuclear-burning, time scale, red giants are perhaps among the least interesting objects in the sky. They do practically nothing! Low luminosity red giants simply grow uneventfully brighter at nearly constant surface temperature (when viewed in a diagram that contains main-sequence stars and white dwarfs) for a period of perhaps 10^8 yr. They then transform into brighter red giants, which also grow steadily brighter at nearly constant surface temperature over a period of perhaps 10^6 yr.

If, however, one examines their behavior on ever shorter time scales and takes a careful look at phenomena occurring in their interiors and at their surfaces, one finds that red giants are incredibly complex and fascinating objects. They pulsate acoustically, on occasion they blow up in their central cores, and some of them are veritable factories for the synthesis of dozens of new elements that are subsequently convected to the surface, where they enrich the spectral distributions which we view through our telescopes. In the "surface" regions of the red giant which we can "see," matter is being expelled permanently from the star, perhaps as a consequence of shock heating, the action of Alfvén waves, the pressure of radiation on grains forming in the cool atmosphere, or perhaps by some combination of all of these processes.

All stars whose initial mass on the main sequence $M_{\rm MS}$ is less than $M_{\rm C5}\cong 8$ - 10 $M_{\rm 0}$ effectively end their lives as consumers of nuclear fuel while on the red giant branch. In a last burst of rapid mass loss on the red giant branch, a low mass star in this range expels most of its hydrogen-rich envelope. The expelled envelope becomes a planetary nebula and the remnant core evolves rapidly to the white dwarf stage. A more massive star in this range may explode totally as a supernova, provided that the mass in its hydrogen- and helium-exhausted core reaches a value of about 1.4 $M_{\rm 0}$ before its outer

3

tit terr a spelende

I. Iben Jr. and A. Renzini (eds.), Physical Processes in Red Giants, 3-24. Copyright © 1981 by D. Reidel Publishing Company.