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SPATIAL COHERENCE IN MULTIPATH UNDERWATER
ACOUSTIC CHANNELS

WANG Dezhao ZHANG Renhe and WANG Qin

{State Key Laboratory of Ammﬁqs, Chinese Academy of Sciences, Rejing 100030, China)
I. INTRODUCTION

Whether the sound wave propagates in the decp sea or in shallow water, there are al-
ways many paths from the source to receiver becausc of the refraction caused by the
inhomogeneity of sea—water and the reflection from boundaries. Therefore, the multipath
transmission is an important characteristic of underwater acoustic channels!2,

The multipath transmission causes the waveform distortion and time spread of signals,
and then results in coherence loss of acoustic field™¥. For a moving source or recriver, since
the signals through different paths have different Doppler frequency—shifts, the multipath
propagation makes the time and frequency coherence decrease!™®, As the phase and group
velocitics for different paths are different, the multipath propagation may cause severe bear-
ing error for a time—delay compensated receiver array!*7.

In gencral, the horizontal transverse correlation of acoustic field is mainly determined
by the random fluctuation of medium, the vertical correlation is chiefly determined by the
multipath transmission, and the horizontal longitudinal correlation is dependent on both
the causes mentioned—above. This paper mainly discusses the vertical and lon gitudinal cor-
relations due to the multipath transmission.

II. SPATIAL COHERENCE THEQRY

Assumming that the ocean channel is a horizontally stratified medium, the acoustic
field of a hormonic point source may be approximately expressed as

PGeyr 0= | T T8 )%, N, explingr— By +in/ 9), 0

where z ,and z, are the source and receiver depths, p, and ﬂ, are the real and imaginary
parts of a mode eigenvalue respectively, and ‘Pl{z} is the eigenfunction. In this paper, the

generalized phase—integral (WKBZ) approximation! ¥ is used to calculate the
cigenfunction, i.e.,

_1_.
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exp(— "' u; ~k'(») dy)

V2(EL 2y + ) — 4k’ (N

z<n,
sin(j:'.}kz(y}—p: dy +n/4)
¥0= [ B @+ E @i @
r,"«:zm:l

(~'exp(~ I} Ju; - £°0) dy)

N2(E P 2) + 4p) — 4N

{,<z,

where k(z) =/ o(z),E = 0.875, b(z)=|dk’(2) / dz|, §, is the cycle distance of an

eigenray, and # ' and { , are the upper and lower turning depths of an cigenraylsl.
The spatial correlation Iz, z,, r; d, ]) and normalized correlation coeflicient

"z, z,. 1 d, I) of acoustic field respectively are defined as

1"(::,,23.r;d,l)s==\1"(:1.23.")1"'(21.1z +dJ+1)I 3

‘P(z‘,zz,»-)f"{zl,z2 + d,r+3)|

Wz, ,z,rd,0) = @

172
|:|P(zl,zz,r)l|2|}’(zl,zz +dr+ D|1J

where d and [ are the vertical and longitudinal seperations between two rectivers
respectively, and the overbar * * denotes the range and deplhw-averagcm‘

Substituting Eqgs.(1) and (2) into Eqs.(3) and (4), one get the intergral expressions of
spatial correlation and correlation coefficient as follws:

= ik, looss;

Tz, z,rsdD) = |f7 " Gla,)cos(k, dsina )e ' de,), ®)

¥e, 2, rid ) =T, 2,md D / [7 G e )da,, ©®

where a__ = cos q{max(k‘,k:)/ k'],u' is the grazing angle at the depth with the minimum

velocity, «, and a, are the grazing angles at the source and receiver depths, respectively.
The function G(a,) is given by

2

2k, sin(2a Jexp[ — 2B(a )]
rkk, S@ DG )+ sin’a ] (D(z,) +sin’a,)

Gla,) = )
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1 de(2)]?”
o dz |

The expression (5) of spatial correlation has clear physical meaning: the function
G(a,) denotes the angular encrgy density, and then the spatial correlation is the weighted

integral of spatial corrclations of local plane~wavcs. The formula shows that the spatial

where D(z) = 0.875]

correlation is relative to the propagation condition, range, source and receiver depths, {Te-
quency and scperation between receivers. It is not difficult to see from Egs.(5) and (6) that

the longitudinal correlation has reciprocity, while the vertical one has not.
III. NUMERICAL SIMULATIONS AND EXPERIMENTAL RESULTS

We have used Eq.(6) to make a great number of numerical simulations, Fig.1 is an ex-
ample. In Fig.1 are shown the vertical and longitudinal correlation coefficients versus the
receiver depth in a shallow water with thermocline, where f= 1kHz, z,= 10m, d=1.5
m, [ =50m, and r=35, 10, 20, 30, 40Km. It can be scen from Fig.] that (1} the correla-
tions have obvious depth and range dependence, (2) the correlations received above the
thermocline are obviously greater than those below the thermocline when the source is
above the thermocline, (3) the more distant the range, the stronger the correlation, and (4)
the longitudinal correlation is much stronger than the vertical one.

Comoy Verucal Comelation Coer C.m/is Longitudinal Carrelation Coef
1490 1440 .7 1 1490 1540 .3 ]
1 $Km| 10 T P V
| ’J i ‘
13 r £
. i / f=1KHz . f=1KH
o 2, = 10m - =10 m
£ d=15m £ d = Om |
£ febm A ! = 50m [' !
j l r=510.2030,40Km .[ {= 5.10.20.30,40Km | |
| 5Km 10Km 0K
[L04] — 100 }
Fig Ha) Fig. 1(b)

Fig.1 Vertical and longitudinal correlation coefTicients versus receiver depth

In Fig.2 are shown the measured results of longitudinal correlations in a shallow water
with thermocline, where the source depth is 7 m, the receiver depths respectively are 7 and
25 m, the range is 7.6 km, the longitudinal seperation is 50 m, the signal is the narrow—band
one with the carrier frequency of 630 Hz and the band of 1 / 3 Oct. The mearsured results
show that the correlation coefficient for the source and receiver depths of 7m is 0.86, while
that for the source depth of 7m and the recciver depth of 25m is 0.75, the former is obvi-

ously greater than the later.

-3 -
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Fig.2 Longitudinal correlations at 7.6 km; f=630Hz,z = 7m,d=0, 1=50m, (a)z, = Tm, (b)z, =35m.

IV. CONCLUSIONS

(1) The longitudinal correlation in multipath channels has reciprocity, while the verti-
cal one has not.

(2) The longitudinal correlation is much stronger than the vertical one.

(3) In shallow water with thermocline the spatial correlations for both the source and
receiver above the thermocline are greater than those for the source above and the receiver
below the thermocline.

(4) The longitudinal and vertical correlations increase with increase of range.
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A RAY-MODE THEORY OF SURFACE-GENERATED
AMBIENT NOISE IN THE SEA

ZHU Baixian ZHANG Renhe

(Shanghal Acoustics Laboratory, Chinese Academy of Sclences, Shanghali)

(State Key Laboratory of Acoustics, Chinese Academy of Sclences, Beijing)

The sca ambient noise is a kind of noise backgrounds in underwater acoustical signal
detection, it can reduce the performance of information recciving in the sca. Otherwise, the
principal oceanological. biological and meteorological informations are contained within
ambient noise. Therefore, the environmental parameters of the sea may be abstracted by us-
ing inverse methods for research the ambient noise field!™2.

Interaction of wind and sea—surface is one of the principal causes in generating of the
sca ambient noise. If we are not consider the mechanism of generation of the ambient noise,
the investigation on the ambient noise may be considered as a probiem of the sound
transmission in the sea caused by surface distributed noise source. In this paper the follow-
ing assumptions are made:

1. The statistically independent directional sound sources are uniformly distributed on
the surface®,

2. The sea is assumed 1o be a stratified mediurmn.

I. INTENSITY, SPATIAL CORRELATION AND DIRECTIONAL
DENSITY FUNCTION OF AMBIENT NOISE

According to the ray—modec theory of ocean acouslics, by using the WKBZ method to
solve one~dimensional wave equation, taking the smooth—average over rang and depth
and by ensemble—averaging, the correlation function can be obtained as follows:

. "¢ cosasinay”(x )/, (kpcosa)cos(kdsina — iln ¥ )d
(PP {B))EZRG’I cosasinay («x )/ ( pcoso; os'(” sina l_ ,'):, , a
V (B + a)S(2)[D(0) + sin u.] [D(z) + sin"a]

where k = k(z), a, = arccos(kcose / k(0)), « , = arccos(kcosa / k(h)),

2 de|*”?

wdz
The characteristics of ambient noise may be discussed from Eq.(1) as following.
1. DIRECTIONAL DENSITY FUNCTION N(«,Z)
By using Euler’s formula, equation (1) can be written as

—_— S —

D(z)=0.875
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/1

(P(4)P" (B)) = f 2ncosaN(e,z)J  (kpcosale " da, @

-u/3

in which N(a,z)is the dirtectional density function obtained by ray—mode theory, it is equal
)
osinjaly’ (=) 1 a<0

N = 2 172
@) 2V(B + a)S(@[D(0) + sin’a )" *[D(2) + sin” o]’ {V: a>0

3)

when the frequency is low and the grazing angle a is great enough, Eq.(3) can be simplified
as

1—v’
N(o,z)= m”,(u.z), 4

where the function N (a, z) is the directional density function deduced by the ray theory,
it may be shown to be?

a"yz(:x') {1 a<0

N = 5
=i, e ®)

The factor (1 — V) / (2¥|1n¥]) in Eq.(4) is not great than 1 GB. It will be shown that the
function N(a,z) obtained by ray—mode theory can be applied to large grazing angles.

2. SPATIAL CORRELATION COEFFICIENT I'(d,p;z)
According to the definition of spatial correlation coefTicient

T(d,02) = (A B
KPP (A CE®B) (B))]

(6)

As a result, we get from Eq.(1)
w1
J cosaN(a,z)J (kpcosa)e s e
T(d,p;z) = —=2—(5 (M
| cosaN(a,z)da

-%/3

3. INTENSITY OF THE AMBIENT NOISE
Let d = p = 0, we get the intensity from Eq.(1)

LEEd

2 . 2
I)= RUI (1 + ¥V, )cosasinay ()

V(B + a)S@ID(0) + sin’a,})'*[D(z) + sin’ '

da (8)

- -
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II. NUMERICAL RESULTS
1. SHALLOW WATER WITH THERMOCLINE

The sound speed above and below the thermocline are taken as 1530 m /s and 1500
m /s, respectively. The thickness of the thermocline layer is 5 m. V,=1 vV, =04 and
a= 0. The noise sources distributed on the sea surface are assumed to be dipole, i. €., y(u‘)
= sina' . We calculated the directional density function N(a,z) from Eq.(3). Figure 1 shows
the dependence of the function N(x,z) on the grazing angle a. It is seen from Fig.1 that the
function N(x,z) above and below the thermocline differ from each other, the value of func-
ton N(a,z) below the thermoclinc will equal to zero whenla| <a_.

30 dB 30dB -60

15 15 30

60

Fig.1 Directional density function N{a,z) of surface
—generated noise in shallow water with thermocline.

&. Above thermocline b. Below thermocline

2. UNDERWATER SOUND CHANNEL WITH BILINEAR PROFILE

We assume that the axis of the sound channel is located at the depth above 1600 m, the
gradients of sound speed above and below the axis are equal to —4x 10" °m~ ! and
1x 107°m™, respectively, ¢(1000) = 1480 m / 5. The water depth is 6000 m. The dependence
of the noise intensity I(z) on the depth z is obtained from Eq.(8), it is shown in Fig.2.
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Fig.2 ]Noise intensity J(z) versus depth z in a underwater
sound channel with bilinear profile.
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THE WKBZ ADIABATIC MODE APPROACH TO
SOUND PROPAGATION IN GRADUALLY
RANGE-DEPENDENT CHANNELS

ZHANG Renhe LIU Hongand HE Yi

{Staie Key Laboratory of Acoustics, Chinese Academy of Sciences)

I. INTRODUCTION

In most regions of the ocean the vertical gradient of sound velocity is about a thousand
times of the horizontal one, so the ocean is often considered as a plane—stratified medium!"!.
However, in the area of the convergence of cold and warm currents or in the regions with
synoptic eddies the horizontal variation of sound velocity can not be negiected. Even in the
area of the occan with a little horizontal variation the influence of the horizontal variation
on the long—distance propagation must be taken into account due to accumnulative effect.

Many methods for calculating the acoustic field in the ocean with horizontal variation
have been developed, such as parabolic equation method!?, harizontal ray theory! ¥,
Gaussian beam approach'” and so on. A WK BZ mode approach is praposed in Ref.5, and
it can be used for fast and accurate calculation of the field of waveguide modes in a hori-
zontal channel. In this paper, a WKBZ adiabatic mode approach is developed, and the ap-

proach may be used for gradually range—dependent channels and it takes the bottom
interaction into account.

II. WKBZ ADIABATIC MOLE THEORY

Assume that the ocean medium varies with horizontal range so gradually that the
mode coupling may be neglected, resulting in the *adiabatic approximation” . Under the
condition of adiabatic approximation, the acoustic ficld of a hormonic point source may be
expressed as!®

8% w4 ’
P(rz,2,)= [T e™ Ty @, 00,0, (0) / J7, ()] x exp[if v@dx] ()
I
0
where v (0) and vl(r] are the “local” eigenvalues of modes, \b,(z ,»0) and "’;(zz- r) are
the “local” eigenfunctions of modes, respectively at the source and receiver positions.
For definiteness, we suppose that the velocity near the sea—bottom is greater than that
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