SPECIAL CLASS
DESIGN AND
OsJeCT BEHAVIOR

This chapter looks at special object behavior and how
that behavior affects the design of individual classes and
class hierarchies. You will learn about the following
kinds of classes and behaviors:

® Abstract classes

® Metamorphic classes
® Extendible structures
® Disciplined classes

¢ Disabled classes

® Deferred binding and rebinding

Abstract classes

Metamorphic classes

Extendible structures

State-engine objects
Disabled objects

Deferred binding and
rebinding

SECRETS OF THE VISUAL C++ MASTERS

The C++ programs in-this chapter are all compiled as QuickWin
applications. The various .H, .CPP, and MAK files should be located in
the directory \MSVC\VCSECR.

ABSTRACT CLASSES

Abstraction is an analysis tool that removes details from an examined system.
it enables you to focus on what happens to the system and to ignore how the
changes happen. Object-oriented analysis and design methods use abstraction
as an effective way to study the domain of a problem and examine the
operations of the classes involved. In this section, I discuss abstract classes and
their role in the design of a class hierarchy. You will learn about the following:

* Basic rules for declaring abstract classes
e Abstract classes as base classes in hierarchies

® Abstract classes as base classes in sub-hierarchies

Basic Rules for Abstract Classes

When you design a class hierarchy, you can specify the common operations in
thathierarchy usingan abstract class. The abstract class empowers you tospecify
what happens to the instances of the various descendant classes. The descendants
themselves fill in the details on how to carry out the operations of a class.

Abstract classes fall in two categories: purely abstract and partially functioning.
Purely abstract classes specify the public, protected, and private member
funcrions common to the descendants in the class hierarchy. The definition of
these memher functions contains no statements. Thus, abstract classes are
completely non-functional. B .

Partially functioning abstract classes specify the public, protected, and private
member functions, along with data members that are common to all or most
descendants. In addition, they implement some of the member functions that
are common 1o all or most of the descendants.

The two types of abstract classes have the following aspects in common:

* You need to declare all of the member functions and data members as
protected or private. In addition, you need to append = ¢ after the

1 ¢ SpeciaL Crass DEsiGN anp OsjecT BEHAVIOR

parameter list to tell the C++ compiler that you are declaring a purely
abstract member function.

The member functions not implemented by the abstract classes must
be declared virtual. This kind of declaration ensures that the descen-
dants declare these member functions also as virtual and use the same
parameter list. The benefit of the consistent parameter list is the
support of polymorphic behavior. The partially functioning ahstract
classes benefit more from this feature than the purely abstract classes.

Abstract Classes as Base Classes

The most common place for an abstract class in a class hierarchy is at the root
of the hierarchy. When the hierarchy is simple, comprising a single chain of
inheritance, a single ahstract class suffices. When the class hierarchy has many
branches, you may end up with several abstract classes. Figure 1.1 shows a
schema of class hierarchy that contains several abstract classes. The cabstypet
class is common to all the hierarchy branches. Each branch has an additional
abstract class to specify more operations that are particular to that branch.

AbsTypet
|
[] 1
AbsTypett AbsTypet2 AbsType1d
AbsTypot11
ClassAt ClassCt ClassD1
ClagsB1
Class A2 Class C2 ClassD2

Figure 1.1. A class hievarchy that contains abstract classes.

Let's look at an example. Listing 1.1 shows the header file ABSSTACK.H and
Listing 1.2 shows the source code for the ABSSTACK.CPP library file. This
library implements a stack class hierarchy using an abstract class. The library
unit supports stacks of strings with the following basic operations:

SECRETS OF THE VISUAL C++ MASTERS
. —_y

® (learing a stack
¢ Pushing data into a stack
¢ Popping data off a stack

The library declares a hierarchy of three classes: cavsstack, cstrstack, and
cvmstrstack. The class cabsstack, as the name might suggest, is an abstract class.
Itdeclares all of its data members and member functions as protected. This class
is a partially functioning abstract type, since it declares data members and
contains a few functioning (or implemented, if you prefer) member functions.
The data members nHeight and ballocateError maintain the stack height and
data allocation status, respectively. This class declares the following member
functions:

The constructor and destructor

The Boolean function Geta1iocateerror, which returns the value in the
bAllocategrror data member

The Boolean function 1sempty, which returns Tue when the nheight
data member is 0; otherwise, the function yields raLse

The virtual function push, which pushes a string onto the stack

The virtual Boolean function pop, which pops a string off the stack

The virtual function ciear, which clears rhe stack

The declaration of the last three member functions includes an equal sign
followed by a zero (=o). This syntax tells the C++ compiler that these funcrions
are purely abstract ones.

The library file also declares the class estrstack as a descendant of cabsstack. The
descendant class models a heap-based stack of strings. The actual implemen-
tation uses a dynamic linked list. The cstrstack class declares the pointer prop
to access the supporting dynamic linked list. This class declares a functioning
constructor, virtual destructor, and the virtual member functions push, pop, and
clear. The statements in these member functions specify how the stack
operations are implemented. The constructor initializes the stack by initializ-
ing the supporting dynamic linked list. The destructor clears the supporting
linked ist.

The library unit also declares the class cvustrstack as another descendant of class
cabsstack. This descendant class models a disk-based stack of strings. The actual
implementation uses a random-access file stream. The cvistrstack class declares

1 » SpeeciaL Crass DEsIGN AND OgJEcT BEHAVIOR

the szbatsBuffer, szErrorMessage, and vHfile data members. This class declares a
functioning constructor, virtual destructor, and the virtual member functions
Push, Pop, and clear. The statements in these member functions specify how the
stack operations are implemented—with the help of the supporting file. The
constructor opens the supporting random-access stream file. The destructor
assigns 0 to member aHeight and closes the stream wfile.

LastinG 1.1, The source oot For THE ABSSTACK.H HEADER FE.

#ifndef _ABSSTACK H
#define _ABSSTACK H

#include <fstream.h>

I
Inplements classes of generic stacks with the following set of
operations:

const unsigned MAX_STR = 80;
enum Boolean { false, true };

J] WARERRAAmveRRRRrettARt ADSErACE Stack YAAreestveessens
class CAbsStack

protected:
unsigned nHeight; // height of stack
Baolean bAllocateError; // dynamic allocation error

CAbsStack() {};
virtual ~CAbsStack() { };

J§ ®rvaemavaxasevesns State Query Methods *rrsrssssesssasa
Boolean GetAllocateError() { return bAllocateError;)
Booloan 1sEmpty{) { return (nkeight == @) ? true : false; }

J1 wreweanseennun Object Manipulation Methods ++es+ssssanss
virtval void Push(const char* szStr) = o;
virtual Boolean Pop(char* szstr) = 0;
virtual void Clear() = o;

i

continues

SECRETS OF THE VISUAL C++ MASTERS

Listivg 1.1. CoNTiNuep

struct StrStackRec {

char szNodeData[MAX_STR+1];
strstackRec* pNextLink;

h

class CStrStack : public CAbsStack

public:
CStrstack();
virtual ~CStrStack() { Clear(); } :

) *essareevatars Object Manipulation Methods *++sassesenss
virtual void Push(const char* szStr);

virtual Boolean Pop(chart szStr);

virtual void Clear();

protected:
StrstackRec* pTop; // pointer to the top of the stack

}

class CVMStrStack : public CAbsStack

public:
CVMStrStack(const char® Filename);
virtual ~CvMsStrstack() { Clear(); }

[$atxavesassasasann State Query Methods A%+seasasssmasisn
char* Getl ge{) { return szEcrorMessage; }

[/ wavasessasencs Opject Manipulation Methods *+xssesxasses
virtual void Push(const char* sz§tr);

virtual Boolean Pop(char* szStr);

virtual void Clear();

protected:
char szDataBuffer [MAX_STR+1]; // data buffer
char szErrorMessage(MAX_STR+1]; // error message
fstream VMfile; // virtual stream handle

h

#endif

Listing 1.2, THE s0URCE c0DE FOR THE ABSSTACK.CPP LiBRARY FILE.

#include "absstack.h®
#include <string.h>

1 ¢ SpeciaL Crass DEsiGN AND OBJECT BEHAVIOR

L P PP EPEPE PPN cStrstack
CStrstack: :CStrstack()
/1 constructor to initialize generic stack
{
nHeight = 0;
bAllooateError = false;
pTop = NULL;
}
F R ERETREEE Push

void CStrStack: :Push(const char* szStr)
1/ push the data accessed by STRAING $zStr onto the stack

strstackRec* p;

bAllocateError = false;

if (pTop) {
p = new StrStackRec; // allocate new stack element
it (1p) {
bALlocateError = true;
return;

}
stropy(p->szNodeData, sz5tr);
p->pNextLink = pTop;
pTop = p;
}
else {
pTop = new StrStackRec;
if (1pTop) {
bALlocate€rror = true;

return;
¥
strepy (pTop->szNodeData, szStr);
pTop->pNextLink = NULL;
}
nHeight++;
i
[ZEEEEEEEPErE

Boolean CStrStack::Pop(char® szStr)

/* Pops the top of the stack and returns a Boolean value.
Function returns true if the operation was successful. A
false value is returned 1f the Pop message is sent to an empty
stack.

N

{
StrstackRec* p;

continues

SECRETS OF THE VISUAL C++ MASTERS

Listows 1.2. Covravm

if (nHeight > @) {
strepy(szStr, pTop->szNodeData);
p = pTop;
pTop = pTop->pNextLink;
delete p; // deallocate stack node

nHeight--;
return true; // return function value
13
else
return false; // return function value
}
e Clear --oeooo-

void CStrStack: :Clear()
/1 clear the generic stack object

char sz8trMAX_STR+1];

while (Pop(szStr))
/* do nothing */;

cvmstrstack -

CVMStrstack: :CVMStrstack(const char* Filename)
/1 constructor to initialize generic stack

nHeight = @;
VMfile.open(Filename, ios::in | 10si:out | ios::binary);
if (IvMfile) {
stropy(szErrorMessage, “Cannot open file *);
streat(szerrorMessage, Filename);
retorn;
}
else {
bAllocateError = false;
stropy(szErrorMessage, *');

void CVMStrStack::Push(const char* szStr)
/1 push the data accessed by parameter szStr onto the stack
{

AHeight++;

VNfile.seekg((nHeight-1) * (MAX_STR+1));

1 o SpeciaL CLass DEsSIGN AND OBJECT BEHAVIOR

VMfile.write((unsigned char*) szStr, MAX_STR+1);

Boolean CVMStrStack::Pop{char* szStr)
1/ pop the top of the stack and return a Boolean value

if (nHeight > @) (
nHeight--;
VMfile.seekg(nHeight * (MAX_STA+1));
VMfile.read((unsigned char*) szStr, MAX_STR+1};
return true;

}

else
return false;

void CVMStrStack::Clear()
// clear the generic stack object

nHeight = 0;
VMfile.close();
}

Let's look at a test program for the ABSSTACK.CPP library. Listing 1.3
contains this program STACK1.CPP, which tests the classes declared in
Listing 1.1. This program declares objects astack and avéstack as the instances
of classes cstrstack and cvmstrstack, respectively. This program performs the

following relevant tasks:

® Instantiates the instances astack and avwstack. The program creates the

latter object using the supporting file VS.DAT.

astack to push each string.

loop displays the string that is popped off the stack.

object avwstack to push each string.

Uses a for loop to push onto the stack astack the elements of the string
array pstringacray. The program sends a push message to the object

Pops the strings off the stack object astack. The program sends the
message Pop to the instance astack using a wh1e loop. The loop iterates
as long as there is an item popped off the stack. The body of the while

Uses a for loop to push onto the stack avmstack the elements of the
string array pstringarray. The program sends the message push to the

SECRETS OF THE VisUAL C++ MASTERS

® Pops the strings off the siack avustack. The program sends the message
pop to the instance avmstack and uses a while loop. This loop iterates as
long as there is an item popped off the stack. The body of the while
loop displays the string that is popped off the stack.

The STACKL.MAK file should contain the ABSSTACK.CPP and
STACKIL.CPPf{iles and should be located in the directory \MSVC\ VCSECR.

ListinG 1.3, THE source cope For THE STACK1.CPP PROGRAM FILE, WHKH TESTS
THE CLASSES IN ABSSTACK.H. .
I
Program to test stacks of strings
*/
#include "absstack.h"
#include <iostream.h>

main(}
{
const unsigned MAX_STRINGS = 10;
char* Filename = 'aVMStack.DAT;
char® pStringArray[MAX_STRINGS] =
{ "Calafornia®, “virginia®, *Michigan',
“New York*, "Washington’, ‘Nevada®,
"Alabama’, "Alaska’, "Florida’, "Maine};

char chakey;

char sz§tring[MAX_STR+1];
CStrstack aStack;
cvMstrstack avMStack(Filename);

cout << 'Testing heap-based stacks objects\min”;
for (int 1 = 0; i < MAX_STRINGS; i++) {

cout << "Pushing ";
cout.width(12);
covt << pStringArray[i] << " into the stackin';
astack.Push(pStringArray(1]);

}
cout << "\nEnter any character to continue... *;
cin >> ChAKey;

cout << "\n";

while (aStack.Pop(szString)) {
cout << "Popping off ";
cout.width(12);
cout << sz8tring << * from the stackin';
Y

cout << *\nEnter any character to continue... *

1+ Seeciar Crass DEsIGN AND OBJECT BEHAVIOR

cin >> chAKey;
cout << *\g\n\nin";

cout << "Testing virtual stacks objectsinin”;
for (i = 0; i < MAX_STRINGS; i++) {
cout << *Pushing
cout.width{12);
cout << pStringArray(i] << * into the stackin®;
avMStack.Push(pStringArray[i]);

¥

cout << *\nEnter any character to continue... "
cin >> chAKey;

cout << "\n"

while (avMstack.Pop(szString)) {
cout << "Popping off *;
cout.width(12);
cout << szString << ' from the stack\n®;
}

return 8;

Here is a sample output for the program in Listing 1.3:

Testing heap-based stacks objects

Pushing California into the stack

Pushing Varginia into the stack
Pushing Michigan into the stack
Pushing New York into the stack
Pushing Washington into the stack
Pushing Nevada into the stack
Pushing Alabana into the stack
Pushing Alaska 1nto the stack
Pushing Florida into the stack
Pushing Maine into the stack

Enter any character to continue... ¢

Popping off Maine from the stack
Popping off Florida from the stack
Popping off Alaska from the stack
Popping off Alabama from the stack
Popping off Nevada from the stack
Popping off Washington from the stack
Popping off New York from the stack
Popping off wichigan from the stack
Popping off varginia from the stack

Popping off California from the stack

SECRETS OF THE VISUAL C++ MAaSTERs

Enter any character to continue... c

Testing virtual stacks objects

Pushing California into-the stack

Pushing Virginia into the stack
Pushing Michigan 1nto the stack
Pushing New York into the stack
Pushing Washington into the stack
Pushing Nevada into the stack
Pushing Alabama into the stack
Pushing Alaska into the stack
Pushing Florida into the stack
Pushing Maine into the stack
Enter any character to continue...'c
Popping of f Maine from the stack
Poppang of t Florida from the stack
Popping of f Alaska from the stack
Popping of f Alabama from the stack
Popping of Nevada from the stack
Popping off Washington from the stack
Poppang off New York from the stack
Poppng of f Michigan from the stack
Popping off virginia from the stack

Popping off California from the stack

Abstract Objects in Sub-Hierarchies

You can use abstract classes as the base classes in sub-hierarchies. In other
words, such abstract classes have non-abstract class parents. This kind of
abstract class occurs more often in sophisticated class hierarchies, such as

Turbo Vision. Figure 1.2 shows a class hicrarchy that contains internal abstract
classes.

Conceptually, hoth kinds of ahstract classes are similar. The kind of abstract
classes that I presented in the last section are concentrated ut the root of the
hierarchy. The kind of abstract classes that [present here are located well inside
the class hierarchy. In addition, this genre of class tends to be partially
functioning. Of course, declaring all of the data members and memher

functions as private ensures that client programs don't use this abstract type
accidentally.

1 Speciar Crass DEsiGN aNp OBJECT BEHAVIOR

Base?lsss
T
AbsTypet AbsType2 ClassD1
ClassBt
ClassAi ClassC1 AbsType3
ClassB2
ClassA2 ClassCz Classnz

Figure 1.2. A class hierarchy that contains internal abstract classes.

Let’s look at a program that illustrates an abstract class at the root of a sub-
hierarchy. Listings 1.4 and 1.5 show the source code for the header file
ABSARRAY.H and the library file ABSARRAY.CPP. This program defines
the following classes:

® The carcay class models an unordered dynamic array of strings.

The abstract class cabssortarray is a descendant of carray that defines
operations for the next classes.

The csortarray class is a descendant of cabssortarray that models
ordered arrays. This class supports case-sensitive sorting and searching.

The cNocasesortarray class is another descendant of cavssortarray that
models ordered arrays. This class supports case-insensitive sorting and
searching.

The classes csortarray and chocasesortarray offer two sample variations of

ordered arrays. You can add more sibling classes, for example, to sort and search
by specific portions of a string, or to arrange arrays in descending order.

The CArray Class

After introducing the classes in the hierarchy of dynamic string arrays, let me
explain each class in more detail. The carray class has a constructor, a
destructor, a set of data members, and a group of member functions.

SECRETS OF THE VISUAL C++ MASTERS

This class declares the following data members:

.

Th

&

The poataptr data member is the pointer to the dynamic array of
strings.

The nvaxsize data member stores the number of elements in the
dynamic array.

The nworksize data member contains the number of elements with
meaningful information. Values for nworksize range from e to nMaxsize.

The Boolean data member ballocateerror stores the dynamic-allocation
ETTOr status.

constructor allocates the dynamic space specified by the parameter

narraysize. This constructor also assigns the argument for this parameter to the
nMaxsize data member, sets the nWorksize field to zero, and assigns empty strings
to the elements of the dynamic array. The destructor regains the dynamic
memory allocated to the array.

The carray class declares the following member functions:

The function Getmaxsize returns the value in the data member nwaxsize.

The function getworksize returns the value in the data member
nWorkSize.

The Boolean function etal1ocatetrror returns the value in the data
member bal1locatekrror. Use this function to determine whether an
instance was successfully created.

The virtual Boolean function store saves the string szstr in the array
element number a1ndex. This function returns Taue if the argument for
tndex is valid (that is, in the range of to nMaxsize - 1). Otherwise, this
function yields raLse.

The virtual Boolean function Recal1 retrieves the string from array
element number n1ngex. This function returns aue if the argument for
nindex is valid (that is, in the range of @ to nworksize - 1). Otherwise,
the function yields Faise, The parameter szstr passes the retrieved
string when the argument for parameter nindex is valid.

The virtual function searcn returns the index of the array element that
matches the search string szkey. If there is no match, this function
yields the constant Not_rounp (that is, exfrf). Since the class carray
models an unordered array of strings, the search member function
performs a linear search.

1 e SeeciaL Crass DEsiGN AND OBJECT BEHAVIOR

The CAbsSortArray Class

The cabssortarray class is a descendant of carray that models an abstract class for
sorted arrays. This class declares its data member binorder, a constructor, and
member functions. The vinorger data member stores the sort order status of an
instance. This class declares the following member functions:

¢ The virtual Boolean function store. This member function invokes the
inherited store member function and assigns FaLse to the data member
vinorder if the inherited member function returns True.

The virtual function search is an empty shell that specifies the declara-
tion of the search member functions in descendant classes. These
member functions would conduct binary searches on the ordered array.

The virtual function sort is an empty shell that specifies the declara-
tion of the sort member functions in the descendant classes. This
function assigns faise to the member oInorder.

The CSortArray Class

The csortarray class is a descendant of cavssortarray. This class inherits the
following from the parent and ancestor classes:

® The data members from the carray and cavssortarray classes
® The reca12 member function from class carray
® The store member function from class cabssortarray

csortarray declares a constructor, the member function searcn, and the member
function sort. These two member functions are fully functioning. The search
member function performs a case-sensitive binary search for the parameter
szkey in the dynamic array. This member function first examines the data
member binorder to determine whether the array needs to be sorted before
performing the binary search. The sort member function performs case-
sensitive sorting using the Comb sort mechod.

The CNocaseSortArray Class

The cNocasesortacray class is another descendant of cabssortarray. This class
inherits the same items from its parent and ancestor class as csortarray.
The cnocasesortarray declares a construcror, the member function searcn, and
the member function sort. These two member functions are fully functioning.

SECRETS OF THE VISUAL C++ MASTERS

The search member function performs a case-insensitive binary search for the
parameter szKey in the dynamic array. This member function first examines the
data member b1norder to determine whether the array needs to be sorted before
proceeding with the binary search. The sort member function carries out case-
insensitive sorting using the comd sort method.)

Lasmne 14, Tis sousce cooe wor 1 ABSARRAY.H napen mis.
/1 file that declares arrays with an abstract object type

#ifndef _ABSARRAY_H
#define _ABSARRAY_H

const unsigned NOT_FOUND = Oxfff:
const unsigned DEFAULT_SIZE = 10;
const unsigned NIL = @;

enum Boolean { false, true };
class CArray

public:
CArray(unsigned nArraySize = DEFAULT_SIZE);

virtual ~CArray();

unsigned GetMaxSize() { return nMaxSize; }
unsigned GetWorkSize() (return nWorkSize; }
Boolean GetAllocate€rror() { return bAllocateError; }

virtual Boolean Store(const char* szStr, unsigned nindex);
virtual Boolean Recall(char* szStr, ungigned nindex);
virtual unsigned Search(const char* szKey);

protected:

Ghar** phataPtr;
‘unsigned nMaxSize;
unsigned nWorksize;
Booiean bALlocateError;

H

class CAbsSortArray : public CArray

{

public:
CAbsSortArray (unsigned nArraySize = DEFAULT_SIZE)

: CArray(nArraySize) { bInOrder = false; }

virtual Boolean Store(const char* szStr, unsigned nIndex);
virtual unsigned Search(const char* szKey)

1 = SeeciaL Crass DESIGN AND OBJECT BEHAVIOR

{ return NOT_FOUND; };
virtual void Sort() { bInOrder = false; };

protected:
Boolean bIndrder;
b

class CSortArray : public CAbsSortArray

public:
cSortArray(unsigned nArraySize = DEFAULT_SIZE)
: CAbsSortArray(nArraySize) {}
virtual unsigned Search(const char* szkey);
virtual void Sort();

b
class ay : public CAbsSortArray
public:
CNocaseSortArray (unsigned nArraySize = DEFAULT_SIZE)
GAbsSortArray (nArraySize) {}

virtual unsigned Search(const char* szKey);

virtual void Sort();
3
Hondit

Lastovo 1.5, The source copk For THE ABSARRAY.CPP LIBRARY FILE.
/1 library that implements arrays with an abstract object type

#include “absarray.h”
Kinclude <string.n>

1He--

- CArray -

CArray::CArray(unsigned nArraySize)
// construct instance of CArray
{
nMaxSize = (nArraySize == ©) 7 DEFAULT SIZE : nArraySize;
nWorksize = o;
pDataPtr = new char*(nMaxSizel;
bAllocateError = (pDataPtr == NIL) ? true : false;
if (1bAllocateError)
for (unsigned i = @; i < nMaxSize; ir+)
poataPtr[i) = NIL;

continues

