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PREFACE

This collection of Professor Peng Huan-wu represents his
finished works over the years. Its publication has fulfilled
the long-cherished wishes of his colleagues. and his students.
To catch up with changes of times and to meet the need of
the state Professor Peng took great pains in his sustained
efforts in exploring new fields and bringing up young phys:icists.
The Chinese theoretical physicists owed much to Proressor
Peng in their contributions to national economy, building
up national defense as well as in their achievements in scien-
tific developments, for they are closely related to the labors

of professor Peng Huan-wu.

In his early years Professor Peng engaged in the studies
of solid state theory, meson physics and quantum field theory
in Britain.  After his return to China in 1948, he shifted
his attention to nuclear physics and nuclear engineering.

The theoretical designs of China's nuclear reactors and nuclear
weapons were completed under his leadership. In the last
decade, he has made strong endeavors to stimulate and promote
new theories in the areas of solid state and statistical physics,

atomic and molecular physics, and accelerators.

Professor Peng is deeply conscientious towards scientific
work. His physical thoughts reach the very core of problems.
He 1is thoroughly proficient in the techniques of mathematics.
His research targets are tangible and definite. Whether in
basic research or applied research his papers always stood
in the forefront among the creative works at their given time

and have solved a good many practical problems.



Included in this book are a portion of Peng's published
papers. From these papers readers will get some idea of Professor
Peng's working style and learn from him the skill of tackling

actual problems in their deep theoretical perspectives.

Finally, we @give professor Peng Huan-wu our best wishes

for his health as well as his research work.

K.C. Chou

October, 1985
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Perturbation theory for the self-consistent field

By H. W. Peng
University of Edinburgh

(Communicated by M. Born, F R.S.— Received 31 March 1941)

The perturbation theory has been applied to the Fock-Dirac system of
equations. To obtain the perturbed Fock functions, it is necessary to solve
a systern of linear algebraic equations. To obtain the perturbation energy of
the ith order, the perturbed Fock functions up to the (i — 1)th order are
needed.

In treating n-electron problems by quantum mechanics, it is necessary
to adopt approximate methods; the most accurate of these involving the
use of one-electron functions is, at present, the method of the self-consistent
field. When the Hamiltonian contains some terms small compared with the
rest—a state of affairs that often occurs—it is8 convenient to regard these
small terms as ‘perturbations’—In what follows we shall investigate the
effect of these perturbations on the wave functions and the energy of an
n-electron problem to phe approximation of the self-consistent field.

The wave equations for the self-consistent field are the following due to
Fock (1930) and Dirac (1930):

(K+G@—-W)¢, =0, (y=12,..,n). 7)

They form a system of n simultaneous equations. The operator K denotes
the one-electron Hamiltonian in the ideal case of vanishing interaction
aimong the electrons, while @, defined by

64, = 3 (- 9008~ 490080, @

representa the ordinary and the exchange potentials due to the interactions
of the electrons. The expression (¢, . ¥¢,) stands for

EJdr’ Pr(r's") F(rs, x's") §(r's), (3)
<
with #(rs,r’s’) denoting the interaction between the electron at r with

spin co-ordinate s and that at r’ with spin co-ordinate s’. The interaction
[ 499 ]



500 H. W. Peng

% must be a self-adjoint operator and must be symmetric in the two
electrons, i.c.
G = 4 D(rs,r's') = G(r's’,13). (43

In most apphcations 4 is simply the Coulomb mteraction e*/| r—-r'|.

The energy parameters W, which oceur in (1) do not give the total energy
I of the electrons directly. Since the interaction energy of electron pairs
must be counted only once, & is given by

n n
v ul 7 i V£ . l 1 Y
B= 3 (6, (K+10)9) = S {W,—g,.Ch,). (5
y==1 y=1
The main difficulty in solving (1) is due to the non-linear character ot
these equations, as may be seen from (2). We consider only the case when K
and ¥ can be expanded into series of descending terms

K=K KW+ K®4+ |, 9=90450494 (6)

The system (1) can then be split into systems of various orders according
to the usual practice of the perturbation method. As the perturbation
equations are always linear, the solution of (1) is thereby greatly simplified.

1. PERTURBATION EQUATIONS

Let us suppose that the Fock-Dirac system of equations for K@ and ¢
has been solved. In order to have a complete set of orthogonal, normalized
functions at our disposal so that all other functions may be expressed as
linear combinations of these, we introduce the following eigenvalue problem:

(KO + GO— WP P = 0, (7)

where the linear operator G'®is defined, with the help of the known functions
(10)7 ¢(20)7 Tty ¢£?)7 by

GO = T (9. FO60) $— (49 TOP) 47}, (%)
A=
and is, by (4), self-adjoint. It follows from the definition that the complete
set {¢9} of orthonormal functions includes the functions ¢, ¢, ..., ¢
I can now expand the ¢.’s of (1) in the set {$§"} and write
¢, = T ¢PU,,. (9)
]
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Denoting, for brevity, the constants (¢. K¢P), (¢ . (¢D. 401) 69 by

K 15 %2 g, We obtain, from (1), (2) and (9), the system of algebraic equations
% Kaﬂ+/\§l § 4\( apvf appv) %v). "(yaaﬂ} q/ﬁy =0 (“))

By expanding %, and W, in accordance with the perturbation,
’JZ/M = 3ﬁy+q/(1) qg(z) - 1 an
W, = WO+ W4 W‘.,’-’+ )

(10) splits into systems of various orders,{ viz.
n
= WPy +KG+ I (Fahay—%aln) = 0. (10:0)

- W(';)aa-y'*'Ku)'}' 2 ( aAA'y g(ao/{'yk)‘

+ Z 2 (g(tg}w'y g(o) 'yv) ( 1)*8 v+ a/tl QI‘U

A=1 py

,. .

(T8 —Fan)

n
@ ®
- WJé,, + K"+,\-

(g(l)

apvy

+ 3

A=1 gr

— GO B8, +8,,U0)

+ ;{“ E(g(o) — @O )(Qﬂ)t A+6,.Aq/(2)+ q/(l)*o”( )

apry auyy
A=l v ’

n
+ 3 (- WPs+ Kt 3 (@8- 980

+ B 5 (S ) 80+ 5,90 )
A=1 pr

+ z{K9;+ 3 (FOs— T g0) — W‘;m} w =0, (102)
2 A=1
etc.

The zero-order system (10-0) is but a repetition, in algebraic form, of
either the unperturbed Fock-Dirac system or the unperturbed eigenvalue

t The restriction (y = 1, 2, ..., n) has been purposely omitted in (9)-(14) as (1)
can be extended into an eugenva.\ue problem similar to (7) as soon as @, &, ..., ¢,
are determined.
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problem (7) according to whether the index 7 is restricted to vary from 1 to
n or not. With the help of the equation obtained by putting the index y of
(10-0) equal to g, the last bracket of (10-1) and (10-2) becomes simply

{(WP—WD)o,00 = (WD — WD) 8}, (12)

and vanishes identically when we take a = y. Because of the appearance
of %) and %2 elsewhere in (10-1) and (10-2), the perturbation energy para-
meters W and W cannot be calculated before #{3 and 43 are obtained.
To obtain %Y, for example, I take the index a of (10-1) different from 7y.
Remembering (12), I have, for the equations for %) (« #¥),

n

(Wﬁl) - W(,?)) %ctl':' + o) E (gg);)wy - ggo;)ayv) (%(;3‘ 6VA + 3,41%'(,1\))

=1 u»

x )
= foly)' + Azl(g(cg/\y_ g(ag.y))‘ . (13:1)
Successively the equations for ¢ (1 = 1,2, ...; a #’y) are all of the form

(WO— WU + T 5 (I~ %) (U 1+ 80 7D)
. =1 p
= knewn quantities. (13-1)

These equations, being algebraic and linear, are ;.n principle solvable. The
clements 4D, %), etc. are, as usual, not determined by these equations
but, owing to the normalization of the ¢,’s oi;:(l) and the ¢”s of (7), they
are given by 73:

YT+ =0, VT UG = ~TUR U, ete. (14)

2. PERTURBATION ENERGY

The algebraic expression for the total energy of the electrons, obtained
by substituting (9) into (5), is
» l n
E= 721 w,— 2, 2:— 1 a%,,%:’%:‘(g“"’_ Gupr) U U g, (15)
This, being expanded according to the perturbation into series of the form
(11), yields

»n 1 n
EO = ¥ WP 2, El(g(%.w" GR2)s (15:0)

=1
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n

. 1 = ’
EM = Z I‘v{yl)—T E (g()})\lr'—g(yl;.‘y/\)

v=1 2 v.a=1

1 n

_— o  _ @&l
27"\2_1 3_}“ (g(apvﬂ g(apﬂv)
X {(%(al;’* 6}7 + Jay%g;) 8;44\ 8».\ + 6a'y 8ﬂy(q{(;3* 6w\ + 8;4/\%9/\))} ’ (15 1)
n 1 =
E® =5 WP 5 & (F5ay— FRya)

r=1 v, A=1

1 n
-5 X 2 (F0—90s)
v.A=1 afur
X (UG 8p, + 8, U 8,200+ 8, Sp (U B,2+ 6, %))
1 n
—— o _ @
21,AZ-1 a/%:w ( apvf ap.ﬂr)
X {(UE* 85, + 8, UP+ U UL 8,16,0
+ 6a7 6ﬂ'y(%:n{‘ avA + J;u\%g\)'*' %(:?\. %}\))
+ (qz(ul;‘ aﬁy + aay%(ﬁl;) (%(_ulrl 8!1 + 8,:1%5}\))}1 (15'2)

etc. If I had applied the ordinary perturbation method to the original
Schridinger equation for the assembly of electrons and then introduced
the one-electron approximation, I should have obtained some expressions
for calculating the perturbation energy of the first and the second order
from the Fock functions of zero-order and the first order. Hence the explicit
appearance of %4} in (15-1) and %) in (15-2) must. be only apparent. I can
get rid of them by substituting (10-1) and (10-2) for W%’ and W and then
cancelling terms, as will be shown immediately.
From (4), I derive

G =G =F,, (1=0,1,2,..). (16)
This may be used to simplify the last term of (15-1). I then have for BV,

Ev = ¥ W~ 1y (FPhar— )
r=1 2ar=1

- E E (g('y;vy_ g(';’;yv) (42(;3‘ é\w\ + apzlq,ﬂ\) - (15'] a)
Y,A=1 p»
To obtain W from (10-1), take @ = y. The last line of (10-1) then drops
out by (12). Hence for W¢,

b4

n
WP = K+ 3 (FHay— o)

+ 2 2 (g(';)‘)wr - g(‘:');)()w) (@(:1* 61!] + 8;4) %v(:)) (17)

A=1 w»
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Substituting (17) into (15-1a) and cancelling terms, I obtain for the per-
turbation energy of the first order,

n 1 n .
EV =3 ]((71;+§ 3 ({/;(;)A _ @ ”A) (181)
y=1 y,A=1

which is indeed free from %4). A similar combination of (10-2) and (152}
yields for the perturbation enm oy of the second order,

F@ — Z K(2)+l

n

2 (2
2 Z (ggy} 7 @ ))’/\)
r=1 =1

n

+7§‘2;4 ]\’(l)+ Z Z(M;)/)w - ()?/)tﬁ'v) (0) ;}3\*8?;\+ ;ul )
+ Z (% AA,s ,‘3,u)~ W(yl)ayﬁ 67/(

Z Z (J - gg)/):ﬂv) (@(al;‘ 6}?7 + 8 @/ﬂ)) (QI(;}/)\* 6w\ + 5;4A %9,\))
A=1 afuv
g (18-2)

DO
B

Since the above expression is necessarily real, I can replace the right-
hand side by its real part. The real part of the coefficient of WY vanishes
by (14) and the real part of the terms containing ¥® cancel by (18). Hence
I get finally for £X®,

n
2) = 7(2)
E® = yle‘”+

2 (g(y”/\‘y j( }u\)

2

+ real part of E Z{K“)+ = (m},)\,\p GOpN UL, (183)
y=1

The above derivation of (18-3) is quite general. Similar expressions for
the perturbation energy of higher orders can all be obtained in the same way.
In evaluating the energy to the third order, for example, it is necessary to
solve the equations (10-2) for 4§}, which, however, does not present any
new feature as the perturbation equations of higher orders are all of the
same form as that of the equations of the first order.

3, SEPARATION OF THE SPIN

In treating 2n-electron problems with zero resultant spin by the method
of the self-consistent field, the 2n one-electron functions may be taken as
the products of n functions ¥y, ¥,, ..., ¥, of the spatial co-ordinates r with
the two spin cigenfunctions §_,(s), &,,(s). The spin eigenfunctions 4,(s)
assume the value zero when s differs from o and the value unity when
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equals . In all the sealar products (cf. (3)) of the preceding sections. the
summation over the spin co-ordinates can then be performed independently
according to the normalization

Z 80'(8) 30‘(3) = 600" ( 1 9)

The important consequence of this is that all clectrons contribute to the
ordinary potential but only electrons with parallel spins contribute to
the exchange potential. The spin eigenfunctions may be factorized and
hence removed from (1). For the details of this reduction, we refer to
Brillouin’s book (1934).

"The reduced Fock-Dirac system of equations in the case of zero resultant
spin consists of n simultaneous equations in the = y¥-functions of r. These
may be obtained formally from (1) by changing ¢ into ¥ provided that a
factor 2 is added to the first (the ordinary potential) term on the right of (2).
This means that the perturbation equations for the ¥ -functions of the
2n-electron problem may be obtained from the corresponding equations
of § 1 by adding a factor 2 to the first term of every bracket containing the
difference of two @’s. The constants K,;, 9,,,, now stand for (¢®. Ky/J),
(YO . (pQ. gy ), involving volume integrations of the spatial co-
ordinates only.

To obtain the expressions for the perturbation energy for the 2n-electron
problem from those of § 2, we need to add the factor 2 in the above way and
then double the whole expressions on the right-hand sides. "

The above perturbation theory has been applied to the calculation of
the elastic constants and the thermal frequencies of metallic crystals which
will be treated in separate papers.

1 wish to acknowledge my indebtedness to Professor M. Born and
Dr K. Fuchs for much valuable advice,
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Crystal theory of metals: calculation of the
elastic constants

By K. Fucast axp H. W, Pexng
University of Edinburgh

(Communicated by M. Born, F.R.S.—Received 25 September 1941)

The approximate equations of motion for the electrons in a cyclic lattice
of a metal are set up with the help of: the self-consistent field. The displace-
ments of the ions are then considered as perturbations of the motion of the
electrons. The change of the boundary is compensated by a co-ordinate
transformation. The change of the potential energy of the lattice due to a
homogeneous deformation is calculated by the perturbation method. The
calculated values of the elastic constants are found to be in satisfactory
agreement with the observed values,

INTRODUCTION

The character of metallic binding has been revealed by the calculations
of Wigner & Seitz (1933, 1934). But little progress has since been made in
developing a crystal theory of metals comparable with the classical crystal
theory of ionic lattices of Born (1923), apart from the calculation of the
elastic properties (Fréhlich 1937; Fuchs 1936a; Bardeen 1938).

Recently one of us (Fuchs 1940) suggested that the method of the operator
calculus is suitable for further progress in this direction. In this paper we
wish to attempt such a development, and the general method of treatment

t Now at the University of Birmingham.



