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INTRODUCTION

§ 1. PrysIcAL opties is a speciz! department of electro-
dynamics-—namely, that which comprises the laws of
rapidly varying fields. Its particular significance consists
in the fact that it represents the branch of physics in
which the most refined measurcments are possible, and
which consequently enables us to penctrate furthest into
the details of physical phenomena. At the same time,
optics presents a clearer illustration than any other
branch of physics of the peculiar tendency of progressive
scientific research to leave the original point of departure—
namely, the specific sense-impressions—and to place
physical concepts on more objective foundations. For,
whereas the most important optical concepts, those of
light and colour, were originally derived from the im-
pressions on our eyes, these concepts have nothing at all
to do with the immediate sensation of sight in present-day
physics, but relate rather to electromagnetic waves and
vibration periods—a trend of development which has
justified itself in the abundant fruit which it has borne.

§ 2. We can progress most easily by linking up with the
general system of Maxwell’s equations «for the electro-
magnetic field in stationary bodies, particularly if we
use the special form which they assume for transparent
and non-magnetic bodies. Since the transparency of a
body is associated with the condition that no transforma-
tion of electromagnetic energy into heat occurs in it, all
transparent bodies are electrical insulators in which the
vector J of the electric flux vanishes everywhere and at all
times., BResides excluding conductors, this also excludes
strongly magnetizable bodies; for other bodies we may,
without introducing an appreciable error, identify the
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2 THEORY OF LIGHT

magnetic induction B with the magnetic intensity of field
H. Then, by III (31) the field equations assume the simple
form :

D=courlH, H= —ceurlE . . . (1)

together with the supplementary equations ITI (49) and
(51):

divD=0, divHE=0 . . . . (2
Here E denotes the electric intensity of field, H the
magnetic intensity of field, » the electric induction, ¢
the critical velocity, all quantities being measured in the
so-called Gaussian system of units (III, § 7). .

The above system of equations embraces the optics of
all transparent substances. But the variables that occur
in them play the part only of auxiliary quantities, since
they are not directly measured. There is one quantity,
to determine which is the goal of all optical measurements
and to calculate which is therefore the proper task of
every optical theory. This quantity is the vector of the
electromagnetic flux of energy :

S=£;[E,H].. N )

which gives the intensity and direction of the intensity of
radiation [see III (26)].

For the subsequent treatment of these equations we
have to take into consideration the particular relation
which connects the vector of the electric intensity of field
E with the vettor of electric induction D and which
endowsasubstance with its characteristic optical behaviour.
Accordingly we find it appropriate to divide the material
into three parts, so that we successively discuss the optics
of isotropic homogeneous bodies, the optics of crystals. and
the optics of non-homogeneous bodies in which the
phenomena of dispersion and absorption are included.
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CHAPTER I
REFLECTION AND REFRACTION

§ 3. In the ocase of an isotropic and homogeneous
substance the relation between electric induction and
electric intensity of field is expressed by the equation
IIT (28) :

D=e¢.E . . . . . . (4

where ¢ denotes the dielectric constant. The field-
equations (1) then become :

eE=ccurlH, H= —ceurlE . . . (8)

We shall consider as the simplest particular solution of
these differential equations the case of a plane wave which
propagates itself in the direction of one of the co-ordinates,
say in that of the positive z-direction. Then all the
field-components are independent of ¥ and z and we get
from (5) and (2), since static fields do not come into
guestion for optics :

Ez=0, H:.,-:O

whereas the following differential equations hold for the
other components :

g, _om om_ o,
& ox’ "ot oz’
°Hy  OE, oH. OB,
ot~ ox’ ot o

Thus there are two pairs of connected quantities among

these four field-components; namely E, is connected
5



6 THEORY OF LIGHT cHAY,

with H, and E. with Hy, and the same differential equation
holds for each individual component, namely :

0By  * 0'Ey . 8
ot T ¢ o - (8
So if we set :
cz
: = q2 . . . . . . (7)

it follows from the general integral already derived in II,
§ 35, for the differential equation (6) that the most general
expression for a plane wave which propagates itself in a
homogeneous isotropic medium in the direction of the
positive z-axis is :
E:=0 H;=0
1 x) ]

By = = (t—g) H"=_g<t—7i .
N O

where f and g represent arbitrary functions of a single
argument.

As we see, both field-strengths are perpendicular to the
direction of propagation; hence the wave is called
“ transversal.” It resolves into two components which
are in general independent of one another, and which
lie in the direction of the co-ordinate axes. In the case
of each component the electric and the magnetic field-
strengths are proportional to one another. Their signs
are determined by the theorem that the directions of the
electric field-strength, of the magnetic field-strength and
of propagation form a right-handed system.

§ 4. If we now propose to ourselves the question as to
what is to be measured in this electromagnetic wave and
which of its properties can hence be ascertained
objectively, we find the answer in the vector of energy-
radiation (3) which in the present case reduces to its
z-component :

=2 - =L (2 4 g
Sz = 4~ (ByH: — EcHy) = £ (f* + ¢F)

(8)



L REFLECTION AND ‘REFRAOTION 7

Thus in an isotropic body the direction of the energy-
radiation coincides with that of the wave-normal z, and
the amount of energy radiated in the time d¢ through a
surface F which lies in a wave-plane is :

s,.F.dt=f—ﬂ(f2+g2).Fdz. )

Since, however, appreciable effects of radiation always
require a finite time, we never measure the radiation
vector §. itself, but rather only its time-integral or its
mean value in time taken over a sufficiently great interval
of time 7. Hence if we use the following abbreviations
for the mean values :

1 (T _ 1 (T —
phfd=F p[edi=@ . . . o)

then the amount of energy radiated through the surface
F in unit time is :

Lprp.r. . . . .oay

which can be recorded by any instrument that takes up
the radiant energy completely, and provided that it is
sufficiently sensitive (bolometer, radiometer, thermopile)..

After the total radiation of the wave has been measured,
its further analysis presents a two-fold problem; firstly,
we must separate the two summands f2 and ¢? from each
other; secondly, we must pass from the mean time values
to the functions themselves; that is, we muat investigate
the exact form of the wave-functions f and g. For this
purpose we require special optical contrivances the theory
and action of which we must derive in the sequel. At
this stage nothing at all can be stated about them. In
particular there is no reason for assigning any sort of
periodicity to the functions f and ¢g. Actually there are
~ in optics no waves which have a sharply definite period in
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CHAP.

the mathematical sense, such as we have, say, in acoustics.
We therefore do best by leaving the question of the form
of the waves completely aside for the present, taking it
into consxderatmn only when it becomes really necessary.
There is only One assumption which we may make from

the very outset, namely, that the mean time values of
fand g vanish, that is :

F=0andg=0. . . . . (2

For if a wave-function has a mean value different from
zero, we can imagine the wave in question to be replaced
by another wave for which the conditions (12) are fulfilled,
with a statical field superposed on it, the field being
characterized by the mean value, which is not equal
to zero. 'The presence of this field can be made mani-
fest by its ponderomotive action on a charged test-body
(electron) and can so be separated from the true optical
wave.

§ 5. A plane-wave of unlimited cross-section cannot,
of course, be realized in nature. Nevertheless we can
produce waves which approximate appreciably to the
character of plane-waves. For let us imagine a point-
like source of light which begins to emit light at a definite
moment of time-—say when ¢ = 0. Then, since the
surrounding medium has been assumed to be homogeneous
and isotropie, the light will propagate itself uniformly in
all directions. The bounding surface which has been
reached by the light after a definite interval of time is
called a wave-front. There is thus a wave-front corre-
sponding to every moment of time, and the whole of the
surrounding space is hence filled by the system of successive
wave-fronts which enclose one another. In the present
case these wave-fronts are obviously spherical surfaces
which surround the source of light concentrically, and so
a small portion of a sufficiently great spherical surface can
be regarded to a sufficient degree of approximation
as a plane wave-front or a wave-plane. Its normal is the
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corresponding radius of the sphere, and the radiation
vector S points in the same direction.

§ 6. Let us now investigate the phenomena that occur
when the plane-wave (8) falls on the plane bounding
surface of a second isotropic body. We shall take the
normal of this bounding plane, the so-called incident
normal, as the ¢-axis of a new co-ordinate system directed
towards the interior of the second body, whereas the origin
0 of the zyz-system is to be coincident with the origin of
the &yf-system. Without reducing the generality of the
cage we can then make the y-axis and also the y-axis lie
in the plane defined by = and ¢, the so-called incident
plane, and take this as the plane Pirst bod Second bod
of Fig. 1. Here all points for teo Vo Ero v
which £ < 0 denote the first body x' x
(on the left), from which the
wave (8) comes, and all points
for which £ > 0denote thesecond
body {on the right); the points
for which ¢ =0 (the 7%-axis)
constitute the boundary plane.
The z-axis is the direction of the Fro. 1.
ray which comes from the first
body—that is, from the left-hand side:; it makes the
angle # with the incident normal ¢. The y-axis denotes
the wave-plane of the incident ray; this wave-plane is
perpendicular to the plane of the figure and also makes
the angle § with the boundary plane. It has been
oniitted in the figure so as not to multiply the directions
to be shown unnecessarily. The z-axis coincides with
the {-axis and points from the plane of the figure towards
the observer.

We base the solution of the problem before us on the
reflection that every system of waves which satisfies the
differential equations in the interior of the two bodies and
also the boundary conditions, represents a process which
is possible in nature.

In order to have the differential equations satisfied in

Catd




10 THEORY OF LIGHT CHAP.

the second body we imagine a plane-wave in it also, after
the model of equations (8), which has the ray-direction z,
(see Fig. 1), inclined at an angle 9, to the £-axis, and the
wave-plane y,2;, where we shall again suppose z, to co-
incide with z and . Then the equations (8) hold for the
six field-components E.,, E,;, E., H.,, Hy;, H,, except
that the co-ordinate z; now ocours in place of = on the
right-hand side of these-equations, the functions f; and A
replace the wave functions f and ¢, while the constants
¢ and ¢ are supplanted by the dielectric constant e; and,
by (7), the velocity of propagation :

¢ €
qlvelqe_l....(m)
in the second body.

But this assumption does not suffice. For by ITI, § 6,
the boundary conditions require that for £ = 0 the values
of the tangential field-components—that is, the quantities
E,, E;, H, H;—are coincident in both bodies. This gives
four equations connecting the wave-functions; to satisty
them, however, we have only the two functions f, and g1
available, since the functions f and g are initially given.
To generalize our initial assumption still further, therefore,
we assume a second wave in the first body; this wave is,
of course, also represented by the equations (8), except
that it has a different ray-direction z', which we shall
assume to make an angle 6’ with the ¢-axis (see Fig. 1),
and has the wave-plane y'z’, where again 2 =2 The
six field-components E., Ej, E-, H», H,, H, are given
by the equations (8), if we substitute in them the wave-
functions f and ¢’ and the co-ordinate ', the constants
¢ and ¢ remaining the same,

We have now spproximately generalized our assumption
for the interior of the two bodies, and can vroceed to set
up the boundary conditions. In the first body there is
an electromagnetic field which results from the super-
position of the two plane waves that we have assumed.
Hence, remembering that the field-components E;, Ha,
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E., H. vanish, we get for the field-components which
interest us in the first body :

cos § cos @ ,,
+ —
vz EREvAR

’

E, = Eycosf + Ey cos ' =

Et=Ez+Ez-— = + g
\/ g

H, = Hycos @ + H,,,cose = —cosf.g—cosf .g
Hy=H, + H.=f+f
On the other hand, we obtain for the second body

(¢ > 0), remembering that the field-components E: and H.,
vanish :

cos 8
—_—E C 0 =‘——1.
E, y1 CO8 Uy Ve fi
Er— B — L
{ 2] \/agl
II,,=H1/1-00531: —00891-91
H; = H; = fy.

Hence if we use the abbreviation :

€ _ 9
“=S=n . . . . . 14
€ @ (14)

we must have for the boundary plane £ = 0:

f1

cos 6,

cosB.f + cosd'. f' =

r_ 9
g+g =_

cosf.g + cosb’ . g =cosb.q
f+7' =5

These four equations comprehend all the details of the
theory of reflection and refraction. As we see, they fall
into two groups, one of which contains only the f-waves,
and the other only the g-waves. Thus these two kinds of
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waves behave quite independently of one another; each
obeys its own laws.

§ 7. By means of the last four equations we first cal-
culate the unknown wave-functions f*, f,, 7', g, from the
given wave-functions f and g. We get :

, _ mcosld —cosb, , .
f =cos01-—ncosﬁ’f—"‘“'f - - (19)

n{cos & — cos 0’). _
Ji= cos f; — n cos 6’ f=wm.f . . (16

, _cosf — ncosd

= noosf, —oosg I=°9 - - (D
_n(cosf —cosf)
1_n(zosOl-—coxs()"g"'“l'g .. (18)

As for the arguments of these functions, we have :
Zz .
t— P fandg
xl .
t—=inf,andg,
N
t—Zinf andg’
q
And § = 0 everywhere, so that in transforming to the
co-ordinates £, n, { we have :
x =nsind, z, =7nsinb;, &’ =nsind’
which makes the arguments asgume the values :

__msiné t_")Singl t___‘r;sine'
g’ @ g

Since the functional equations (15) to (18) must be
gatisfied for all times ¢, and for all points » of the boundary
surface, it follows that these three arguments must be
equal to one another—as can also be seen directly if we
differentiate one of the functional equations by parts first

[4

o~



L REFLECTION AND REFRACTION i3

with respect to ¢ and then with respect to 7, and divide
the resulting equations by one another. We get :

sinf sinf, sing’

smo _ s smot L 9)
q 1 q
and hence arrive at the law of refraction :
sin @ q P
T = = == ML {20

and the law of reflection :
¢ =7—80 . . . . . (2)

If we call the angle which the reflected ray makes with
the reversed incident normal the angle of reflection, then
the angle of reflection is equal to the angle of incidence.

§ 8. Snell’s law of refraction (20), which states that the
ratio of the sine of the angle of incidence # to the sine
of the angle of refraction 6, is equal to the refractive
index n of the second body with respect to the first or
to the ratio of the velocities of propagation ¢ and ¢,, has
been accurately confirmed by innumersble meagurements.
The refractive index of a substance is usually referred
to air as the first substance. Thus the refractive index
of water is equal to 1-3, that of glass to 1:-5. We then
obtain the refractive index of a substance with respect
to any other substance by writing down the ratio of their
refractive indices with respect to air. If we exchange
the substances, the refractive index assumes the reciprocal
of its previous value. Accordingly, the refractive index
with respect to a vacuum—the so-called ** absolute
refractive index—is the produet of the refractive index
with respect to air and of the absolute refractive index
of air-—namely 1:0003; as we see, its value differs in
most cases only inappreciably from the ordinary refrac-
tive index.

If we allow the angle of incidence 6 to vary from 0

(normal incidence) to & (grazing incidence), the angle
g (grazing
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. . NP
of refraction 6; increases from 0 to sin-?! ” (limiting

angle). But there is a point of fundamental importance
which must not be overlooked. It is only when n>1,
or if, as we say, the second substance is optically denser
than the first, that the limiting angle is real. Then the
angle of refraction 6, is always smaller than the angle of
incidence §—that is, the ray is bent towards the incident
normal by the refraction, and the limiting angle denotes
the greatest value which the refractive index can assume
at all. But if n <l-—that is, if we exchange the two
substances with each other—the angles of incidence and
refraction also exchange their roles, and the angle of
refraction becomes greater than the angle of incidence;
it attains the value % only when the angle of incidence
has reached the value of the limiting angle. If the angle -
of refraction is allowed to go beyond the limiting angle,
then (20) leads to an imaginary value for the angle of
refraction, and the solution which we have found for the
problem of refraction becomes meaningless. As there
is nothing to prevent our giving the angle of incidence

any arbitrary value between 0 and z—;, a special question

arises here, which we shall, however, deal with on & later
occasion (§ 12); for the present we shall restrict ourselves
to considering those cases for which the law of refraction
yields a real value for the angle of refraction 4.

§ 9. But the electromagnetic theory of the refraction
of light states more than that the refractive index is
independent of the value of the angle of incidence ; it also
tells us the value of the refractive index. ¥or by (20)
this is equal to the square root of the ratio of the dielectric
constants, or, if we take as our basis the absolute refractive
index :

n=4/¢q. . . . . . (22

If we compare this relationship with observed facts, we
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find, in general, crass disagreement. For example, for
water n — 1-3, while ¢ = 80. But even apart from
this the fact that (22) cannot be generally valid follows
from the fact that by definition the dielectric constant e
is independent of the form of the wave-functions f and g,
whereas the refractive index », in the case of all substances,
depends more or less markedly on the form of the light-
waves, that is, on the colour of the light. This phe-
nomenon, dispersion, long constituted a serious obstacle
to the acceptance of Maxwell’s theory. If we wish to
take adequate account of it in the theory here described,
nothing remains but to conclude that the fundamental
assumption which was introduced at the beginning of
this chapter into the field-equations for the optics of
homogeneous and isotropic bodies—namely, the relation
(4), which states that the electric induction is proportional
to the electric intensity of field—does not in general
correspond with reality in the case of rapid optical
vibrations. To obtain a satisfactory theory of dispersion
we shall therefore have to replace this relationship by
one that is more general. This will be done in the third
part of the present volume, where it will be found that
this generalization will have to be based on the circum-
stance that in the case of refined optical phenomena in
nature the assumption that matter is absolutely con-
tinuous and homogeneous is no longer justified, but must
be modified by the introduction of characteristic structural
properties to a certain extent.

If this view is correct, an important significance will
still have to be attached to the relation (22)—namely,
that of a limiting law which is the better fulfilled the
less the dispersion makes itself observed. Ilf we carry
out a test in this direction, the relationship in question
is found to be definitely confirmed. For the substances
which disperse least are gases, and the earliest measure-
ments, by L. Boltzmann, have accurately confirmed the
formula (22) in their case. A particularly noteworthy
feature is the exact quantitative parallelism between the
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dependence of the refractive index and of the dielectric
constant on the pressure in the case of gases, and this occurs
in the sense of equation (22). Hence, with reference to
this equation, we are right in speaking of a far-reaching
confirmation of the electromagnetic theory within the
admissible range of application.

§ 9a. But besides giving the directions of the reflected
and the refracted rays, the theory also gives the form
of the reflected and the refracted rays, by demanding
that the wave-functions in question shall be proportional
to the corresponding wave-functions of the incident wave.
If in the formule (15) to (18) we replace the refractive
indices 7 according to (20) by the angles § and 6;, and
the angle ' by =— 6, the constants of proportionality
assume the following values :

for the reflected wave (f', ¢') :
_tan(8—6,)  sin{6 — 6,

= TV DR T L (23
B=tan @+ 6, %~ sin (6 + 6,) (23)
tor the refracted wave (f}, bgl) :
o sin 260 . 8sin26 24)
1= gin(6 + 8;) cos (@ — 6,y 71~ sin (@ + 6;) (

According to these formule (known as,K Fresnel's
formule) there is a fundamental difference between the
two wave-functions f and ¢, which corresponds to the
physical circumstance that, according to (8), in the case
of the f-wave the electric intensity of field lies in the
plane of incidence, whereas in the case of the g-wave the
electric intensity of field is in a direction perpendicular

- to the plane of incidence. The coefficients p correspond
to the former, the coefficients o to-the latter.

To test the theory we have to measure the radiant
energy. Let us first consider the reflected wave. From
equation (11), using (15) and (17), we get for the ratio
of the intemsity of radiation of the reflected wave to



