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PART 1. ENZYME STRUCTURE AND FUNCTION

Behavior and Application of Immobilized
Micrococcal Nuclease?

A. ALCANTARA A. BALLESTEROS,® A. M. HERAS ¢
J. M. S. MONTERO, AND J. V. SINISTERRA®?

bDepartment of Organic Chemistry
University of Cordoba
Cordoba, Spain

“Institute of Catalysis
CS.IC
28006 Madrid, Spain

9Department of Physical Chemistry
University of Cordoba
Cordoba, Spain

INTRODUCTION

It is important in the insolubilization of enzymes on a support that the insolubiliza-
tion method being used can yield an activated matrix with a broad range of activation
degrees; that is, a support with very low activation would yield enzyme insolubilized
through a single bond, whereas the protein in a highly activated support would be
bound through multiple linkages. This multipoint attachment leads to an enzyme that
is more stable against deleterious agents (i.c., heat, organic solvents, etc.).

Micrococcal endonuclease (EC 3.1.31.1) is a well studied! extracellular phospho-
diesterase from Staphylococcus aureus that hydrolyzes either DNA or RNA to
produce 3"-mononucleotides and dinucleotides and that requires Ca’* for activity. In
our laboratory, we have been interested in the study of the behavior of this enzyme
insolubilized on agarose activated by cyanogen bromide.’™ At present, we are
extending our knowledge to the behavior of nuclease insolubilized both on agarose
activated with tosyl chloride and on other supports as well, By using tosyl chloride, we
have shown’® that it is possible to obtain a high range of activation degrees in agarose,
namely, from 1 to 40 tosyl arms per 10 nm? of support surface area (taking 10 nm® as
the cross-sectional area of the nuclease molecule).! Therefore, this method is very well
suited for preparing insoluble derivatives in which the enzyme is bound through
multiple linkages to the matrix.

The daily intake of nucleic acids from single-cell protein (SCP) concentrates for
human consumption must be limited. This is necessary because of the risk of gout due
to either the deposit of uric acid crystals in the joints or the formation of uric acid
stones in the urinary tract. Many different methods, some of them using rather drastic
treatments, have been proposed for the reduction of the nucleic acid content of SCP

“This work was supported by the Spanish CAICYT (Grant No. BT85-43) and FIS.
1
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concentrates, but no agreement has yet been reached about how they affect toxicity or
digestibility of the resulting protein.®*

The long-term goal of our studies with staphylococcal nuclease is to apply
immobilized nucleases to the hydrolysis of nucleic acids in SCP. It is important to carry
out the hydrolysis process at temperatures that are not too high so that the protein
digestibility is not impaired; however, the temperatures must still be high enough to
prevent contamination by the normal mesophilic microorganisms. In this discussion,
we present data of the hydrolysis of DNA, used as a model substrate, at temperatures
up to 45 °C.

MATERIALS AND METHODS

The procedures for our experiments were as follows. Agarose gel beads (Bio-Gel
A-150m, 100-200 mesh, from Bio-Rad Laboratories) were activated with p-
toluenesulfonyl chloride following our modifications® of the method developed by
Mosbach and co-workers.® Then, tosylated agarose suspended in 0.1 M NaHCO,/
Na,CO, buffer, pH 9.0, was mixed with nuclease solution (mol. wt. = 16,800, from
Boehringer Mannheim) and was left at 25°C to obtain the insoluble enzyme
derivatives.

As substrate, we used Sigma salmon testes DNA Type III in its denatured form
after 30 min at 100 °C and this was followed by rapid cooling.'® Initial activities of the
soluble and insoluble enzymes were measured by charting in graph form the increase in
A, at 30°Con 0.1 M Tris-HCI buffer, pH 8.8, containing 0.1 M CaCl,."° An activity
unit is the amount of enzyme causing a change of 1.0 A,, min~'. The hydrolysis of
DNA was carried out in a 35-mL batch reactor, with aliquots removed periodically to
measure the increase in A,¢,. The percentage of hydrolysis attained was calculated on
the premise that a 33% increase in the DNA initial absorbance represents 100%
hydrolysis. The DNA concentration level in the reactor was 2.5 mg/mL,; in addition, in
order to start the reaction, 2 mL of agarose-enzyme gel was added.

RESULTS

As a result of our methodology,’ the tosylation of Bio-Gel A-150m readily yielded
very different degrees of activation (from 1 to 40 tosyl groups per 10 nm’). In this

TABLE 1. Properties of the Agarose-Nuclease Derivatives

Support Activation gt Initial Activity’
(no. of tosyl groups per 10 nm?) (ug nuclease/mL gel)  Derivative (units/mg)
6.5 4.1 N-Ag 12 540
6.5 8.9 N-Ag 1b 170
10.4 4.7 N-Ag lc 320
10.4 8.8 N-Ag 1d 240

“E, = concentration of the insolubilized enzyme in the gel particles.

*The specific activity of soluble nuclease is 1710 units/mg.
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FIGURE 1. Course of DNA hydrolysis by insolubilized nuclease. Reaction medium: Tris buffer.
Derivative: N-Ag 1b.

study, we have compared two support activations in which E,, has been varied from 4.1
t0 8.9 ug/mL (0.24 to 0.53 uM). The properties of the insoluble derivatives obtained
are given in TABLE 1. It can be seen that the initial activities of the insolubilized
nuclease derivatives towards a macromolecular substrate (denatured DNA) were
substantially lower than those found in the native enzymes. However, these derivatives
were much more resistant to moderately high temperatures (see below).

The time course of DNA hydrolysis at two temperatures is shown in FIGURE 1. The
extent of hydrolysis after 24 h at 45 °C was much higher than at 40 °C. The decrease at
40 °C in % hydrolysis was due to interference in the assay because of the high Ca** and
DNA concentrations present (this interference was much more apparent at 30 °C).
Furthermore, 50 °C appeared to be a reaction temperature too high for the Bio-Gel
A-150m support.

The number of possible (covalent) linkages between enzyme and support, on the
one hand, and the load of enzyme per unit volume of support, on the other hand, are the
most important characteristics of insolubilized enzymes because they enhance the
stability and productivity of the biocatalyst. Therefore, we next evaluated the behavior
of the four insoluble derivatives in DNA hydrolysis at 45 °C (TABLE 2). Clearly, the
derivative N-Ag lc, which had the larger enzyme load on the most activated support,
showed the poorer results (although its initial activity value was better than that of
other derivatives; cf. TABLE 1).

In previous research,' we investigated the behavior of the initial rates of DNA
hydrolysis in both the absence and the presence of several organic solvents. The best
results were obtained when the reaction mixture contained 2% of the organic solvent.



TABLE 2. DNA Hydrolysis at 45 °C with Insolubilized Nuclease
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% Hydrolysis

Derivative After 1h After 24 h
N-Ag la 48 76
N-Ag 1b 46 78
N-Ag Ic 42 63
N-Ag 1d 47 75

Hence, we have studied the time course of hydrolysis in the presence (2%) of dimethyl
sulfoxide (DMSO) or tetrahydrofuran (THF) (FIGURE 2). It was evident in this
enzyme system that reaction mixtures of Tris—dimethyl sulfoxide (98:2) yielded more

hydrolysis than plain buffer.

DISCUSSION

Because of the high molecular weight of nucleic acids, we are studying the agarose
gel of lowest agarose concentration (i.e., of larger pores) as a matrix for nuclease
immobilization. Bio-Gel A-150m, which is commercially available, contains 1% (w/v)
agarose and its exclusion limit is 150 x 109 daltons. Previously,’ we estimated that its

w
o

fa ]
o

~3
o

°le Hydrolysis

| 1 1 1 1

12 16 20 24 28
Time (hours)

FIGURE 2. Time course of the percentage of hydrolysis in several reaction mixtures at 45 °C.
A = Tris buffer; O = Tris-DMSO (98:2); O = Tris-THF (98:2). Insoluble nuclease derivative:

N-Ag 1b.
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surface area and average pore diameter were 17 m*> mL~! and 330 nm, respectively.
Presently, we are in the course of evaluating other types of supports differing in
chemical nature and porosity.'?

The data reported here show that nuclease insolubilized on tosylated agarose can
be used for long periods of time in the hydrolysis of DNA at 45 °C. Derivatives
previously obtained using CNBr-activated agarose as support could not be employed at
temperatures above 37 °C.* On the other hand, native nuclease is sensitive to prolonged
exposure to temperatures =40 °C." In these conditions, a conformational change that
disturbs the active site takes place.!’ Therefore, insolubilization of staphylococal
nuclease on tosylated agarose offers a good resistance to temperature in the conditions
of catalysis.

With the development of biotechnology, it has become absolutely necessary in
many instances to introduce organic solvents in the reaction mixture. In an earlier
work, we studied the effect of several organic solvents (dimethylformamide, dimethyl
sulfoxide, tetrahydrofuran, acetonitrile, and methanol) on the initial activity of DNA
hydrolysis by soluble and insolubilized nucleases." In this report, the presence (2%) of
DMSO or THF in the hydrolysis reaction mixture has been investigated (FIGURE 2).
While DMSO is a most promising solvent for the study of nucleic acid hydrolysis, THF
[whose dielectric constant (¢ = 7.4) and partition coefficient’® (log P = 0.49) are very
low] offers no improvement to the catalysis in plain Tris buffer.
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We propose the modification of the biocatalyst environment with additives as a viable
approach to the stabilization of enzymes. The effect of polyols (ethylene glycol,
glycerol, erythritol, xylitol, and sorbitol), polymers (PEG, dextrans), and carbohy-
drates (sucrose, lactose) has already been investigated.' In addition, a mechanism of
enzyme stabilization has been proposed.* The influence of different salts (KCI, NaCl,
LiCl) on invertase, glucose oxidase, and lysozyme stability is investigated in this study.
Enzyme half-life is taken as a criterion of enzyme stability, and we define the
protective effect as the ratio of the enzyme half-life in the presence of additive to the
enzyme half-life without any additive. Moreover, with the help of Raman spectrosco-
py, the effect of these salts on the modification of the water molecule organization is
observed.

In the presence of LiCl, NaCl, and KClI, a definite maximum effect on the thermal
stability of invertase is observed (TABLE 1). This stability maximum varies with the
salt concentration (i.c., situated at 1.0 M for LiCl, 2.0 M for NaCl, and 3.0 M for KCI)
and with the nature of the cation (K*, Na*, Li*). In the case of KCl (3.0 M), the
half-life of invertase is increased by a factor of 1300. TABLE 2 shows the evolution of
the stability of the glucose oxidase with an increase in the salt concentration. The
maximum protective effect is observed in the presence of KC1 (2.0 M).

In the case of lysozyme, the nature of the cation has no effect on the enzyme
stability. The half-life of lysozyme is multiplied by a factor of five in the presence of
LiCl, NaCl, and KC1 (1.0 M). The difference in the protective effect observed between
these three enzymes can be related to their hydrophilic/hydrophobic balance. In the
most hydrophilic enzyme studied, namely, invertase, we observed that the effect of the
cations was most evident. Both effects diminish when the enzyme becomes increasingly
hydrophobic in glucose oxidase and lysozyme phases.

We used Raman spectroscopy in order to characterize the effect of solvent (water)
induced by the salts on enzyme stability. Raman spectra are obtained with a T800
Coderg triple monochromator and using the 488.0-nm exiting line (400 mW, 19 °C) of
an argon ion laser. Raman intensities /jand I, are obtained for incident and scattered
polarization either parallel or perpendicular. We present in FIGURE 1 the isotropic
(below) and anisotropic (above) parts of the Raman spectra of water and a KC12.0M
aqueous solution.

7
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TABLE 1. Effect of Salt Concentration on the Stability of Invertase®

Salt (M) 0.5 1.0 1.5 2.0 3.0 40 5.0

Protect; LiCl 35 48 43 8.5 — —_ —
r(;a;fc ve NaCl 81 254 — 388 240 60 2.1
ect KCl 36 138 240 600 1300  — —

“Denaturation temperature: 70 °C.

The isotropic and anisotropic parts, I; and /,, are related to /yand I, as
Iy=1 - (4/3)1, and I,.=1I.

All these spectra are corrected for the Bose-Einstein population factor. The Raman
spectrum of water has been studied extensively;>® the main conclusions can be
summarized as follows:

(I) The broad band between 3000 and 3700 cm ™! is attributed to intramolecular
stretching of the OH covalent bond (v,). Its shape is due to (a) the
perturbation of this covalent bond by the presence of OH . . . H intermolecu-
lar bonds and (b) the Fermi resonance between v, and 2», (v, is the bending
frequency of H,0).

(II) The low intensity peak at about 1640 cm™' is attributed to the bending of the
water molecule (»,).
(III) The low frequency part is correlated to intermolecular librational or vibra-
tional motions.

The water organization is due to hydrogen bonds and, consequently, this is related
directly to low frequencies (IIT) and indirectly to high frequencies (I and II).

The spectra of the KCI (2.0 M) aqueous solution exhibit important modifications
compared to those of pure water:’

(1) The shape of the high frequency band (3000-3700 cm~') strongly depends on
the concentration. The variations of different parameters (frequencies,
heights, widths) versus concentration are linear within experimental errors.
This evolution shows a decrease of the Fermi resonance and a decrease of the
number of hydrogen bonds between water molecules.

(2) The lowest frequency part of the spectra (<100 cm~') remains practically
antisymmetric with increasing concentration of KCl, whereas the 200-cm ™!
feature, which is totally antisymmetric in pure water, becomes more and more
depolarized. The behavior of this band, which is attributed to intermolecular

TABLE 2. Effect of Salt Concentration on the Stability of Glucose Oxidase?®

Salt (M) 0.5 1.0 1.5 2.0 25

Protective LiCl 1.0 1.9 33 1.2 1.0
Effect NaCl 1.4 34 4.0 15.0 9.1
KCl 1.4 34 3.8 16.0 15.5

“Denaturation temperature: 60 °C.
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hydrogen bond stretching, explains the change in symmetry of the microenvi-
ronment of the water molecule. The development of the new band in the
isotropic part at almost constant frequencies may lead to the conclusion that a
new vibration is involved. This new vibration can be related to water-ion
interactions.

FIGURE 2 presents I; for LiCl, NaCl, and KC[ (2.0 M) aqueous solutions. The
differences between the spectra of these salts exhibit only small changes. It seems to be
very difficult to observe the effect of the cation on water organization. Nevertheless,
some parameters can be extracted by means of peak analysis using computer
calculations in order to compare the evolution of these spectra. For instance, the
frequency of the feature, which is at 189 cm~! in pure water, decreases when adding
LiCl, NaCl, and KCl (2.0 M) to reach 182, 177, and 174 cm™!, respectively. This
evolution explains the change in water intermolecular interactions and is due to the
ionic and size effects of the salts.

An important protective effect is observed for the enzymes, invertase, glucose
oxidase, and lysozyme, in the presence of KCl, NaCl, and LiCl. This effect depends on
the nature of the enzyme and the concentration of the salt. When the concentration of
the salt increases, the protective effect increases, reaches a maximum value, and then
decreases (i.e., in the case of NaCl and LiCl). The evolution of the Raman spectrum of
salt solutions allows a measurement of water organization. This water structuration is
not sufficient to describe the protective effect of the salts on enzymes; it is necessary to
take into account the direct interactions between the ions and the enzymes.
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The biosynthesis of cephalosporins, which involves the formation of penicillins as
transitory intermediates, is restricted to a number of eukaryotic and prokaryotic
species.' The pathway used in the synthesis of desacetylcephalosporin C (DAC) by S.
clavuligerus, C. acremonium, and P. chrysogenum in the biosynthesis of isopenicillin
N (IPN) is shown in FIGURE 1. The conversion of é-(L-a-aminoadipyl)-L-cysteinyl-
p-valine (ACV) to isopenicillin N (IPN) has been demonstrated in cell-free extracts
(CFX) of all three organisms, and the enzymes that produce DAC from IPN are
present in CFX of S. clavuligerus and C. acremonium. The CFX from these latter two
organisms also convert analogues of the tripeptide ACV into antibiotics. Several
independent research units are involved in studies on the possible use of these enzymes
in the synthesis of novel and natural cephalosporins.

The patterns of formation of these enzymes vary considerably over the course of
fermentation. Cells of S. clavuligerus produced in 10-L batch fermentations yield
CFX that typically contain 1.6 units of IPNS/mL,? 0.6 units of epimerase/mL,’ and
4.5 units of DAOCS/mL (unpublished results). It has been observed (unpublished
results) that maintaining the dissolved oxygen content of the culture at saturation
throughout the fermentation results in a 3-fold increase both in the level of antibiotics
produced and in the specific activity of DAOCS, whereas that of IPNS is only
increased 1.5-fold. This procedure does not have any effect on the specific activity of
ACVS, which is the initial enzyme in the pathway. However, the cellular content of
these enzymes is too low for their exploitation in the in vitro synthesis of novel and
natural cephalosporin antibiotics; therefore, research is being conducted in several
laboratories on the cloning and expression of these enzymes.

Some of the results of studies on these enzymes relative to enzyme engineering of
the enzymes in this pathway are summarized in TABLE 1. Recent studies with C.
acremonium extracts have shown that the initial enzyme in the pathway, ACVS, is a
single multifunctional enzyme that acts in a manner similar to those enzymes involved
in the synthesis of peptide antibiotics.*> ACVS initially converts L-a-aminoadipic acid
and L-cysteine into §-(L-a-aminoadipyl)-L-cysteine and then adds L-valine to produce
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