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Introduction

Fixed point theory studies fixed points of a selfmap f of a space X. (A selfmap
is a map from a space to itself) Nielsen fixed point theory, in particular, is
concerned with the properties of the fixed point set Fixf := {x € X | x =f(x)}
that are invariant under homotopies of the map f (see [J1] for an introduction).

The fixed point set Fixf splits into a disjoint union of fixed point classes.
Two fixed points are in the same class if and only if they can be joined by a path
which is homotopic (relative to end-points) to its own f-image. Each fixed point
class F is an isolated subset of Fixf hence its index ind(f,F) € Z is defined. A
fixed point class with non-zero index is called essential. The number of essential
fixed point classes is called the Nielsen number N(f) of f. It is a homotopy
invariant of f, so that every map homotopic to f must have at least N (f) fixed
points.

Nielsen fixed point theory is related to dynamics through the theory of peri-
odic points, i.e. the study of the fixed points of the iterates {f” |n =1,2,...}
of f. One would like to understand how the invariants of the map f” will change
when the power n changes.

In the asymptotic study of surface homeomorphisms [J3], the following a
priori bound for the index of Nielsen fixed point classes plays an important role.

Theorem JG. (Cf. [JG, Theorem 4.1] ) Suppose X is a connected compact sur-
Jace X with Euler characteristic x(X) < 0, and suppose f : X — X is a self-
homeomorphism. Then the index of the Nielsen fixed point classes of f is bounded.:

Partially supported by NSFC.
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(A) every fixed point class ¥ of f has index ind(f ,F) < 1;
(B) almost every fixed point class ¥ of f has index ind(f,F) > —1, in the sense
that
D Gnd(f,F) + 1) > 2x(X),
where the summation is over all classes F with ind(f ,F) < —1. Hence
(©) |L(F)—x(X)| < N({f)— x(X), where L(f) and N (f) are the Lefschetz number
and the Nielsen number of f respectively.

The purpose of the present note is to show that these index bounds are indeed
valid for any selfmap of a compact surface with x < 0, thus answering an earlier
question [JG, end of Sect. 4].

These index bounds have attracted much attention. In an algorithmic study,
Joyce Wagner [W] has verified them for a class of selfmaps of compact surfaces
with boundary.

By a geometric approach, Michael Kelly {K1] has established the following
result:

Theorem K. Let X be a connected compact surface with boundary. Suppose a
selfmap f : X — X is minimal in the sense that it has the least number of fixed
points possible among all maps homotopic to f. Then the index of fixed points of
f is bounded:

(A") every fixed point x of f has index ind(f,x) < 1;
(B') almost every fixed point x of f has index ind(f ,x) > —1, in the sense that

> _Gind(f, %)+ 1) > 2x(X),

where the summation is over all fixed points x with ind(f,x) < —1. Hence
(€) L) — x(X)| < MF{f]— x(X), where MF[f] is the minimum number of
Jixed points in the homotopy class of f.

We have phrased Kelly’s result parallel to ours, but neither one implies the
other (although (C) is stronger than (C’)), because on surfaces it is not always
possible to coalesce an essential fixed point class into a single fixed point [J2].
In a recent preprint [K2], he also proved (A).

Our approach is to reduce the study of surface maps to that of surface home-
omorphisms and of graph maps, by means of the notion of mutant. (We shall
see that if a map is not homotopic to any homeomorphism of the surface, it can
be deformed into a non-surjective map, hence can be replaced by a map on a
spine of the punctured surface.) Just as the former type was analyzed in [JG] by
Thurston’s theory of surface homeomorphisms, we treat the latter type using the
corresponding Bestvina-Handel theory for graph maps.

The paper is organized as follows. The notion of mutant is introduced in
Sect. 1. Section 2 prepares the reader with the Bestvina-Handel theory for graph
maps. The technical core of the paper is Sect.3 where the index bounds are
established for graph maps. Section4 completes our proof for surface maps. In
Sect. 5, the index bounds are used to establish an equality for asymptotic invari-
ants. Section 6 asks a question about index bounds for more general polyhedra.



Bounds for fixed points on surfaces 469

Acknowledgements. The author thanks Mladen Bestvina and Warren Dicks for helpful discussions.

1. Mutants

In this section we introduce the notion of mutant, and show that the Nielsen fixed
point invariants are invariants of mutants.

Definition. Let f : X — X and g : Y — Y be selfmaps of compact connected
polyhedra. We say g is obtained from f by commutation, if there exist maps ¢ :
X o Yandy:Y — X suchthat f =1 opand g = pop. We say g is a mutant
of f if there is a sequence {f; : X; = X; | i =0,...,k} of selfmaps of compact
polyhedra such that fo = f, fi = g, and for each i, either fi., is obtained from f;
by commutation, or X;,, = X; and f;, is homotopic to f;.

It is easy to see that if f and g are of the same homotopy type (see [J1,
Definition 1.5.3]), then they are mutants of each other.

As an immediate consequence of the homotopy invariance and the commu-
tativity property [J1, Theorems 1.4.5 and 1.5.2] of the indices of essential fixed
point classes, we have:

Proposition. Mutants have the same set of indices of essential fixed point classes,
hence also the same Lefschetz number and Nielsen number. O

2. Graph maps: preparations

In this section, we first explain our terminology concerning graph maps, then we
gather the results that we need from the Bestvina-Handel theory.

There are two approaches to the Bestvina-Handel theory: the original Best-
vina-Handel paper [BH] and the groupoid version of Dicks-Ventura [DV]. Al-
though the latter is more convenient for quoting specific results (cf. the Remark
at the end of this section), we shall use the former as our main reference because
of our topological context. The terminology we use is also close to [BH].

A graph X is a 1-dimensional (or possibly O-dimensional) finite cellular
complex. The O-cells and (open) 1-cells are called vertices and edges respectively.
A graphmap o : X — Y is a cellular map, i.e. it maps vertices to vertices. Up to
homotopy there is no loss to assume that the restriction of « to every edge e of X
is either locally injective or equal to constant map; in the latter case we say that
the edge e is a-pretrivial. A graph map o : X — Y is 7 -injective if it induces
an injective homomorphism of the fundamental group on each component of X.
It is an immersion if it sends edges to edges and it is locally injective at vertices.
Clearly immersions are always m; -injective.

A path p in a graph X is a map p : [0, 1] — X that is either locally injective
or equal to a constant map; in the latter case we say that p is a trivial path. For
a nontrivial path p in X, its initial tip is the maximal initial open subpath that
lies in an edge of X. The terminal tip is defined similarly.
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A graph map o : X — Y induces a function D« on the set of oriented edges
of X. It sends a non-pretrivial oriented edge e to the first oriented edge of a(e);
if e is a-pretrivial we say Da(e) = 0.

A turn in X is an unordered pair of distinct oriented edges of X starting at a
common vertex. It degenerates under « if its Da-image is no longer a turn.

Suppose @ : X — Y is a graph map that maps edges to edges. If a turn
{ei,e2} in X degenerates under « (i.e. a(e)) = afez)), we can identify the two
edges e; and e; into a single edge e’ to obtain a new graph X’ and a graph map
o' : X' — Y. This operation will be called a fold, or folding the turn {e;, e;}.
Cf. [S, Sect. 3.3].

Suppose 3 : Z — Z is a selfmap of a graph Z. A (3-Nielsen path is a
nontrivial path p in Z joining two fixed points of 3 such that S(p) ~ p rel
endpoints; it is indivisible if it cannot be written as a concatenation p = p; - pa,
where p; and p, are subpaths of p that are 3-Nielsen paths.

The following Lemma is a slight modification of [DV, Lemma 1.2.5] (origi-
nally due to Stallings [S]).

The Folding Lemma. Any graph map v : Y — Z can be expressed as a compo-
sition of graph maps

y=7"on, N=pBmo---0fodoq,

where « collapses pretrivial edges, & subdivides, the 3; fold turns, and ' : Y' —
Z is a graph immersion.

The projection n: Y — Y’ induces a surjective homomorphism of the funda-
mental group on each component of Y. When ~ is m-injective, 11 is a homotopy
equivalence; otherwise x(Y") > x(Y).

Proof. Collapsing all ~y-pretrivial edges in Y, we obtain a graph Y, and a graph
map o : Yo — Z with no vyg-pretrivial edges. Subdividing ¥ at all yo-preimages
of vertices of Z, we get a graph Y7 and a graph map ~; : ¥} — Z which maps
edges to edges.

If some turn in Y; degenerates under 7,, we can fold this turn to obtain a
graph map v, : Y, — Z which still maps edges to edges, and Y, has fewer edges
than Y;. Repeating the preceding step as often as possible, we finally obtain a
graph map <, : Y,, = Z, m > 1, which maps edges to edges and degenerates
no turn in Y,,. This is the desired graph immersion ~'.

The ~v-pretrivial edges in Y generate a subgraph W C Y. The map o col-
lapses each component of W to a point, so it induces a surjection of m; on
each component of Y. It is a homotopy equivalence if and only if W is a for-
est, otherwise it increases the Euler characteristic y. The subdivision map 4 is
a homeomorphism. A fold also induces a surjection of m; on each component.
It is a homotopy equivalence if and only if the turn folded is open, i.e. if the
two oriented edges involved terminate at distinct vertices; otherwise it increases
x. It follows that 7 is a homotopy equivalence if and only if vy is m-injective;
otherwise x(Y') > x(¥). ]
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The following theorem summarizes the results of Bestvina-Handel [BH] that
we need. Any unexplained terminology and notation in its proof are taken from
that paper.

Theorem BH. Let X be a connected graph and h : X — X be a w;-injective
map. Then h is of the same homotopy type as a graph selfmap 3 : Z — Z, where
Z is a connected graph without vertices of valence 1, and there is a 3-invariant
proper subgraph Z, containing all vertices of Z. The map 3 : (Z,2Zy) — (Z,Zy)
of the pair is of one of the following types.

Type 1: B sends Z into Zy.

Type 2: B cyclically permutes the edges in Z \ Zq.

Type 3: § expands edges of Z \ Zy by a factor A > 1 with respect to a suitable
non-negative metric L supported on Z \ Zy, and has the properties (a)—(c) below.

(a) For every oriented edge ¢ in Z \ Zy, Df(e) lies in Z \ Z,.

(b) If there exists an indivisible (3-Nielsen path which does not lie in Zy, it is
unique.

(c) Ifp is anindivisible 3-Nielsen path which does not lie in Zy, then the tips of
p are in Z \ Zy and invariant under 3, and exactly one turn of p in Z \ Z,
(at a vertex v, of valence > 3 in Z) degenerates under D (3.

Proof. Note that all results of [BH] remain true for m-injective selfmaps of
connected graphs, i.e. they can be generalized from automorphisms to injective
endomorphisms of free groups. The only place where surjectivity was used in
that paper was in applying the Bounded Cancellation Lemma, of which the orig-
inal Cooper-Thurston proof uses surjectivity. A stronger version of the Bounded
Cancellation Lemma assuming only injectivity has since appeared as Lemma
I1.2.4 in the paper [DV].

According to [BH, Theorem 5.12], there exists a stable relative train track
map f : G — G of the same homotopy type as the given map h. In view
of [BH, Lemma 5.2], we can assume that the graph G has no vertices of valence 1.

Suppose m is the length of the maximal filtration. Then H,, is the top stratum.
Let M,, be the corresponding transition submatrix, and A = ),, be the Perron-
Frobenius eigenvalue.

When A = 0, M,, is the zero matrix, so f sends G into G,,_;. Regard f :
G —Gas 3:Z — Z, and let Z; be the union of G,,_; with all vertices of G.
It is of Type 1 which would not appear if & is a homopoty equivalence.

When A =1, M, is an irreducible permutation matrix. This means that for
every edge e in H,,, exactly one edge e’ of H,, occurs in f(e) and occurs only
once. Suppose f(e) = q; - €’ - q3, where q;, g3 are (possibly trivial) paths in G,,_;.
Breaking each edge e of H,, into 3 edges e;, €5, ¢3 by inserting 2 new vertices in
its interior, we get a new graph Z. Up to a homotopy rel G,,_;, we may assume
that f induces a graph map 3 : Z — Z which coincides with f on G,,_;, and such
that B3(ey) = q1-e], B(e2) = e} and B(e3) = €} - g3. Let Z, be the subgraph obtained
from Z by deleting all the middle edges {e, | ¢ € H,,}. Then 8 maps Z, into
itself and permutes the unoriented edges in Z \ Zy according to the irreducible
permutation matrix M,,. Thus 3 : (Z,Zy) — (Z,Zy) is of Type 2.
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This leaves the case A > 1 which means the top stratum H,, is exponentially
growing. Take f : G — G as 3:Z — Z, and take Z; to be the union of G,,_;
with all vertices of G. We show that it is of Type 3.

In fact, by [BH, Lemma 5.10], 5 expands edges of Z \ Z, by the factor A > 1
with respect to a length function L supported on Z \ Z,. Property (a) is the same
as Property (RTT-i) of [BH]. Property (b) follows from [BH, Theorem 5.15].
Suppose p is an indivisible 3-Nielsen path which does not lie in Z,. It follows
from {BH, Lemma 5.8] that both the initial and terminal tips of p must lie in
Z\ Zy, otherwise p would be a concatenation of 3-Nielsen subpaths, contradicting
its indivisibility. By [BH, Lemma 5.11(1)], p contains exactly one illegal turn in
Z \ Zy. Tt is the unique illegal turn in Z \ Z, according to [BH, Theorem 5.15],
hence it degenerates under 3. Thus Property (c) is true. O

Remark. For the convenience of the reader, we also include a proof based on the
Dicks-Ventura paper [DV]. Any unexplained notation in it refers to that paper.

Alternative Proof of Theorem BH based on [DV]. It follows from [DV, Theorem
IV.1.1] that such a map 3 : (Z,Zy) — (Z,Zp) exists. Let A be the Perron-
Frobenius eigenvalue of the matrix [3/Zy]. Then 8 expands edges of Z \ Zg by
a factor of A with respect to a Perron-Frobenius pseudometric ¢ for (3,Z, Zy).

When A = 0 we are in Type 1. Otherwise A > 1. Then Property (a) restates
[DV, Proposition IV.1.5(ii)].

When A =1, [3/Zy] is a permutation matrix. This means that for every edge
e in Z \ Zy, exactly one edge e’ of Z \ Z; occurs in ((e) and occurs only once.
Property (a) implies B(e) = e¢’*!. Hence § permutes the unoriented edges in
Z \ Zy. Since [8/Zo] is irreducible, it is a cyclic permutation matrix. Thus we
get Type 2.

The case A > 1 is of Type 3. Property (b) follows from [DV, Theo-
rem IV.4.3(iv)]. Property (c) is a consequence of [DV, Proposition I1V.3.2 and
Lemma IV.3.4]. 0

3. Index bounds for graph maps

The aim of this section is to prove the index bounds for graph selfmaps.

Lemma A. Let X be a connected graph and f : X — X be a selfmap. Then f is
a mutant of a graphmap g : Y — Y such that Y is connected, x(Y) > x(X) and
g is my-injective.

Proof. Suppose f is not w-injective. It follows from the Folding Lemma that
there are graph maps v : X — X; and 3 : X; — X such that f = Boa, X,
is connected and x(X;) > x(X). Then f; := @ o 8 : X; — X; is a mutant of
f. Repeat this step as often as possible, we finally obtain a mutant which is
) -injective. O

Theorem 1. Let X be a connected graph and f : X — X be a graph map. Then
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(A) every fixed point class F of f has index ind(f,F) < 1;
(B) almost every fixed point class F of f has index ind(f,F) > —1, in the sense
that
> (Gnd(f, F)+ 1) > 2x(X).

ind(f ,F)<—1
Hence |L(f) — x(X)| < N(f) — x(X).

Proof. By Lemma A, without loss of generality we may assume that f is -
injective.

By the Proposition in Sect. 1, it suffices to prove the bounds (A) and (B) for
the graph selfmap 3 : (Z,Zy) — (Z,Zy) in Theorem BH.

Let Z;, i = 1,...,n be the connected components of Z;. Suppose the j3-
invariant ones are i = 1,...,k, k < n. Denote 3y := Bz : Zy — Z and
B; Z=,Blzi 2 Zy > Z; for 1 <i <k.

Since Z is a connected graph without vertices of valence 1, and Z; is a
proper subgraph, it is easy to see that Zliisn, x@Zy<o X{Zi) > x(Z), hence
x(Z;)) > x(Z) forall 1 <i <n.

So, working inductively (note that the Theorem is trivial if x(Z) > 0), we
may assume that the Theorem is true for all 3; : Z;, > Z;, i =1, ... k.

We now investigate the fixed point classes of G and their indices, for the
Types 1-3.

For Type 1, all 8-Nielsen paths lie in Zy, hence every fixed point class of 3
is a fixed point class F; of some G;, i = 1,...,k, with ind(3,F;) = ind(3;, F;).

Type 2 can be divided into several subtypes. Recall that the transition sub-
matrix M for the edges in Z \ Z; is an irreducible permutation matrix.

Type 2a: M is the 1 x 1 matrix 1, and (G(e) = e for the oriented edge e in
Z\ Z.

By a small perturbation of 5 on e we may assume that no interior point of e
is fixed, thus 3 has the same fixed points as Jp. There are two further subtypes:

Type 2al: Both ends of e are in the same fixed point class F}; of y. The fixed
point classes of 3 are those of §y, with the same index except that ind(8, F}) =
ind(Bo, F) — 1.

Type 2a2: The edge e joins two different fixed point classes F{ and F4 of
Bo. The fixed point classes of 3 are those of Gy, with the same index, except the
fixed point class F' = F{ UF; of 3 with ind(8, F’) = ind(5,, F}) + ind(Go, F}) — 1.

Type 2b: M is the 1 x | matrix 1, and 3(e) = & for the oriented edge e in
Z\ Z.

Type 2c: M is a cyclic permutation matrix, hence 3 cyclically permutes the
unoriented edges of Z \ Z.

For Type 2b and Type 2c, every S-Nielsen path must lie in Zg, hence every
fixed point class F; of §;,i = 1,...,k, is a fixed point class of 3 with ind(3, F;) =
ind(G;, F;). In Type 2b, 3 has an additional fixed point class consisting of a single
fixed point in e, with index 1.

In Type 3, we first introduce some terminology and notation. For any subset
S C Z, let w(S) be the number of oriented edges e in Z \ Z; starting from a
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vertex in S; and let 4(S) be the number of oriented edges e in Z \ Z; starting
from a vertex in S such that D3(e) = e (hence e is expanded along itself by 3).
A pre-fpc is either a fixed point class F; of some 5;,i=1,...,k, or an isolated
fixed point of 8 in Z \ Zy. As an isolated subset of Fix 3, their indices are as
follows: In the former kind ind(3, F;) = ind(3;,F;) — 6(F;). In the latter kind, the
index is +1 because Z \ Zp is a union of open edges.

There are two subtypes.

Type 3a: Either there is no indivisible 3-Nielsen path which does not lie in
Zy, or the unique (by Property (c)) such path p has both ends in the same pre-fpc.
Then the fixed point classes of 8 are just the pre-fpc’s defined above.

Type 3b: The unique indivisible 3-Nielsen path p which does not lie in Z
connects two different pre-fpc’s. Then the fixed point classes of 3 are the pre-
fpc’s, except that the two pre-fpc’s joined by p combines into a single fixed point
class of 3.

With the above information about fixed point classes, bounds (A) and (B) for
[ can be proved from the inductive hypothesis that they hold for all 5;. We shall
omit the easier types and concentrate on Type 3b.

The inequality (A) is obvious except for the combined fixed point class. If
the two pre-fpc’s being combined are F; and F}, then its index is ind(B, F}) +
ind(8, F)) < ind(8;,F;) + ind(5;, F) — 2 since both (F;) > 1 and 6(Fj) > 1 by
Property (c). If, on the other hand, at least one of the pre-fpc’s is a fixed point
in Z \ Zp, its index must be —1. In either case (A) follows from the inductive
hypothesis.

To prove (B), denote

S = Y. (ndB,F)—0F)+1)
F;CZ
ind(8;,F;)—-6(Fi)<~1

for 1 <i <k,andlet S; ;=0 for k < i < n. Observe that regardless of the
nature of the two pre-fpc’s being combined, we always have

Y (3, F)+1)> -1+ > s
ind(8,F)<—1 i=1
Claim 1: S; > 2x(Z;) — w(Z;) for 1 <i < n.
In fact, the inequality is trivial for i > k. So we can assume i < k.
If x(Z;) < 0, by the inductive hypothesis we have

Si 2 E (ind(G;, Fi) + 1) — E O(Fi)
F.CZ FiCz
ind(3; ,Fi)<—1

> 2X(Zy) = 6(Z)) 2 2x(Z;) — w(Zy).

If x(Z;) = 0, then Z; has the homotopy type of the circle. For all F; C Z; we
have |ind(3;,F;)| < 1, so



Bounds for fixed points on surfaces 475

S = - E O6(F;) = 2x(Z) — 8(Z)) = 2x(Zy) — w(Zy).
F,CZ

If x(Z;) = 1, then Z; has the homotopy type of a point. There is a unique F; C Z;
and ind(ﬂ,»,F,-) = 1, SO

S; =min{2 — 6(F;),0} > min{2 — 6(Z;),0} > 2x(Z;) — w(Z;).

Thus Claim 1 is proved.

By Property (c), there are two oriented edges e, e; both starting at a vertex
vp such that D3(e;) = D B(ez). Suppose v, is in the component Z,. Then at least
one of ey, e; is not D G-invariant, so 0(Z,) < w(Z).

Claim 2: S, > 2x(Zy) — w(Zy).

In fact, when x(Z;,) < 0, or when x(Z;) = 1 and §(Z;,) > 2, then we see from
the proof of Claim 1 that

Sk 2 2x(Zn) — 8(Zn) > 2X(Zn) — w(Zn).

So it remains to examine the case that x(Z,) = 1 and S, = 0. We need to show
that w(Z,,) > 3.

If Z, is the single vertex v, then w(Z,) > 3 because v, has valence > 3 in
Z. If otherwise Z; is a nontrivial tree, there is another vertex v’ having valence
1 in Z,. But the valence of v/ in Z is > 2, so there must be another edge e’ in
Z\ Z, starting at v'. This shows w(Z,) > 3 in any case. Hence §, =0 >2-3 >
2x(Zn) — w(Zy) as desired. Thus Claim 2 is proved.

It follows from Claims 1-2 that

DS > > oex@) — wZ)) = 2x(Z) — 2Ax(Zo) — X(2)) = 2X(Z).

i=1 i=1
So, finally, we have

k

Y. @dBR+1)>-1+) 5 >2x(@).

ind(3,F)<—1 i=1

This is the inequality (B) for 5.
The inductive proof of the Theorem is now complete. O

Remark. Theorem 1 is easy under the following additional hypothesis:

The graph map f : X — X is of the same homotopy type
W) as a graph map g : ¥ — Y such that every fixed point class

of g consists of a single point.

(The letter W for Wecken, because the property that every fixed point class
reduces to a single point is often referred to as the Wecken property.)

Proof of Theorem 1 under hypothesis (W). Without loss we may assume that
Y has no vertex of valence 1.
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It is clear that if a fixed point class F of g is in the interior of an edge, then
|ind(g,F)| < 1. If F is a vertex v, then ind(g,F) = 1 — 6(v) > 1 — w(v), where
6(v) is the number of oriented edges e from v which is expanded along itself by
g, and w(v) is the valence of v in Y. Hence (A), ind(g,F) < 1; and (B),

D (GndgF)+D) 2> Y 2-w®) )Y (2-ww)=2x(¥).0

ind(g, F)<—1 S(v)>2 v
QUESTION 1. Is the hypothesis (W) valid for all graph selfmaps?

The hypothesis (W) means that all Nielsen paths of g are loops. Observe that
the presence of Nielsen paths is not always avoidable in Bestvina-Handel theory,
as shown in the examples [BH, Example 5.16] and [DV, Example 1V.4.4]. But
in these examples the indivisible Nielsen paths are all loops. Question 1 asks
whether open Nielsen paths are always avoidable.

4. Surface maps

We now study the index bounds on surfaces. The following Lemma is the key.

Lemma B. Let X be a compact connected surface with x(X) < 0, andf : X —» X
be a selfmap. Then either

(1) X is a closed surface and f is homotopic to a self-homeomorphism of X ; or
(2) f is a mutant of a graph selfmap g: Y — Y, with x(Y) > x(X).

Proof. If X has boundary, X deformation retracts to a connected graph Y, so
every map f : X — X is of the same homotopy type asamap g : ¥ — Y. So
the Lemma is trivial in this case.

Suppose X is a closed surface. There are two cases.

(1) Every selfmap homotopic to f is surjective. Then the absolute degree |d|
of f is nonzero. The reader is referred to [Ep] for a treatment of the absolute
degree.

By [E] (see the author abstract in Zbl. Math. for a correction in the nonori-
entable case), the map f is homotopic to a map f’ : X — X which is the
composition of a pinch and a branched covering. Since f' is a selfmap, the pinch
and the branched cover are both trivial for Euler characteristic reasons. Hence f’
is a self-homeomorphism.

(2) The map f is homotopic to some map £’ that is not surjective. Suppose
x' ¢ f'(X). Then X \ {x’} deformation retracts to a connected graph X;. So there
is a map ¢ : X — X, such that f is homotopic to ¢ o ¢, where ¢ : X; = X is the
inclusion. Thus f is a mutant of f := ¢o¢ : X; — X;. Note that x(X;) = x(X)—1.

Since the inclusion ¢ is not 7 -injective, neither is f1. By the Folding Lemma it
is 2 mutant of a 7, -injective graph map g : ¥ — Y with x(¥) > x(X)+1 = x(X).

O
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Remark. There are other arguments for the case (1) above. For example, when
X is orientable, it follows from [ZVC, Theorem 3.3.3] that |d| = 1, hence f is
homotopic to a self-homeomorphism by [ZVC, Corollary 3.3.9].

Theorem 2. Let X be a compact connected surface with x(X) < 0,andf : X —
X be a selfmap. Then the conclusion of Theorem 1 holds true.

Proof. In view of the Proposition, it suffices to consider the two cases listed in
Lemma B.

Case (1) is taken care of by Theorem JG. Case (2) follows from Theorem 1.

O

5. Applications to asymptotic invariants

In order to study the asymptotic behavior of the number of periodic orbits, the
asymptotic Nielsen number N” (f) of f was introduced in [J3, Sect.2]. It is
defined as the growth rate of the sequence {N(f")} of the Nielsen number of
iterates of f, when the power n increases to infinity. Another invariant is the
asymptotic absolute Lefschetz number L™ (f).

N7 := limsupN(FHY/",
n—>o0
1/n
LT(¢) := limsup (ZIind(f",F("))l) .
n—o00 Fm

where the summation is taken over all fixed point classes F® of f7.
It was proved that
N (=L ()
for a surface self-homeomorphism [J3, Corollary 3.5]. This is at the basis of the

dynamical applications described in [J3, Sect. 4]. Now we extend it to surface
selfmaps.

Theorem 3. Let X be a compact connected surface with x(X) < 0, andf : X —
X be a selfmap. Then

L7 () =N ().

Proof. In view of Theorem 2, the equality follows from [J3, Theorem 2.3]. [
Still another asymptotic invariant was introduced and used in [J3]. The asymp-
totic irreducible Nielsen number of f : X — X is the growth rate

NI (f) := lim sup NI (f")!/".
n—o0
Here NI(f") is the Nielsen number of irreducible n-orbits of f, defined as follows.
A fixed point class F" of f7 is reducible if for a proper factor m of n and for

some (hence every) point x € F® there exists a path w from x to f™(x) such
that the loop wf™w)f?"(w)---f" ™(w) is contractible in X. Otherwise it is
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irreducible. The f-image of an essential irreducible F™ is again an essential
irreducible class, so we can talk about f-orbits of such F®’s. NI (f") is defined
as the number of f-orbits of essential irreducible fixed point classes of f”. It is
a lower bound to the number of periodic orbits of f of least period n, and it is
a mutant invariant of f.

We know [J3, Corollary 3.5] that

NIT () =N"(f)
for surface self-homeomorphisms. A natural question:
QUESTION 2. Is the equality NI (f) = N (f) also true for surface selfmaps?

For this equality it suffices to prove that the number of reducible essential
fixed point classes of f* is uniformly bounded in n. As before, we only need to
prove it for m-injective graph selfmaps.

In the light of Thurston’s theory of surface homeomorphisms, we would
expect that for graph maps there exists an upper bound, depending only on the
Euler characteristic of the graph, to the number of reducible essential fixed point
classes of f” for any selfmap f and any n. But for a proof one may need the
(yet unpublished) Bestvina-Feighn-Handel results on the iterates of graph maps.

6. A more general question

So far we have restricted our attention to surfaces and graphs. For general com-
pact polyhedra we can introduce the following notions:

Definition. A compact polyhedron X is said to have the Bounded Index Property
(BIP) if there is an integer B > 0 such that for any map f : X — X and any fixed
point class F of f, the index | ind(f ,F) | < B. X has the Bounded Index Property
for Homeomorphisms (BIPH) if there is such a bound for all homeomorphisms
f: X=X

The simplest spaces without BIP are the spheres S*, k > 1. They are simply-
connected, so for any selfmap f there is at most one fixed point class, and its
index equals the Lefschetz number L(f) = 1 + (—1)* degf. It is well known that
there are selfmaps of arbitrarily large degree.

Spaces without BIPH are also easy to construct. We give an example of
closed manifold.

Example. Let S be regarded as the space of unimodular quaternions, and let
X =53xS3 Let f : X — X be the homeomorphism given by

£(1,92) =@ a2, q192),  f g, 92) = (195 ', 929] ' a2)-

Clearly X is simply-connected, so that the index of the unique fixed point class
equals the Lefschetz number L(f).
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By the Kiinneth Theorem, the only nontrivial homology groups of X are
Hy(X) = He(X) = Z and H3(X) = Z&®Z. It is not hard to see that degf = 1, and
the homology homomorphism f, : H3(X) — H3(X) has matrix (with respect to the

standard basis) A = (? }) . The eigenvalues of A are A; = (3 + \/5)/2 =2.618

and Ay = (3 — \/5)/2 = 0.382. Thus, L{f") =2 — AT — Xj is unbounded when n
gets large.

We have shown in this paper that graphs and surfaces with negative Euler
characteristic have BIP. More generally, we can ask

QUESTION 3. Suppose a compact polyhedron X is aspherical (i.e. m;(X) = O for
all i > 1). Does X have BIP or BIPH?

Supporting evidences include results on orientation preserving self-homeo-
morphisms of geometric 3-manifolds [JWW], and on selfmaps of infrasolv-
manifolds [MC].
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