

WILLIAM CONLEY

Comp‘ﬂter
Optimization
Techniques

Copyright © 1980 Petrocelli Books, Inc.

All rights reserved.
Printed in the United States

i 2 3 4 5 6 7 8

Designed by Joan Greenfield

Library of Congress Cataloging in Publication Data

Conley, William, 1948
Computer optimization techniques.

Includes index.

1. Mathematical optimization—Data processing.
2, Integer gmgramming——!)ata prcessing. 1. Title.
QA402.5.C64 519.7'7 79-24452
ISBN 0-89433-111-6

CONTENTS

Introduction ix

Part One

1 Optimization in the Computer Age 3

2 Solving Integer Programming Problems by Looking at All Possibilities 15
3 Optimization Problems of Two through Eight Variables 25

Part Two

4 Monte Carlo Integer Programming 101

Integer Programming Problems with a Few Variables 115
Integer Programming Problems with Many Variables 129

A Two Thousand-Variable Integer Programming Problem 147
The Unlimited Future of Monte Carlo Integer Programming 171

Appendices

A Sampling Distributions of Feasible Solutions of Selected Integer Programming
Problems 207

B How to Obtain Sampling Distributions of Feasible Solutions of Integer
Programming Problems 221

C How to Solve a System of Equations 229
Additional Business Examples 235

E The Impact of Computers on the Philosophy of Optimization 263
Index 265

W 2 A

~

62751

INTEGER PROGRAM *1072

0.80

0.64

0.48

0.32

0.16

0.00

I P DISTRIBUTION

80.00 160.00 240.00 320.00
SAMPLING DISTRIBUTION
of P=1x; + 3x; + 4x3+ 5x4 + 12xssubject to0<x; <10 i=1,5

1P DISTRIBUTION

001

080

090 00
.-01* KVYDOUd HIDALNI

070 000

240.00 320.00

160.00
SAMPLING DISTRIBUTION

4x; + 5x9 + 6x3 + Tx4 + 8xssubject to 0 L x; € 10

80.00

i=1,5

of P

PART ONE
CHAPTER 1

Optimization
in the
Computer Age

Mathematically, at least in our context, optimization means to find the maximum of a
function or process that we want to maximize or to find the minimum of a function or
process that we want to minimize. For example, we might wish to maximize a profit
function or an output function of a process. Or, we might wish to minimize a cost
function. Let’s look at a féw examples.

Suppose a company manufactures two products, A and B. Let x be the number of
units of A produced and y the number of units of B produced. Suppose further that
each unit of A returns a profit of two dollars and each unit of B returns a profit of three
dollars. Therefore, the profit function would be written

P=2x+ 3y

where P is the profit in dollars.
Now, the question might naturally arise, how do we maximize this equation?
Well, as stated the equation allows any values for x and y, therefore, it is only
' necessary to produce as much of A and B as possible to maximize P. P becomes
infinitely large as either x or y or both go to infinity.

4 Part One

However, let’s add a few restrictions to the variables x and y. Let’s assume that the
company’s position is such that x must be between 0 and 10 inclusive, and y must be
between 0 and 10 inclusive. In symbols this is 0 < x < 10 and 0 < y < 10. Let’s
further assume that x and y can only take integer values. This means that each
possible x and y value must be a counting number or the negative of a counting
number or zero. Equations to be optimized whose solution coordinates are restricted
to integers (usually nonucgative integers in practical problems) are called integer
programming problems. If we allow solutions that are not integer valued, like x =
.666,y = 7.5, then we have a linear programming problem or a nonlinear noninteger
programming problem. We, of course, can have a nonlinear integer programming
problem. This is a problem in which either the function to be optimized and/or the
constraints (conditions or restrictions) on the variables are nonlinear (they have
squared and cubed terms, etc.). Also, in a nonlinear integer programming problem
only integer coordinate solutions are allowed.

This bock will deal mainly with integer programming problems (whole number
coordinates for the solutions). But, fortunately, most applied problems require integer
solutions. These are more difficult and sometimes almost impossibie to solve
theoretically. L.ater we hope to present a case for using integer solutions even in most
cases where noninteger solutions are acceptable.

Getting back to our function to maximize, let us state the integer programming
problem as maximize P = 2x + 3y subject to 0 < x < 10,0 <y < 10, and x and y
must be integers. Thereforc, let’s look at the x and y pairs that are possibilities for the
optimum. The following points are the only ones that satisfy the constraints:

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0) (9,0) (10,0)

O, 4,D @,D G,D @D (5,1 6,1 7,0 @619, a0,1)

0,2) (1,2) 2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2) (9,2) (10,2)

(©,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3) (10,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6.4) (1,4) (8,4) (9,4) (10,4)

0,5) (1,5) (2,5) (3,5) 4,5) (5,5) (6,5) (7,9) (8,5) (9,5) (10,5)

0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (7,6) (8,6) (9,6) (10,6)

0,7) (1,7) 2,7) 3.7) 4,1 (5,7 (6,7 (1,7) (8,7) (9,7) (10,7}

(0,8) (1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8) (8,8) (9,8) (10,8)

0,9) (1,9) (2,9) (3,9) (4,9) (5,9) (6,9) (7,9) (8,9) (9,9) (10,9)

(0,10) (1,10) (2,10) (3,10) (4,10) (5,10) (6,10) (7,10) (8,10) (9,10) (10,10)
Let’s solve this problem by listing the 121 possible ordered pairs with their resultant P
value in each case and then merely select the one that gives the largest value for P.

Possible points (amounts of A and B to be made) are sometimes called feasible
solutions.

Optimization in the Computer Age 5§

Points P = 2x + 3y value Points P = 2x + 3y value
0,0 0 (continued) (continued)
(1,0) 2 8,3) 25
2.0 4 9.3) 27
(3,0 6 (10,3) 29
.0 8 ©0,4) 12
5.0 10 (1,4) 14
(6,0) 12 (2,4) 16
(7,0) 14 (3.4) 18
(8,0) 16 (4,4) 20
9,0) 18 (5.4) 22
(10,0 20 (6,4) 2
©,1) 3 (7,4) 26
a.n 5 (8,4) 28
21 7 (9.4) 30
1) 9 (10,4) 32
@1 1 0,5) 15
.1 13 (1,5) 17
©.1) 15 (2,5) 19
(7.0 17 (3,5 21
@1 19 (4.5) 23
®.D 21 (5.5) 25
(10,1) 23 (6,5) 27
©.2) 6 (7,5) 29
(1.2) 8 (8.5) 31
2,2) 10 9.5) 33
3.2) 12 (10,5) 35
6.2 16 (L,6) 20
62) 18 2,6) .
(7.2) 20 (3.6) 24
8.2) 22 4,6) 26
®.2 24 (5.6) 28
102 26 (6,6) 30
(0.3) 9 (7,6))
(2,3) 13 9,6) 36
(3,3) 15 (10,6) 38
4,3) 17 0,7 21
(6,3) 21 2,7 25

(7.3) 23 3.7 27

6 Part One

Points P = 2x + 3y value Points P = 2x + 3y value
(continued) (continued) (continued (continued)
4,7 29 2,9 31
5,7 31 3,9 33
(6,7) 33 4,9) 35
a7 35 (5,9 37
3,7 37 6,9) 39
9,7 39 7,9 41
(10,7) 41 (8,9) 43
0,8) 24 9,9) 45
(1,8) 26 (10,9) 47
(2,8) 28 (0,10) 30
(3,8) 30 (1,10) 32
4,8) 32 2,10 34
(5.8) 34 (3,10 36
(6,8) 36 (4,10) 38
7.8 38 (5,10 40
(8,8) 40 (6,10) 42
9.8) 42 - (7,10) 44
(10,8) 44 (8,10) 46
0,9 27 (9,10) 48
(1,9) 29 (10,10 50

We can see that, as expected, the optimum solution (the one that maximizes the profit
is x = 10 units of A and y = 10 units of B.

This may seem like a lot of work to obtain this rather obvious result. However, it
should be noted that conceptually it is an easy approach, namely, just examine all
possible points. Also, it will always lead to the correct answer. This will be especially
useful when the function to be maximized or minimized and/or the constraints are
sufficiently complicated so that the solution is difficult to obtain either by inspection
or through mathematical theory. This is frequently the case in applications.

Of course, the approach we take, namely, listing all possible solutions, is
extremely tedious for people even though it is straightforward. However, a computer
just loves repetitive, tedious work and will produce the answer in seconds. And as the
speed and capacity of computers increase this technique will become more and more
practical.

Let’s look at another example. Try to minimize the cost equation C = 2x* ~ y* + xy
where x can take the values between 0 and 5 and y can take the values between 0 and
5, and x and y must be integers. The possible points meeting the constraints are as
follows:

Optimization in the Computer Age 7

(0,0) (1,0) (2,0) (3,0) 4,0) (5,0)
©,) (1, 2, B,H E.DH 5,1
0,2) (1,2) 2,2) 3,2) 4,2) (5,2)
0,3) (1,3) (2,3) (3,3) (4,3) (5,3)
(0414924 GCHEHGH
0,5 (1,5) (2,5) (3,5) 4,5) (5,5)
Let’s list the possible points (combinations of x and y) along with the corresponding

C = 22 — y* + xy value and take the points which produce the minimum. There are
36 possibilities:

Points C = 2x* — y* + xy value Points C = 2 — y* + xy value

0,0) 0 (continued) (continued)
(1,0) 2 1,3) -4
2,0 8 2,3) 5
(3,0 18 3,3) 18
4,0) 32 4,3) 35
(5,0) 50 (5,3) 56

0, -1 0,4) -16
(L1 2 1,4) - 10
2,0 ' 9 24 0
3,0 20 (3.4) 14
4.D 35 4,4) 32
(5,1) 54 5,4 54
(0,2) —4 0.5) -25
(1,2) 0 (1,5) -18
2,2 8 2,5) -7
3,2 20 3.,5) 8
“4,2) 36 4.,5) 27
5,2) 56 5,5) 50
0,3) -9

We can see that the optimum solution (the one that minimizes the cost) isx = O and y
= §. This yields a C value of —25.

~ Now, let’s try to maximize P = 3x> — 2y where x and y must be nonnegative
integers and, further, they must satisfy y < —.5x + 5andy < —2x + 10. A graph of .
the related equalities is given in-Figure 1.1. The shaded region shows the area that
satisfies the inequalities. Generally speaking, with an inequality of the form y < mx
+ b the solution is the half plane below the line y = mx + b. This is the case here.
Let’s now list the integer combinations that satisfy the constraints along with their
corresponding function values and take the coordinates that give us a maximum P
under the constraints:

8 Part One

(0, 10) 4

(0,0

Figure 1.1

Points

0,0)
(1,0)
2,0)
(3,0
(4,0)
(5,0)
©0,1)
(LD
2,h
(3,H
CHY
0.2

\
9
Xx
C
10 10
(12 19,
v
~
o
4 t—<— } t
(5.0)

P = 3x’ - 2y value

0

3
12
27
48
75
-2
I
10
25
46
—4

Points

(1,2
(2,2)
(3,2)
4.2
0,3)
(1,3
2,3)
(3.3)
(0,4)
(1,4)
(2,4)
(0,5)

P = 3x — 2y value
-1
8
23

We can see that the maximum of P occurs at (5,0). We get a P value of 75 for that
point. Therefore, this is the solution to the integer programming problem:

Maximize P = 3x* — 2y subject to

x<0,y<0,y<—2c+ 10andy<—-5x + 5

Now, let’s consider the integer programming system P = 12 + 17x2 + 37x! + 18x
— 29x? + xx, subject to

Optimization in the Computer Age 9

520,%20,x%x520,x20,x20
x +x +x +x, + x,< 400
x,+x2+x3é200

x, + x, + x, <300

18x7 + 17x, < 1000

Conceptually, we can take the same approach as before. This problem is extremely
difficult, if not impossible, to solve theoretically. However, we could just list all the
sets of five nonnegative integer points that satisfy the above constraints and evaluate P
for each of these and take the set of five points that produces the largest value for the
solution. So, conceptually, this is just as easy as the other examples although it might
take dozens of hours to check and list all the right points. However, we can write a
FORTRAN IV program in about five minutes that will easily search all of these points.
And with the speed of computers increasing and the cost of computing time dropping
dramatically, this is certainly one of thie best approaches to take with these types of
problems. It didn’t used to be a practical approach but it is now.

We have available quite inexpensive minicomputers that sit around for hours each
day not being used. They could be put to use solving these types of problems for
virtually no cost at ail, and the beauty of the approach of checking the points is that
you always get an answer.

For those readers who may be thinking about what can be done if there are 20 or
200 variables with just too many feasible points (or feasible solutions) to check, Part
Two will show how to get an answer to those problems, too.

Let’s also keep in mind that we live in a world that increasingly puts constraints
(inequalities, etc.) on our production or other operations. Therefore, it is more
necessary to operate efficiently, and hence integer programming problems become
very relevant and important. Also, this technique will increase even the efficiency of
solving integer programming problems by makmg the very fast, efficient, and
inexpensive computer do the inefficient part of the work. This will ultimately cut
costs.

Review of FORTRAN IV

FORTRAN 1v is probably the most popular and best version of FORTRAN, and it is
the computer language that will be used in this book to solve integer programming
problems. Therefore, it is recommended that the reader either be familiar with
FORTRAN or, if not, become acquainted with it through one of the many fine texts
available on the subject.

However, just for the purposes of review, aad to try to illuminate our goals, let’s
discuss a few of the details of integer programming problems. We will also mention
here that any language with loops, IF statements, and a random number generator
would work in place of FORTRAN.

10 Part One

First of all, FORTRAN is short for Jormula translation. Its chief usefulness is its
ability to evaluate any function or formula very quickly. It can also evaluate any
formula for a large number of possible values in a very short time. '

Therefore, let’s assume that we have a profit function P (x,y) = 7x* + 3x + 2xy
— ¥* + 8y that depends on which combinations of x and y that we choose to use.
Let’s further assume that x can take the values 0, 1, 2 and 3, and y can take the values
0, 1, and 2. Therefore, there are 4 x 3 = 12 possible combinations that we can try in
our effort to find the combination which yields the maximum profit.

- The combinations are:

(x.y)
(0,0
0,1
0,2)
(1L,O)
(LD
(1,2
2,0)
2,1
(2,2)
(3.0
(3,1
(3.2

Now, it would take a bit of work to evaluate the profit function P(x.y) for the twelve
combinations of x and y. However, if we do this we can then compare the twelve
resulting P(x,y) values and note which one is the largest. We then can maximize our
profit function by choosing the ordered pair (x and y combination) that yields this
maximum profit value.

A computer programmed in FORTRAN could do the same thing we are attempting
to do by hand, and it can do it about one million times faster than we can. So if the
computer had to search 12 points or 12 million points for the maximum, it could do it
quite easily. Also, with the revolution in minicomputers bringing 24 hours a day of
computer power to the desk top of any manager, this idea of searching all possible
points (or combinations) or a great many points is suddenly practical for the first
time. The cost of this approach is essentially only the electricity required to run the
minicomputers for the length of time necessary to find a good optimum value.

As an illustration, a typical integer programming problem that we worked out in
the text checked 160,000 combinations of four different variables and calculated and
stored the optimum solution in 18 seconds. The cost involved is so small it is hardly
worth discussing, but the technique is.)

Getting back to the profit function with the twelve possible combinations of x and

Optimization in the Computer Age | 1

y, let’s write a FORTRAN Iv program to solve this question, while reviewing the rules
of FORTRAN Iv and keeping in mind that this approach can be adopted to any integer
programming problem.

FORTRAN Iv is a language that consists of a series of statements arranged
vertically and executed sequentially from the top to the bottom, unless this order is
interrupted by a command or control statement which orders the computer to proceed
to a staternent other than the next one. If this happens, the computer jumps to the
statement as ordered and then proceeds sequentially until the direction of flow is
changed by another command or it reaches the sTor and END statements at the
conclusion of the program.

Any letter can be used for a variable. In fact, any sequence of up to six letters,
numbers, and the dollar sign character can be used as variables. Equals signs are also
used in FORTRAN 1v. They order the computer to evaluate the function or relation on
the right-hand side of the equals sign and assign that current value to the variable on
the left. Also +, —, /, *, and ** are used for addition, subtraction, division,
multiplication, and raising a variable to a power (exponentiation), respectively.
Parentheses are used where necessary as in algebra. For example, if we wanted to
evaluate P(x,y) = 7x* + 3x + 2xy — y* + 8yforx = landy = 2 and print x,y and
P(x,y), we could write it as follows in FORTRAN Iv:

X=1

Y=2

PXY=7"X""2+3*X+2*X'Y-Y*"'2+8"'Y

WRITE (6,3)X,Y,PXY Just controls the form of the output.
3 FORMAT ('0',3E15.7) Not essential to the logic

(see a FORTRAN text).

This would cause the computer to output 1, 2, and 26 which is the value of P forx = 1
andy = 2. :

Now we would like to write a FORTRAN IV program to systematically search all
twelve combinations of x and y and compare the P{x,y) values and store the maximum
value along with its x and y coordinates until the end of the program, and then print
the optimum xy combination and the corresponding largest P(x,y) value.

We will now write a complete FORTRAN tv program to do this and then go over it,
introducing the few new statements used in it. The idea is this: we initialize a variable
(call it PMAX) to be some very small value such that P(x,y) will be greater than that
value for all possible combinations of x and y. Then, we go through all possible
combinations of x and y storing the combinations and P (the P(x,y) value) when they
produce a P(x,y) value larger than all the previous.values. When the program is
through, it prints the x and y combination that produced the maximum plus the
maximum P(x,y) value which has been stored in the variable pmax.

The program for this example is as follows:

12 Part One

INTEGER X,Y,PMAX,P
PMAX=-999999

DO 1 I=1,4

X=1-1

po 1 J=1,3

Y=J-1

P=7 %X AR 24+ 3RK+D AXAY-Y*%248*Y
IF(P.GT.PMAX) GO TO 2

GO TO0 1
2 IX=X

I¥=Y

PMAX=P
1 CONTINUE

WRITE(6,3)IX,TY,PMAX
3 FORMAT('0',3I10)

STOP

END

Statement | declares X, v, PMAX, and P to be integer variables. This means that only
whole number values will be assigned to them. Any fractional or decimal part of the
number will be dropped. However, the function deals only with whole numbers and
its P(x,y) values are only whole numbers for the 12 xy combinations, therefore, no
accuracy is lost.

Statement 2 initializes PMAX 10 be an extremely small number so that the first
calculated P(x,y) value (called P in the program) will be larger than the initial pPMaX
value.

Statements 3 through 13 comprise a po-loop. Essentially, this tells the computer
to proceed sequentially from statement 3 to 13 (of course, jumping around as ordered,
also) four times. In other words, with I =1 the computer goes from 3 to4.. .13, Then
with [=2 the computer goes from 3 to 4...13. Then with [=3 the computer goes
from3to4...13. And finally with I=4, the computer goes from 3to 4...13. While
this is taking place, there is another po-loop inside the above outer one. This runs
from statement 5 to statement 13. The effect of this loop is that it forces the computer
to go from statement 5 to 13 (for J =1,2 and 3) three times whenever it goes through
the outer loop once. Therefore, the inner loop gets done 4 times 3, or 12 times. This
allows the program to check all ordered pairs for the optimum profit value.

Statements 4 and 6 arrange to have x be 0, 1, 2, and 3, while y is changing from 0
to 1 to 2 as desired in our question.

Statement 7 evaluates the function in FORTRAN Iv and assigns the current value to
P.

Statement 8 checks to see if the current value of P is greater than the current value
of pMax. If it is, then it is a possible maximum value and it follows the command Go
TO 2 and jumps to the storage space

IX=X

Y=Y

PMAX=P

Optimization in the Computer Age 13

which stores the current value of x,y and PMAX (possible optimum points). Then, it
proceeds with the next loop. However, if P is not greater than the current value of
pMAX statement 8 is false; therefore, the command Go 1O 2 is ignored and the
program goes to the next statement, Go To 1, which skips over the storage space
(statements 10 to 12) and continues with the next loop.

The result is that all 12 ordered pairs are checked to see if they produce a P(x,y)
value larger than any previous ones. If they do, the x and y and current maximum P
value are stored in 1x, 1y and PMAX, respectively, as follows:

IX=X

Y=Y

PMAX =P

So at the end of the program, the current optimum solution (which is stored) is the
true optimum because all points have been checked.

Statements 14 and 15 arrange to print the maximum solution.

Statements 16 and 17 just stop the program. These are used at the end of a
FORTRAN IV program.

Now, if the conditions of the practical problem were such that x could take the
values 0,1,2,...,3999, while y ranged through the values 0,1,2,...,2999, then we
would have 12 million points to check instead of 12. This could be accomplished by
changing DO 11=1,4 to DO 1 1=1,4000 and changing DO 1J=1,3 to DO 1J=1,3000. That’s
all that needs to be done.

The thoughtful reader may be wondering about this approach if we had, say, 20
variables and 100 possible values for each variable. Then we would have 100*
combinations of 20 variables to check. Even on the world’s fastest computer this
would take years. This is a valid question and the second part of the book will
demonstrate how to get a solution in those cases. There are ways around that
problem. Although this was not the case a few years ago, today if you can write the
optimization problem down on paper, it should be a simple matter to optimize the
function in question. This text will devote itself to that subject. '

