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A STUDY OF
CRYSTAL STRUCTURE AND
ITS APPLICATIONS

CHAPTER I
THE THEORY OF DIFFRACTION OF X-RAYS BY A CRYSTAL

Practically all rigid solids except the glasses and possibly certain
waxes are eomposed of erystals. It is known to every metallurgist that
metals and their alloys exist in the form of crystals, and the crystalline
state of most chemical compounds is universally accepted. Even cellu-
lose, of which wood and cotton are largely ecomposed, shows real evi-
dence of erystallinity. It is therefore evident that any study of the
properties of materials will be very largely a study of the erystalline state
of matter. There is the same difference between crystalline and non-
crystalline substances that there is between an army and a mob, for a
crystal represents an organized array of atoms all arranged in definite
rows with regular spacings between rows, while the atoms in a nonerystal-
line substance have a chaotic, hit-and-miss placing.

It has long been known that the mechanical and chemical properties
of crystals depend markedly upon the direction in the crystal in which
these properties are measured. It was early taken for granted that this
was caused by the various rows of atoms acting as units so that the effect
of one atom was added to that of its neighbor in a perfectly systematic
way. For a long time this picture was necessarily rather hazy, for no
means were at hand to measure the distances between the atoms in the
various Tows and the distances between rows. These distances are so
minute that if an ordinary pinhead were magnified until its diameter
became 100 miles, the distance between centers of adjacent atoms would
be about one inch. Such measuretnents can now be made casily to within
1 part in 1,000 by means of the diffraction of x-rays. In other words,
x-rays furnish us with a micrometer by which we can measure without,
difficulty a distance of 10-% em. with an accuracy of 1{( per cent.

A micrometer of this sort differs from an ordinary micrometer not
only in the exceedingly small distances which it measures but also in
the fact that these distances lie hidden in the body of the crystal itself.

As is the case with other micrometers, the measurement of a small
1



2 CRYSTAL STRUCTURE

distance is accomplished by measuring a relatively large distance (in
this case, several centimeters) which is related to the desired distance
by some known law. It will therefore be necessary to consider in detail
the law of diffraction of x-rays and how this law may be made to relate
large, easily measurable distances to the distances between atoms in
crystals. In short, we must first study the theory uf our micrometer.

Such a study must be combined with other information on the spatial
relationships which are possible inside a crystal. This will then enable
us to see how the interatomic distances in a crystal may be used to
determine the arrangement in space of the atoms of which the ecrystal
is composed. The knowledge, thus gained, of the structure of crystals
is the starting point for a rapidly growing body of information which is
of considerable theoretical and practical importance. From a knowledge
of the structure of erystals it is possible to obtain information as to the
sizes and shapes of atoms and ions, and to find valuable hints as to the
mechanism of chemical combinations. Evidence is found leading to
fundamental ideas in the theory of solid solutions and the inner structure
of alloys, so that a more rational explanation may. be made of certain
metallurgical phenomena. Evidence may also be obtained of the effect
of mechanical working on the orientation of crystals in metals, so that
we may hope some time in the future to roll and draw metal better than
we can today. This short résumé shows that a study of erystal struc-
ture is not only of interest to the so-called ‘pure scientist”’ working in
physics, chemistry, and physical chemistry, but that it gives much
promise of practical results to the metallographer and through him to
almost every branch of industry.

DIFFRACTION OF X-RAYS

[t was stated in the foregoing that the ‘“micrometer” used in measur-
ing interatomic distances is based upon the diffraction of x-rays. When
x-rays of a given wave length strike a substance, part of the radiation
is scattered so that it appears at every possible angle to the incident
beam. If the scattering substance is a crystal, the scattered radiation
is much more intense at certain angles than at others, 7.e., the x-rays
are diffracted through definite angles. These angles depend upon the
wave length of the x-rays employed and upon the arrangement and
spacing of the atoms in the crystal. The distances measured in deter-
mining these angles and the relative intensities of the x-ray beams at
these angles form the basis of study in x-ray crystallography.

Bragg’s Law.—It is shown in elementary texts on physics that ordi-
nary light can be diffracted from a plane grating. A crystal acts toward
x-rays like a family of plane gratings placed one above the other. The
introduction of height in addition to width between lines changes the final
form of the difiraction law considerably. It may be shown experi-
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mentally that this changes the diffraction law from the form found in
texts on physical optics to the form known as Bragg’s law:

n\ = 2d sin 6 (1)

where \ is the wave length of the x-rays and 6 is the grazing angle of
incidence between the x-ray beam and the diffracting family of atomic
planes in the crystal. The experimental fact of the diffraction of x-rays
according to Bragg’s law may be explained either on the basis of the classi-
cal spreading-wave theory!:? or on the basis of the quantum theory.**
A consideration of the two types of explanation shows that they give
identical results.

Diffraction of a Spreading Wave.—According to the spreading-wave
theory, x-rays and ordinary light are both thought of as being trains of
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Fra. 1.—Diffraction of a plane wave by a crystal.

electromagnetic waves which tend to spread out in all directions from
their source, i.e., they tend to advance on a spherical wave front. The
difference between ordinary light and x-rays is, according to this theory,
merely a matter of wave length. The distance “from crest to crest’”’
of an x-ray is supposed to be about one ten-thousandth as great as the
corresponding distance for visible light.

Let the network of dots in Fig. 1 represent the atoms of a crystal,
and let the crystal receive x-rays from a source sufficiently distant so
that the wave fronts may be considered to be planes. Let the arrows
1, 2,3 . .. represent normals to these wave fronts, and let the arrows
(1), (2), (3) . . . represent the corresponding normals for the first order
of the diffracted beam. Experimentally, it is found that the grazing
angles of incidence and emcrgence are equal, .e, that DAE = BEA.
Let AG be drawn perpendicular to FH. The path of the beam 5 to
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the point @ is equal in length to the path of the beam 1 to the point A.
The difference in path length between the beam 1 at A and the beam 5
diffracted from F to A is GH, since FH is equal to FA. GH is equal
to AH sin GAH. But the angle GAH is equal to the grazing angle of

_incidence DAE. Since AH is twice Al, t.e, it is twice the interplanar
distance d of the crystal, and since DAE is the grazing angle 8, we know
the waves diffracted along (1) from incident beams 1 and 5 will meet in
phase if

= 2d gin 6 {1)

where n is any whole number and X is the wave length of the x-rays
employed. The integer represented by = is called the ‘“order” of diffrac-
tion and is the number of wave lengths difference in the two paths.
Similar beams such as (2), (3), (4) . . . will be in phase with beam
(1); for let ED and AB be perpendicular respectively to 1 and (2).
Then, since BEA = DAE, we have the two right triangles with an
acute angle and hypotenuse of one equal to an acute angle and hypotenuse
of the other. Therefore, the path EB equals the path DA, which is
the condition for beams (1) and (2) being in phase with each other.
In a similar manper it may be shown that (1) and (3), (1) and (4), ete.,
are all in phase.

It is therefore possible to have a whole wave front of diffracted x-rays
emerging from a crystal at an angle equal to the angle of incidence,
provided this angle is related to the wave length of the x-rays and the
interplanar distance of the crystal in the manner shown by Eq. (1).
It may be shown that, if the crystal were infinitely thick and offered
no absorption to the x-rays, there could be no first-order diffracted beam
at any other angle; for no matter what other angle we choose for diffrac-
tion from a given point in the crystal, there will be some other point
which can send out & wave in the same direction which will meet the
first wave a half wave length out of phase. Experimentally, it is found
that it is sufficient if the crystal is about 10® molecules thick.
If the crystals are too thin, the diffracted beam tends to widen because
of incomplete interference at angles other than that which is equal
to the angle of incidence.

The difiraction of x-rays by a erystal may be shown analytically as
follows. 'The three-dimensional diffraction grating of a crystal may be
regarded as composed of three sets of unidimensional gratings, each one
of which consists of a row of atoms parallel to one of the three axes of
the crystal. Let the interatomic distances along the three axes be 1, y1,
and 2. Let the directions of the incident and diffracted beams be
_expressed by their direction cosines a1, 81, v1 and as, B, v2, respectively.
Then the conditions for diffraction along these three sets of linear gratings
are
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Zi{a, — a1) = €A
yi{B: — B1) = A\ (2
21(y2 — v1) = gA

where ¢, f, and ¢ are integers representing the order of the diffracted
beam from each of the gratings.* In the simplest case, that of a cubie
erystal, z; = y; = z; = a, the edge of the unit-cube. Remembering
that

a? + B+ 7 = @ 4 B2t vyt = 1
we have by squaring and adding

2 — 2csaz + Bis + 1uvs) = (})@ PR

But, since, by a well-known theorem in trigonometry,

arxy + 18z + y1ve = cos ¢

where ¢ is the angle between the incident and the diffracted beams, and
since

2(1 —cos¢) = 4 sinz‘é—>
we have
2sing=£\/67+fz+g’ 3)

We may therefore calculate the angle of deviation ¢ from the wave length
A, the grating space z,, and the orders of the diffraction patterns of the
three sets of linear gratings.

* To arrive at the equation for diffiraction by one of these three sets of linear grat-
ings, consider a series of diffraction centers equally spaced along the line XX’. On
striking the diffraction center A’, the beam A will be diffracted in the direction 4’4"
In the same way the beam B will be diffiracted in the direction B'B”". Now, the path
AA" is longer than the path BB’. Diffraction can oceur only
if the difference in path length is equal to a whole number of wave
lengths. To obtain a value for this path difference, drop the per- *~
pendiculars A’G and B’H. The difference in the path lengths of
AA" and BB" is given by (A'H — GB’). But A’H is A'B’ cos
B'A’H and GB’ is A'B’ cos A'B'G. Cos B'A’'H is, by definition,
the direction cosine, a;. Cos A'B'G is, by definition, the direction cosine, @;. The
distance A’B’ is the interatomic distance z1. We may therefore write as the condi-
tion for diffraction along the X-axis

1:1((12 e al) = e\

where e is an integer. Similarly for diffraction by the linear gratings along the
Y- and Z-axes,

(B2 — B1) = fA
2ilye =~ v1) = gA
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Equation (3), derived in this way, may be regarded as typical of
the viewpoint of Laue at the time of his discovery of x-ray diffraction.
It may be expressed in terms of the more useful Bragg viewpoint ag
follows: A plane of atoms in a crystal is most commonly defined by its
“Miller indices,”* which are the reciprocals of the intercepts of the plane
upon the X-, Y-, and Z-axes, respectively. For instance, the (100)
plane cuts the X-axis at unit distance and is parallel to the other two
axes; it is the edge of a cube or of some other symmetrical figure. The
(321) plane cuts the X-axis at 13, the Y-axis at 14, and the Z-axis at
unity. It is customary to express these reciprocal intereepts in terms
of their lowest prime numbers, so that, if the reciprocal intercepts are
given as h, k, I, the actual reciprocal intercepts will be nh, nk, and nl,
where n is any integer. If, therefore, we choose such a plane of atoms
that

¢ = nh
f=nk
g = nl

we may regard the diffracted beam of Eq. (3) to be a diffracted beam
of the nth order from the plune (hkl).} Equation (3) may therefore

be written

2sin? = An\/zz—+—ic2—{~ 12
2 X,

or

—o_ 0@ 3

nA = 2\/7z2 TR sin 3 4)

It will be shown in Chap. III that z,/+/A% + k% 4+ [* is the distance
between successive (hkl) planes. It is the d of Eq. (1).

The grazing angle of incidence (or the angle of diffraction) is ¢/2

and is the ¢ of Eq. (1). Tt is therefore evident that Eqs. (4) and (1)

are identical. If, instead of confining ourselves to the cubic system,

we had taken any other crystal system, we should have arrived at a
new expression in the denominator of Eq. (4) which would represent

* Miller indices are treated at greater length in the next chapter.

1 It should be noted that this substitution of nh, nk, and nl for e, f, and g, is only
done as a matter of convenience in the study of crystal structure. A tiny crystallite
may be so small that it does not contain representatives of many of the atomic planes
found in laiger crystals of the same substance yet it is theoretically capable of giving
a diffraction pattern corresponding to every linear gratingin the crystal. The changes
to be made in Eq. (4) in such cases will be obvious. In the case of the crystallite,
there will be a very rapid falling off in the sharpncss and intensity of the diffracted
beams with increasing angle of diffraction. For most practical purposes the effeet
is therefore somewhat the same as we should have had if diffraction had occurred only
from individual families of planes which were actunlly present in the crystal.
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the distance d between successive planes for that erystal system. Equa-
tion (1) is therefore perfectly general and applies to all types of crystals.

Diffraction of a Quantum.—In the preceding section on Diffraction
of a Spreading Wave we have regarded an x-ray as a train of spherical
waves of short wave length spreading out from a point source. The
picture of an x-ray from the standpoint of the quantum theory may be
given sufficiently well for our present purpose by regarding it as a wave
train of very small cross-section (possibly of the order of 10-2% gq. cm.)
proceeding out in a straight linc from its source.’ Any x-ray beam with
which we ordinarily deal is supposed to contain an enormous number
of these quanta coming out in all directions from the ‘“focal spot”
on the anode of an x-ray tube. In many ways, the whole bundle of
quanta acts much like a train of spreading spherical waves, but the
mechanism by which diffraction must be explained is quite different
for quanta from that for spreading spherical waves.

According to the quantum theory, it is a characteristic of a quantum
that its energy E determines the frequency of its waves, i.e.,

E=hv= ’% ®)
where v is the frequency, N the wave length, ¢ the velocity of light, and
h is a proportionality constant known as “Planck’s constant.” If for
any reason a quantum loses a portion of its energy, it must decrease
the frequency of its waves until the new frequency muliiplied by Planck’s
constant gives a produet equal to the energy still remaining in the
quantum. Since the wave has energy and has a definite velocity ¢
it may be said (at least figuratively) to have mass and therefore momen-
tum. It may be shown that the momentum of a quantum is*

hy h

M= - =X (6)

The ordinary law of conservation of momentum which holds for the
impact of material bodies is assumed to hold for the impact of quanta
on atoms and electrons. It is further assumed that a quantum can
give up momentum to an atom or electron in definite units. Since h
has the dimensions of 2 momentum multiplied by a length, { it iz assumed
that the quantum unit of momentum is /1l where | is any length which
may be shown to have a physical meaning in the diffracting substance.

* The kinetic energy of the electrostatic vector of the quantum is Y4mc® The
kinetic energy of the electromagnetic vector of the quantum is also Y4me2. The total
kinctic energy E of the x-ray guantum is therefore, me2  Its momentum M, is, by
definition, me. Evidently, then, M = E/c = hv/c.
energy

Y = ML*T-', Momentum has the dimensions
frequeney

t & has the dimensions
mass X velocity = MLT-.



8 CRYSTAL STRUCTURE

Let a quantum of x-rays fall upon a crystal as shown in Fig. 2, so
as to make a grazing angle 8,. At some point in its path it may hit an
electron belonging to one of the atoms of the crystal and be deflected
so that it emerges at an angle ;. The momentum transferred to the
crystal in a direction parallel to the X-axis is

h

hy
-c—(cos 61 — cos 6,) = n%—l

@

where the interatomic distance z; is the only length in the X-direction
which has any physical meaning, and where n; is any positive integer
including zero. Similarly, the momentum transferred in the Y-direction
is

hy, . . h
;”—(sm #; — sin 6,) = nz:l-/—x (8)

N\

\

\

\("2/" M

Fig. 2.—Diffraction of a quantum by & crystal.

If n, and 7, are both zero, there is no transfer of momentum and no
change in direction, so that the quantum passes on through until it
hits an electron in some other atom., If n, is zero and n, is not zero,
then cos 8, equals cos 8; but sin 8, does not equal sin 6,. This means
that sin 8; must be equal to —sin ;. Equation (8) therefore becomes

2—}”'{ sin 01 = nzﬁ' (9)
c Yi

or
nak = 2y, sin 0, (10)

which is identical with Eq. (1) for diffraction from the X-Z planes.
Similarly, if n. is zero but n, ig not zero,

nh = 2z, sin (90° - 8, @an
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which represents diffraction from the Y-Z planes. Equations (10)
and (11) may therefore be written in the form of Eq. (1)

nA = 2d sin @ (1

If n, and n, are both integers other than zero, Eqs. (7) and (8) give
the same law of diffraction for still other families of planes in the crystal.

Ezxceptions to the Simple Form of Bragg’s Law.—Equation (1) does
not correlate all the known facts on the diffraction of x-rays. It is
therefore necessary to extend the simple theories on which Eqs. (1),
(10), and (11) were founded. It is found experimentally that, for a
given crystal, Eq. (1) gives slightly higher values for wave lengths when
n is small (1 or 2) than when 7 is larger. In the same way, if the wave
length is assumed to be known, the first few lines in the diffraction pattern
appear to be caused by interplanar spacings in the crystal which are
slightly larger than those calculated from the second order of these
same lines. This effect is explained as being caused by certain electrons
in the atom having natural periods of vibration close to that of the
incident beam of x-rays, thus giving the effect of a refractive index less
than unity.®

Davis and v. Nardroff” have determined the refractive index of pyrites
for four wave lengths and have compared their results with calculations
based on the Lorentz dispersion formula

- = e (3] N2 PR
Tow %(ﬁ -l + p? — py? + )

where 4 is the index of refraction, » is the frequency of the incident beam,
and 7y, 7y, . . . are the number of electrons per unit of volume having
natural frequencies vy, »,, . . . , and ¢ and m, as usual, represent the
charge and mass of an electron. Their calculated and experimental
values are compared in Table I.

When the planes of atoms from which the rays are diffracted are
parallel to the surface of the crystal (as is the case when a cleavage face

TaBLE I.--INDEX oF REFRACTION oF PYRrTEs CRYSTAL YoR X-RAYS

)Y 1 -y 1 -y,
experimental calculated
0.63114. 2.82 X 10~ | 2.64 X 10-¢
0.7078 3.33 3.29
1.389 13.2 13.5
1.537 17.6 17.6

is used), the error caused by refraction is very small. For instance, the
bending is only about three seconds of are for the Ka rays of Mo from
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a cleavage face of calcite. This bending increases as the angle between
the atomic planes and the crystal surface is increased. It is greater the
shorter the wave length of x-rays employed. This is illustrated by the
data of Table II from Davis and v. Nardroff for pyrites. Additional
data on glass, tin, silver, selenium, and zine have been published by Doan®

TaBLe II.—ErrEcT OF ANGLE AND WAVE LENGTH ON THE ANGLE OF BENDING OF

X-RAYS
Angle between crystal | Angle of 1 — Weighted
A surface and atomic bending M mean
experimental
planes of x-rays 1 —wu
0.7078A. 0° 00" 3.6” |4.6 X 10~
6° 31’ 57.5" .39 1 13.26 X 107
7° 18’ 39" 159 7 13.37 X 107%]3.33 X 10™®
0.63114. 0° 0’ 0 3 7 |3.87 X107
6° 31’ 57.5" 160 7 |2.82 X 1078]2.82 X 10~¢

and by Edwards,® and on aluminum by Davis and Slack.!® For further
details see a review of the subject by Bergen Davis in the Journal of the
Franklin Institute.!!

Because of the refraction of the rays, Bragg’s law must be applied
not to the original direction of the incident beam but to the direction of
the refracted beam inside the erystal. It is hardly necessary to make this
correction in the determination of the configuration of atoms in a crystal,
since it affects only the exact size of the unit-crystal. Where the exact
size of the unit-crystal is important (see Chap. VI), the experimental

technique may be made such as to make the correction unnecessary.

PRIMARY AND SECONDARY STANDARDS FOR THE DETERMINATION OF d
IN EQ. (1)

Equation (1) gives the relation between the wave length of x-rays and
the interplanar spacing for diffraction at a given grazing angle. In
order to determine one of these quantities by means of this equation it is
necessary to know the other. Using the method of W. H. and W. L.
Bragg!? we may determine the dimensions of the unit-crystal* of NaCl
as follows: A study of the diffraction patterns of NaCl and KCl shows
that these patterns may be accounted for if these salts crystallize as
simple cubes of ions, with the alkali and halogen ions occupying alternate

* The unit-crystal is the smallest crystal which can show the symmetry characteris-
tics of the erystal. When the symmetry is cubic, the unit-crystal is called the unit-
cube; when it is rhombohedral it is called the unit-rhombohedron, etc. The term
“unit-crystal” is also sometimes applied loosely, as here, to represent the smallest
portion of the erystal eapable of showing the configuration of atoms.



THE THEORY OF DIFFRACTION OF X-RAYS BY A CRYSTAL 11

corpers of the cubes.* Since this is the simplest structure which accounts
for the experimental facts, it will be adopted as the structure of NaCl.
Each corner of one of the elementary cubes (unit-cubes) of the crystal
contributes 1§ atom to the cube. The mass of the unit-cube of NaCl
is therefore

[48ANa + 43Acim = YlAxa + Ac)m

where Ay, = atomic weight of Na = 22.997.

Ag = atomic weight of C1 = 35.458.

m = mass in grams associated with one unit of atomic weight.

The factor m is most easily found as e¢/F, where ¢ is the charge on the
electron and F is the Faraday constant in electrolysis. Millikan!® gives
e a8 4.774 X 10~ absolute electrostatic unit (abs. e.s.u.) of charge or
1,591 X 10~!* absolute coulomb The maximum error is about 0.1 -
per cent. Vinal and Bates give F' as 96,500 absolute coulombs with a
maximum error of 0.01 per cent. The factor m is therefore 1.649 X 107%*
gram (g.).7 This makes the mass of the unit-cube of NaCl equal to
4.820 X 1023 g. If we divide the mass of the unit-cube of NaCl by the
density, we obtain the volume of the unit-cube. From this we can
calculate at once the length of the edge of the unit-cube.

Many values for the density of NaCl may be found in the literature.
These differ among themselves considerably, partly due to impurities in
the salt used by some of the workers and partly due to the difficulty of
growing large crystal aggregates of NaCl free from voids or to the equally
great difficulty of growing large single crystals of NaCl free from strains
which, by reason of the dislocation of the atoms, tend to lower the effec-
tive density. The density of NaCl is given twice in the ““International
Critical Tables.””*®!® In Vol. I it is given as d,*® = 2.163. 1In Vol. III
it is given as

dé® = 2.1680(1 — 20 X 11.2 X 10-% — 400 X 0.5 X 10-7)
= 2.1631

This second_value considers the work of the most careful workers up to
the end of 1925, and we shall accept it as being the most reliable value
obtainable by direct experiment. If we consider it to be in error by as
much as 0.004, 7.e., 0.2 per cent, it has the largest percentage error of
any of the items which enter into our calculations of volume. Even
if the error in the value of m happens to affect the final result in the same
direction as the error in the value of d, our value for the volume of the
unit-cube of NaCl can be in error only by 0.3 per cent. This would give
an uncertainty of only 0.1 per cent in our value for the edge of the
*See Fig. 7, Chap.'V.

1 This factor is given by R. T. Birge, Phys. Rev. Supplement, Vol. 1, No. 1 (1920)
as 1.6489, 1 0.0016 X 10~
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unit-cube. Denoting the length of the edge of the unit-cube by a,, we
would therefore have

v 820 £70.005 X 10%
“Nuct 2.163 + 0.004

It is, however, hardly possible that the above value of the density can
be in error by more than +0.001, so that we may narrow down our
value to

= 2.814 * 0.002 X 10~ cm.

| oy, = 2814 & 0.001 X 10~* cm.

This agrees, within the precision of the underlying data, with the value
2.814 X 10~® cm. used by Duane in his Bulletin of the National Research
Council (November, 1920).

The density of calcite can be measured with greater accuracy than
the density of NaCl since calcite can be obtained in large single crystals
which are quite free from strains. For this reason, in the unit-rhombo-
hedron of calcite whose faces are parallel to the cleavage planes, the
distance between successive atomic planes which are parallel to the faces*
is taken as the primary standard of length in all crystal-analysis work.
The true value of the edge of the unit-cube of NaCl is determined from
this as a secondary standard.!”'#1* Optically clear calcite may contain
Mn or Mg. Since both MnCO; and MgCO; have higher densities than
those listed for calcite, it is clear that the lower the value reported in
the literature, the more likely it is that the caleite was of high purity.
Birge?® gives as the best experimental value for the density of calcite,
dy = 2.7102 1 0.0004 g. per cubic centimeter. The interaxial angle of
the cleavage rhombohedron of caleite is 101° 55,21-22 go that the volume of
the unit-rhombohedron is 1.09630 + 0.00007 X (aow,)’ where (aom') :

is the grating space of calcite. The molecular weight of CaCO; is?®
40.075 + 0.005

12.003 + 0.001
48.000 £ 0.000

100.078 + 0.006

* As was pointed out by Wyckoff [Amer. Jour. Sci., 80, 317 (1920)] this is not the
true theoretical unit of structure. It does, however, afford an easy way of visualizing
the spacing between successive cleavage planes of ealcite, i.e., the crystal analyst’s
fundamental unit of length. It is, perhaps, only fair to say that crystal analysts
practically never actually use caleite as a comparison standard (see Chap. VI) in
measurcments of interplanar spacings. Either they use NaCl (as = 2.8144.) or
they arbitrarily adopt some measured wave length which they find in the litera-
ture or in some book such as Siegbahn’s. The discrepancies introduced are usually
of only academic interest,
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It will be shown in a later chapter that a unit-rhombohedron, which
for our present purposes may be considered as the unit of structure of
calcite, contains one-half a molecule. Therefore

14 X 100.078 X 1.64898 X 10—

G = 2.7102 = 1.09630a,

so that at 20°C.,
Qo = 3.0283 + 0.0010 X 10~% em. (12)

CacO,
This is the primary standard of length used in all erystal-structure work.
Diffraction experiments,'”?* of which those of Siegbahn are probably
the most accurate, show that the ratio

Grating space of calcite

Grating space of NaCl 1.076417

(= log~10.0319806). This requires us to adopt for the true grating
space of NaCl at 20°C. the value
ag = 2.8135 + 0.0010 X 10-8 cm.

NaCl

This value again agrees, within the precision of the underlying data,
with the value 2.8140 X 10— cm. proposed by Duane.?* Since a large
fraction of the published data is given in terms of Duane’s value, it hag
become customary to consider the secondary standard of distance for
crystal-structure work as

= 2.8140 + 0.0010 X 1078 cm. (13)

aoNaCl

CdO crystallizes with the same type of structure as NaCl, but the
crystals'are more perfect and yield unusually sharp maxima in the diffrac-
tion pattern. For the same exposure time a much wider range of
diffracted beams can be photographed from CdO than from NaCL
CdO has therefore been suggested?®s as a tertiary standard for practical
laboratory work.

Both for spectroscopically pure CdQ and for the “ commercially
pure”” CdO containing traces of CO, and ZnO,

o, = 4.681 £ 0.002 X 10~* em. (14)

It will be shown in a later chapter that it is sometimes convenient
to have a standard of length in terms of the grating space of some element,
of higher atomic weight. For this reason the edges of the unit-cubes
of Cu, W, and Au have been set up as additional tertiary standards,?6:27
with the following values at room temperature (approximately 20°C.):



