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CHAPTER 1 '
Sets and Functions

1.1 Sets

The concept of a set as an arbitrary collection of objects of interest is
probably the most basic concept of modern mathematics. There are no
constraints on what objects one may include in a set except that we do not
consider it possible for a set to be one of its owif objects. A-set could consist
of precisely these three objects: the real number mr, the Taj Mahal, and the
ball Hank Aaron hit when he broke the home-run record. Useful sets are, by
contrast, ordinarily defined by obviously useful properties. Some examples
are the set of positive.integers, the set of teams in the National Football
League, the set of FORTRAN instructions for a given computer, acompiete
collection of Zeppelin: airmail stamps, and so on.

In this book we shall make use of the following infinite sets (among
others):

R: the set of real numbers.
[a, b]: the set of real numbers x such that a <x <b.

Q: the set of rational numbers.
Z: the set of integers (positive, negative, or zero).
N: the set of nonnegative integers.
P: the set of positive integers.

kZ: the set of all integral multiples of the positive integer k.

kN: the set of nonnegative integer multiples of the positive integer k.

We shall also make use of the following finite sets (among others):

Z,.: the set of integers from 0 to n — 1 inclusive.
P,.: the set of positive integers from 1 to n inclusive,
B: the set consisting of the integers 0 and 1.

In computer science applications, a finite set is often called an alphabet,
and its elements are called letters.

The objects in a set are often called its elements or its members. If x is an
element of the set S, we write x €5, which is read “x belongs to $” or “x
belonging to S’ as the context requires, as in the phrases “if x € $”” and ‘‘for
all x € S,” respectively. If x is not an element of the set S, we write x¢ S. Thus
2eZ but ¢ Z, Chicago Bearse NFL, J. William Fulbright € United States
Senate.

Two sets are equal if they contain precisely the same elements. Thus the
set of all real numbers whose remainders on division by 2 are 0 is equal to the
set of all integers of the form 2n where n € Z.

I



2 Sets and Functions Ch.1

1.2 The Indexing of Sets

It is often useful to name the elements of a set S in some appropriate
manner with the aid of another set I, called an indexing set. The elements of
the indexing set are commonly used as subscripts; each element of S is
assigned a subscript name and each element of I is used exactly once as such
aname. In the case of a finite set § consisting of n elements, the elements are
numbered in some convenient (perhaps random) order, the ith element
being denoted by si. Then $ ={s\, 5,1, ...,s,} and P, is the indexing set.

Lifinite sets may be indexed in a similar way. For example, a complete
polygon with n distinct vertices consists of n vertices (points in the plane),
each pair of vertices joined by a straight line segment (edge). The number E,,
of edges of such a polygon is given by the formuia E, =n(n—1)/2. The
infinite set of numbers {E), Es, ..., E,, ...} has the indexing set P. Any
infinite set whose elements can be indexed by P is called enumerable or
denumerable or countably infinite.

One might think offhand that every finite set can be effectively indexed,
but this is not the case. For example, the set of all cloudy days at the site of
Tombstone, Arizona, from January 1, A.p. 1700, through December 31,
1974, is a well-defined, reasonably small finitc set although, for lack of the
proper records, it is not possible to index it. On the other hand, many
nondenumerable infinite sets can be indexed. The most familiar example is
the indexing of the points P, of a line by their coordinates x. Here the
indexing set is R. _

Ordinarily, there is a natural choice for the indexing set and often for the
manner of indexing as well. However, many of the finite sets we use in this
book have no natural ordering and may be indexed in random order.

1.3 Sets Derived from Other Sets

If Uisasetand P is a property (P may in fact be a combination of several
properties) which elements x of U may or may not possess, we can define a
new set with the ““set-builder™ notation

{x e U|P(x)}.

This denotes “the set of all elements x that belong to U and have property
.7 For example,

{xeZlx>0}=P
and

{reR

éeZ}={z €Zjz=2n, nell.



Sec.1.3  Sets Derived from Other Sets 3

A subset of a set U is a set § all of whose elements belong to U. The
set-builder notation is the basic tool for describing subsets. In a‘discussion
dealing exclusively with subsets of a fixed set U, U is often called the
universal set or the universe of discourse. If § is a subset of U, we say that S is
included (or contained) in U and write S < U. We also say that U includes or
contains Sand write U 25.1f U 2 S, then U is called a superset of S. The set
of all subsets of U is called the power set of U and is denoted by P (U).

If the property P is so restrictive that no elements of U have that property,
we say that {x € U|P(x)} defines the empty set or null set &J. It is proper to
refer to the empty set here because all empty sets, regardless of the
properties that define them, contain exactly the same elements, namely
none, and hence are equal. If S is a subset of U anc S # U, we write S< U
and say that S is a proper subset of U.

It is often useful to denote the elements of a set A that are notin a set B by
A - B, the set-theoretic difference of A and B, in that order.

From two sets § and T, not necessarily distinct, new sets may be derived in
a variety of useful ways. Many such sets are based on the concept of an
ordered pair of elements (s, ¢), where s € § and is listed first and r € 7 and is
listed second. Two ordered pairs (s, £,} and (s, t;) are defined to be equal if
and only if s, =5, and ¢, =t,. For example, if § =T =2, then (2,-3)#
(=3,2). '

We may now define the Cartesian product of S and T, denoted bySxT,to
be the set of all ordered pairs (s, t) such that s € S and t € T. That is,

SXT={(s,t)lseS, teT}
-For example, if $ = T =R, then the Cartesian product is
RXR={(x, y)lxeR, y R},

which is denoted by R* and which is interpreted as the set of points of the
familiar Cartesian coordinate plane. This plane and its generalization, the
Cartesian product of arbitrary sets S and T, are named after the French
philosopher and mathematician René Descartes (1596-1650), who
invented analytic geometry.

Anindexedset{ay, @y, . . ., a,} is called an ordered n-tuple and is written

(ay,a,, ..., a,) it it matters which element is listed first, which is listed
second, and so on; thatis, if (@1, @z, . .., a,) #(by, by, .. ., b,) unless g, = b;,
i=1,2,...,n. We can now define the Cartesian product of n sets
$1,8,,..., S, as a set of ordered n-tuples thus:

Sl)<52x"'XSHZ{(S],SQ,...,S,.)’S,-ES,-, i=l,2,...,n}.
If$,=8;="--=8§,=S, this product is denoted by §". For example,
R =RxRXR={(x,y,z)[xeR, yeR, zcR}
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is a set-theoretic description of coordinatized 3-space. A subset of this space
(recall that B ={0, 1}) is the set of vertices of a unit cube defined by

B*=BxBxB={(b,, b, bs)lb;eB, i=1,2,3}

Other examples of Cartesian products will appear naturally in what
follows.

1.4 The Order of a Set

The order or cardinality of a finite set S is the number of elements in S and
is denoted by |S|. For example, the order of the set {1,3,5,...,2n—1}isn.
If a set can be indexed by the set PP,,, then its order is n.

" It is important, when determining the order of a set, to observe precisely
what the elements of the set are. Thus }{(1, 1), (2, 3). (3, 2)}>= 3 because this
is a set of three ordered pairs. We shall have frequent occasion to employ
sets whose elements are themselves sets or ordered sets.

Here are some more examples:

|set of columns on an IBM card| = 80,
|Los Angeles Dodgers traveling squad| = 25,
{xeZ|0<x<100,x =3n—-2,neP}| =33.

A setof order 1 is called a singleton and a sct of order 0 is the empty set.

If|S| = m and |T| = n, then in forming an element (s, £) of S X T, we have m
choices for s and n choices for ¢, so|S X T| = mn. This proves that for finite
sets S and T,

(1.4.1) ‘ ISx T|=|S|-|T].

In the application of algebra to discrete systems, one has frequent
occasion to determine the order of a finite set, so counting problems will
often be treated in this book, in both text and exercises. In some cases, even
.though the order of § cannot be precisely determined, one can determine a
number s such that [S| < us. Such a number is called an upper bound for the
order of S.

1.5 Functions

If S and T are sets, a function f from S to T, denoted by the symbolism
f: S = T, may be defined as a rule assigning to each s € S a unique element
fis)eT. Although for each s € S there must be exactly one f(s), it is not
required that each f € T be f(s) for some s. Nor is it required that f(s,) # f(s2)
whenever s; # s,.

Most mathematics through calculus deals with functions from R to R.
Some examples are: if f(x) = x>~ 3x +2, then f(3) = 2 and f(1.5) = —0.25; if
glx)=sinx, then —1<g(x)<1forallx eR;if h(x)=e", then0<h(x)forall
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x €R. In this book we shall encounter functions f: § - T for many different
sets § and T.

Given a function f: § > T, S is called the domain of f and T is called the
codomain of f. The element f(s) of T is called the image of s by f and s is a
counterimage or pre-image (there may be others) of f(s). A functionf: S > T
is also called a mapping of S into T and f is said to map s onto its image f(s).
The range or image of a function f: § > T is the subset f(S) of T defined by

f(S)={te Tlt=f(s) for some s € S}.
If 5, is a subset of S, we define f(S,) < f(S} by

f(So) ={f(s) e Tls € So}.

Here are some more examples of functions:

1. fi:R->R, defined by fi(x)=x>+4x + 1. Is every y € R the image by f,
of at least one x € R? If not, precisely which y e R are images and which are
not?

2. f2: Z>Q, defined by fa(n)=1/(n +3). Precisely which integers have
integers as images by f,?

3. fs: {nonbigamous married American men}->{women} defined by
fs(man) =man’s wife. Explain why the conditions “nonbigamous” and
“American” are included here.

The third example illustrates the fact that there is no restriction on the
nature of the sets S and T appearing in the definition of a function. In the
foliowing pages we often make use of functions in which S or T or both are
not sets of numbers. '

The functions

4. f4: Z-1{0, 1} defined by f4(2n)=0, f4(2n—1)=1, neZ,

5. fs:Z~{0, 1, 2} defined by fs(2n) =0, fs(2n~1)=1, neZ,
are distinct functions even though their rules of assignment are the same.
This illustrates the fact that a function involves three things: the domain S,
the codomain T, and the rule that assigns to each s €S a unique t€ T,

Distinct rules at times effect the same mapping of § into T. We therefore
make the following definition: The functions f:S—> T and g: $~> T are
equal, written f =g, if and only if f(s)= g(s) for all s in S. For example, f;
defined above is equal to fs, where

6. fs: R>R is defined by fe(x) = (x +2)*-3.

The ordered pairs (s, f(s)) determined by a function f: S - T constitute a
special kind of subset of § X 7': Each s € S appears in exactly one pair (s, £) of
the subset and a given pair (s, ) of § X T belongs to the subset if and only if
£ =f(s). As a consequence, a function f: § - T may alternatively be defined
as any subset of § X T such that each s € S appears as the first element of
precisely one ‘pair of the subset. Then, given such a subset, the rule of
assignment is simply this: “f(s) is the element t of T associated with s in the
pair (s, t) of the subset.”
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To illustrate, if $ ={0, 1, 2 3,4,5,6} and T={0, 1, 2}, the subset
{(0,0),(1,1),(2,2),(3,0), (4, 1), (5, 2), (6, 0)}

defines a function f: S - T. This function may also be described by the rule:
“If s =3q+r,0<r=<2, then f(s)=r."

As we have pointed out before, one often has to answer the question
“How many?” Thus if |S{ = m, | T|'= n, how many functions f are there from
S to T? For each of the m ele_ments s € 8, we may choose any one of the n
elements-of T as f(s), independently of the choices made for the other
elements of S. Hence there are altogether n-n- --- - n=n"™ functions
from S to T. Because of this result, the set of all functions from S to T is often
denoted by T, and we have proved the following theorem.

Theorem 1.5.1. For finite sets S and T,
|7,

The basic counting principle used here is that if one of two independent
tasks can be performed in p ways and the other in ¢ ways, then the pair of
tasks can be performed in pg ways.

1.6 Exercises

1L IfS={neZll<sn<3}and T={neZ2<n=<5}, diagram S X T as a
subset of the Cartesian plane

2, For § and T as in Exercise 1, ngc a subset of $x T that does not
represent a function.

3. Determine two seis such that the rectangle of Figure 1.6.1(a), includ-
ing its boundaries, represents their Cartesian product. Then do the same for
the rectangle of Figure 1.6.1(b), including only the two boldface boundaries.

4. 1t $=1{3,7,21}, T={11, 111, 10101}, under what conditions, if any.
is § = T? Is indexing involved?

¥ v
24 } "

\\\x 1.5¢
l \ ' \ 4.5
——x \ o L — X @ \ '50—7 X
0 1 2 3 4 ) 0 1 3 N

-1 4 \\
(a) (b)

FIGURE 1.6.1. Cartesian Products
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5. How would you index the seats in a large rectangular concert hall
divided by a central aisle so that the index would readily identify the location
of the seat? What is the indexing set in this case? B ‘

16, If S ={s,, 55,53} and T ={t,, t,, t;}, tabulate aﬁ:&wnctions from S
to T. Invent a way to index these functions such that the index identifies
the function completely (that is, the index reveals the image of every
s¢S). . :

7. Invent a function whose domain is a set of pairs of people and whose
codomain is most appropriately N.

8. Given f: R—{0}>R where f(x)=3(x +2/x), what is the range of f?
For what values of x is f(x) = x? (For any f: A - B, the elements x such that
x €A, x €B, and f(x) = x are called the fixed points &f f.) '

*9. The function f: § > S, where f(s) =s for all s € S, is called the identity
function on S. Describe the corresponding subset of S X S. Show that for all
functions g: $ > S, and for all s € S, f(g(s)) = g(f(s)) =g(s).

10. Let A=, B={J}, C=P(D), and D = P({}). Are any of these
sets equal? What are |A|, | B}, and |C|?

11. Notwoof R XS X T, (R xS)X T,and R X (S x T) are equal. Explain.

*12. Let U be a set with n elements. Determine, for each k € N'such that
0=k =<n, the number of subsets S of U such that |$| = k. Then find the total
number of subsets of U, including the empty set & and the set U itself.

13. Let A be a finite set (alphabet) of m elements. Find the number of
ordered n-tuples (code words) in the Cartesian product A" =
A XA X -XA. Use this result to show that the 26 letters of the English
alphabet can be encoded using code words of length <4 formed from the
alphabet {-, —}. Then look up Morse Code and the International Code in an
encyclopedia to see the encodings that are actually used.

14. Consider a standard 8 x 8 chess board, regarded as a set of vertices in
nine horizontal rows and nine vertical columns, joined by lines forming the -
edges of the 64 small squares. Let P denote the set of paths along the lines of
the chess board from one vertex (the “lower left” vertex) to the diagonally
opposite (“‘upper right”’) vertex. A path proceeds one step at a time, either
one square to the right (H) or one square upward (V), and consists of eight
horizontal moves H and eight vertical moves V. Determine |P|.

15. An ordered set of three positive integers (a, b, ¢) is a Pythagorean
triad if and only if a®+b? = c®. The most familiar such triad'is (3, 4, 5),

(a) A primitive Pythagorean triad is an ordered triple (2mn,
m>—n’ m?>+n?, meP, n €P, 0<n <m. Show that any such triple is a
Pythagorean triad. ~

(b) It is shown in number theory that any Pythagorean triad has form
(rag, rbo, rco) ar (rbo, rae, rco), where reP and (aq, bo, co) is a primitive
Pythagorean triad. Write a program, in whatever computer language is
available to you, that will produce all Pythagorean triads (a, b, ¢) with
c=<150.
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1.7 More Notation

In the fo}lthions, we shall often have occasion to deal with
equivalent stat8IWOS, that is, statements which are both true or both false.
We use the abbreviation “iff” for “if and only if.”” Then the theorem that
statements P and Q are equivalent may be written ““P iff Q. Proof of such a
theorem always involves two parts: proof that P implies O (written “P=>
Q") and proof that Q = P. This is reflected in the notation “P < Q,” which
means the same as *‘P iff Q.”” Informally, proof that P = Q is called the “only
if” part of the proof of “P & Q,” and proof that Q = P iscalled the “if”’ part.

A statement “P iff Q" may also be read “Q is a necessary and sufficient
condition (abbreviated n.a.s.c. or n.s.c.) for P.”” Proof that P=> Q is proof of
the necessity of the condition; in other words, for P to be true it is necessary
that Q be true. Proof that Q = P is proof of the sufficiency of the condition;
that is, in order to conclude that P is true, it is sufficient to know that Q is
true. :

It is not uncommon that one of the two parts of an if-and-only-if theorem
is obvious. In such a case, a simple remark may dispense with this half of the
argument. The reader is warned against the common error of assuming that
half of the proof may always be ignored. To the contrary, in many cases both
parts of the proof require substantial arguments.

Many theorems apply to ail the elements of a certain set. We use “V”’ to
mean ‘“for all.” Thus “V x e)f” is read “for all x belonging to X"’ or ““for
each x belonging to X.” ,

Some theorems, called existence theorems, assert the existence of certain
objects. We use ‘3’ tomean “there exists” and “3!” to mean “‘there exists a
unique.” The symbol “ 3" is used to mean “such that.” Thus

“JlxeRax’-1=0"
means ‘‘there exists a unique real number x such that x*~1=0."

1.8 One-to-One and Onto

A function f: § - T is said to be one-to-one (abbreviated one-one) iff for
eacht € T there exists at most one s € S such that f(s) = ¢; in other words, ifin
given element of T has at most one counterimage in S. Equivalent defini-
tions are that f: § > T is onc-one iff f(s;) = f(s,} implies that s, =s,, or iff
51 # s, implies that f(sq) # f(s2).

For example, let $=T7T =R and consider f: §— T defined by f(s)=t=
as+b, a #0, a and b fixed real numbers. For each ¢, the unique s whose
imageistisgivenbys = (t ~b)/a. Also,if as, +b = as, +b, thens, = 5, since
a # Q. This example also illustrates the next definition.

A function f: S - T is onto iff for each 7 € T there exists at least one s€ S
such that f(s)=t; that is, f is onto iff every element of T has at least one
counterimage in S. An equivalent definition is that f: $ - T is onto iff 'the
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range of f is T, thatis, if f(S) = T. We also say that f maps S onto T when the

range of f is . When the range of f is a proper subset of T, we say that f maps

S strictly into T. If we do not require f to be onto or if we do not know

whether or not it is onto, we say that ¥ maps S into T. Thus “mto” means
“onto or strictly into.”

A function f: §-> T that is one-one is called an injection. A function
f: S~ T that is onto is called a surjection. A function f: S— T that is both
one-one and onto is called a bijection or a one-one cortespondence. In this
case, each s has precisely one image ¢; because f is onto and one-one, each ¢
has one and only one counterimage s; hence the name “‘correspondence.”

In each of the following examples, the reader should verify that the
function has the stated characteristics:

L fi:R*>R? defined by fi((x, y))={x +y, x ~y), 1s both one-one and

onto, so it is a bijection.

2. f2: Z->Z, defined by f,(z) = z°, is neither one-one nor onto.

3. f3:P>P, defined by f5(n) =n>, is one-one but not onto (recall that

P = {positive integers}), so it is an injection. '

4. fa:N=>{0, 1}, defined by f.(n) =0 when n is even, f4(n)= 1 when n is

odd, is onto but not one-one, o it is a surjection.

The several possnbllmes for finite sets S and T, are illustrated in Figure
1.8.1.

If one considers functions f: § - T, where S and T are finite, a variety of
counting questions may be asked. For example, if [S| = m, | T| = n, how many
one-one functions are there from S to T? For a one-one function to exist, we
must have n =m since s, # s, implies that f(s,) #f(s2). fn=m,eachteT

must be the image of precisely one s€S. If S ={s,, 53, ..., sm}, then there
are m =|T| choices for f(s,), m —1=|T—{f(s,)} choices for f(s;), m—2 =
[T—{f(s1), f(s2)}{ choices for f(s3), ..., so the number of one-one functions

is, in this case, just m!=m(m — 1)(m 2) « 1. If n > m, we may select any
m distinct elements from 7T, in any order, as images for the elements of S.
Thus there are n(n—1)--- (n—m +1)=n!/(n —m)! one-one functions in
this case.

1.9 Composition and Inversion of Functions

LetS, T,and U besets and let f: $ > T and g: T— U be functions. (Note
that the codomain of f is the domain of g.) We define the composite function
g°f: S~ U (the composite of f and g, in that order) thus:

VseS,  (gofls)=g(f(s)).

Since this rule assigns to each s € S a unique u € U, g o f is indeed a function
from S to U.
For example, if § =T=U=R, f(x)=x°, and g(x) =x + 1, then

(g Nx)=g(fx)) =g(x?)=x>+1.
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A . T S T

{a) f is one-one, not onto (b) f is onto, not one-one
(injectiop ) " (surjection)
N g
s T S T.
(c) f is a one-one correspondence (d) f is neither one-one nor onto
(bijection)
S T

(e) Not a function

FIGURE 1.8.1. Functions and a Nonfunction

In general, f° g need not be defined just because g o f is. In this example,
both are defined because S and U are the same set. We have, in fact,

(fog)x)=flgx)=f(x+1)=(x+1>=x+2x +1,

.which illustrates the fact that we need not have f ° g = g o f, even though both
are defined. Although the composition of functions is therefore not a
commutative operation, we have the following theorem,

Theorem 1.9.1. The composition of functions is associative.
Proof. LetS, T, U,and V besetsandletf: S>T,g: T>U,andh: U>»V
be functions. Then the theorem says that

(1.9.1) ~ho(gof)=(hog)ef.

Figure 1.9.1 shows what is happening: If s€S, f(s)=t, g(t)=u, and
h(u)=v, then g °f maps s onto u via t and h < g maps t onto v via u.
The proof follows from the definition of the operation of composition.



