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FOREWORD

The International Symposium on Probability and Statistics in the Atmos-
pheric Sciences sponsored by the American Meteorological Society and cosponsored
by the World Meteorological Organization was held June 1-4, 1971, in Honoluly, -
Hawaii. It follows three vears after the First National Conference on Statistical
Meteorology held in Hartford, Connecticut, During this time the number of
workers in this field has grown, but not as fast as the number of problems which
need to be solved. Research efforts such as the Global Atmospheric Research
Program (GARP) collect large amounts of data which require new methods of
analyses.

The international aspect of the meeting was made possible by the location
in Honolulu, Hawaii, and by a travel grant from the National Science Foundation
for non United States citizens.

We have attempted to accept papers wﬁich present new and innovative
approaches to probabilistic and statistical problems in the atmospheric sciences.
Three main areas of emphasis are:

(1) Stochastic Dynamic Prediction
(2) Time Series Analysis
(8) Probability Forecasts
In addition, there are a variety of papers presenting techniques for a

broad range of applications.

Richard H. Jones
Program Chairman

AMS Committee on Mcteorological Statistics

Richard H. Jones, Chairman
Joseph G, Bryan

Donald L. Gilman

Paul R, Julian

Allan H, Murphy

Paul T. Schickendanz
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ON iONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

Masami Ogawara

Tokyo Woman's Christian Coliege
Suginami, Tokyo

1. INTRODUCTION

One dimensional nonlinear stochastic diffe-
rential equations of the firat order such as

dvie,w) = F(t, Ut.w))dE (1.1)
dr(tw)=f (1t w),w)dr (1.2)

nave been treated by some authors.(e.g. Bernstein
£1938), Ito(21951)) In these equations w is a
variuble on a probability space ({1 ,B , P ). If
the initial value x{(0,w) = € is & numerical
constant, the process x(t,u))(t> C) defined by
(1.1) reduces to a determiniatic function of t.
The stochastic differential equation of the form

dxitwy=A(t, x(t,wDdt +dw(t,w) {1.3)

is included in (1.2), where w(t,vl) is a Wiener
process with

Edw=o0, E(dw) =0g'dt
Let x(t) = (x,(t),...,x,(t))"(" denotes the

transposod) be the state of a system which is go-
verned by a differential equation

t = A(t, x) (1.4)

where A(t,x) = (A, (t,x),...,A.(t,x))". In the
real situation, (1.4) is only an idesl relation
and x(t) is usually influenced by other complica-
tad unexpected factors and may be expressed by

dx = A(t, x)dt +dw (1.5)

where w = (v,(t,u‘),...,gﬁt,u'))' is a multi=-
dimensional Wiener process with Eidw;(s.w)aw,(tw)
=6 4., dse dt (672 0,4,j= 1 wesyn) that is an n-
dimensional version of 81.35

As an another example, auppose that x =
x(t,u’)is a one dimensional stochastic process
which has derivatives with probability one up to
the (n-1)th order and satisfies a stochaatic diff-
erential equation

"o Flx ke A )+ de (1.6)

This equation reduces to (1.5) by setting

X,= X, X,% X, geeey in_,= b 39 (formally),

Ay= ... Ay =0,

A"(t,x) = F(x.,....x,.t) (x = (x,,...,xn)‘)
and 6= ... =6r,=0, Gi>O.

In this paper we shall first consider the
conditional probability law of the solution x{t,w)
of nonlinear stochastic differential equation such
as (1.5) or (1.6) under a given initial condition,
by means of Kolmogorov's parabolic partial diff-
erential equation for a Markov process; this idea
has been suggested by Grenahdorf1959). Secondly,
we shall try a method ef successive approximation
of the process 1{t,w ) by means of Wienasr
integral.

At the present stage, these aethods are
rathsr theoretical and their practical use is
left in future.

In the following sections, for the sake of
simplicity, we denote stochastic processes x(t,« )
and w,(t,w') by x(t) and w(t) respectively in
which w's are omitted.

2. KOLMOGOROV EQUATION

Let f(s,3 ;t7x) (B = (% ,.0.,%n),x =
(xy,+.e4Xn), 8 < t) bDe the transition probability
density function of & strictly continuous Markov
process whose state space is the n dimensional
Euclidian space Ra, that is

Pis kit E)=RIxtIeE | uss=3}
- Lstesscodn ees (2.1)

for any Borel set EC R, and §¢ Rn .

that

(1) f(s,g ;t,x) has continucus derivatives up to
the third order with respect to each components
of 5 and x in R,.

(2) linm l for anys>Q,
K¥O 1%y (2.2)
jx - %} being the distance between £ and x.

and the following limits exist:

We assume

t(s 3, s+h,)dx =0
P H

(3) lim ) (X -3505(5,3; srhdx = ai05.3) (2.3)
reo Rp (£ =1,...,n)
{4) fom L ' (€ 5 Xz ~3)8(s. 3, sehaxyda = Zhjls. §) (2.4)
h D hSR, (] (i, = 1,...,n)
(5) k"ﬁfj%fj(ix)}(s,; sthoadda =0, (2.5)
where
PUE D)=L (a5 HA; 3, KR 75k ) (2.6)
[ Rl

Then f is differentiable with respect to s and
t, and satisfies the Kolmogorov equations:

S g:00.302 - bt
== b3y T 2 b Vg, (2.7)

W

e S

_ﬁ,;%—‘[a;ft,z)ﬂ r i,ﬁ%%i[bﬁ“'”f] (2.8)
o= . i O

Hereafter, we shall be concerned mainly with the
second equation.

If the initial probability density function
of x(s) is Y(s,g ), it is obvious that the proba-
bility density function of x(t)(s<t),

plex) = fo gls D135t 0d5, (2.9)

satisfies the same equation (2.8).

According to Kolmogorov, if a;(t.x) and
b~(t,x) are continuously twice differentiable
witn respect to each x; , the equation (2.8) has
at most one non-negative continuous solution f .
The same is true for ¥ .

Now, we conaider a nonlinear stochastic
differential equation

dx = A{t,x)dt + dw, (2.10)

where x = (x,(t),....xa(t))", A(t,x) = (a,(t,x),
ceerAft,x)) and w = (W, {t),ee.,Wy(t))" 18 a



multi-dimensional Wiener process with
Baw = 0, Edw, (e)dw; {t) = %, 8t (37200 (2.11)

some of 1.0 may be zero.
We assume that the components of A(t,x)

has continuous derivative with respect to t and
two times continuously differentiable with respect
to each x;. Then, if x(c}{0xT > t) is given,
the subsequent process x{r)}{t <7 } is stochastica-
1ly determined by (2.10) and continuous in t with
probability one. Therefore x(t) is u Markov
process with a transition prebability density
function f(s, t ;t,x) which satisfies the ccndition
2.2); we assume morover the first condition (1)
atated above. - With regard to the conditions
(2.3),(2.4) and (2.5), by means of (2.11), we get

dtt,) = lime E{ Apteh) - xle) ‘ GEES:

Ade h
ShmEjAty MR o 4 e ) (2.12)
heo b h

- 1. X~ At)) -
byt 0 ..’i‘.:;mE{(x_-(m) xtm)(g-(m\)-x,m)fxm -x |

= fom B E‘;(R((t.l)f '.""-‘“:)-W_v'“_’)( ,A\J“I‘Hﬁlf_"“) "‘.’:ilf)_)j

hio 2 h
_ 8/ (i=)) (2.13)
10 Civj)

and
) T B -2 OX X6k - LN At h) - 242 ) 2ees=2 )

=lim { E(A; e wiiesh) W )4 sw;iteh) - Wit X Auh m;;n/.)—w.m)
heo ™

=0
Therefore, the Kolmbgorov second equation Tor our
process given by (2.10) becomes
‘ Y 2
LEesl asz - % Blacenf] (2.14)
where [ = f(a,; st,x), E=(%, - 3a ), x = (xi,
eeejX, ) € Rnand 8 < ¢ .
¢2 (1 = 1,...,n) are all positibe, name-
1y if (g d:; ) is positive definite, the fundanmen-
tal solution of the parabolic partial differential
equation (2.14) can be obtained, at least theore-
tically, by the Dressel's method.(Dressel(1940),
(1946)).

Our problem is in the degenerate case whers
some of i are zero, which occurs for instance
t(‘or 1):he stochastic differential equation such as

1.6). .

ot .
ot

=
Hy

3. A METHOD OF THE SOLUTION OF DEGENERATE
EQUATION

The degenerate parabolic equation corres-
ponding to the nonlinear stochastic equation (1.6)
is given by

2f gt 3 T 3 i
at T =z Iz - ;} 1[01'3% -A %'i;‘—g;;‘f (3.1)
where £ = f(s,¥ ;t,x), 0'=0n>0 and we assume
here that A = A(x) is independent of t.
Let f 'be of the form
£ = gle,55t,x) +(x)h(8,55¢,% 4eu0rTpny)(3.2)

Substituting (3.2) in {3.1) we have
29 , L 3h _ gt 39 .33 oA
ot Y¥3r = o Aﬁ" , i

LY

n-j
w5 g, (20 4 2B 40X
2 i ($3 o B 50

st 3 X A
{2 Ty A M (3.3)

Therefore, if x and g satisfies

e AR Y. R

T ip ~‘4'§—Zz X5 =0 (3.4)
and

o 6’8 4 el

37 <3 aas Ain 5a,? (3.5)

respectively, then h can be obtained from the
first order linear partial differential equation

t

-4 i a-e . Flo) a
x g:' *é," X "iug'% + (;’?‘, liﬂi-‘_i’)l‘ = _“g,{.“‘}_z% (j'é)
where x is a particular solution of (3.4) given
b ‘'
Y o
o = exy(:[;um,))j exp(—28B(z)dz (3.7)

z
B(2)=2 [(Adz (3.8)
and is the solution of (_3.5).
{3.5) is transformed by
g = u exp(B(xy)) (:-l = u(s,§;t,x)) (3.9)
into the standard form

2. 39K —tu (1=+mArEL) (3.10)

which can be solved by means of the curreant
methods. (Dreasol(1946¥. 1t6,8.(1953, 1954§ ,(1957))

If we put g3 =xh , solving (3.6) is equi-
valent to solve

28 , 395, 9 3z, 4L
> A~ = — P& ”
at T Mx = e ok

Now, our initial condition is given by
05 f(s,j3t,x)<oo (s<t, 3,x&RN)
.

The equation

(3‘11)

3}.? £(s,f 3#.7) =0 {3.12)
lim £(s,§5t,x) =0 (x ¥3¥)
t+vs
Prom (3.11) we get a characteristic curve
O =St rptry =3+ %, Tli=0,net),
Zat)=4%, (311‘)={1',+ﬁ,(t)’ (3.13)

where
s2802). §; w5 ) (izh,eyne1), §,= ), o foir) (3.14)

is an initial curve in R,,,. Corresponding to

{3.12) we may assume that

Petryz0, pB,i0)=0 (3.15)

and
0%s u(s,i:t.!)("" R Ogﬁ(ﬂ,i ;t.x)((’o(jole)
%;;n; u(z,3:t,3) = o (3am)

lim u(s,jst,x) =0 (x %%)
c¥3

4. STOCHASTIC VAN DER POL EQUATION

As an sxample, let us take up stochastic
van der Pol equation )

¥ «pm(1 - 2*)x + x = v (formally), (4.1)

If ve put x = y, then y =M1 - x")y -x + ",
that is .

B IPRIN o { JE



2 2

where E(dw) =5 dt. Therefore we get
A'(tvxvy) =¥
A (t,x,y) =p(1 - ")y - x

) . I - 2
B,(t,x,y) = %3“; iTt{(le)'x(w) [xg)-x, y(t’)ug}

= limi‘#=o

h4o <

Byft,x,y) = limL_[ f (g(r+h)-;;(t.‘,‘7lx(t)=x,t}mdj}

h4o 2h
h ) 2
= lim XM g WiHREW ()
Lin 2 £ ()2 )g-x v S0 |
- i E(Whth -w)” o
hyo 2h 2

. i
BAt,x,y) = :j‘:'}rE;(l(t*k)-l(f))(%(ffk)‘y{t))l
X(py=x. gir=4}

= s Vox = h)-wit)
Lim b £ J(u(1-x0g-x) g oMU o

=0
Thus, the Kolmogorov equation of f = f(s,}' Mit,x,y)

(s<t), the ponditional probability density func-
tion of (x(tg.y(t)) given (x(e),y(e)) = (§,7),

is given by
af ot ., 24 2
Bt 1 WL— —Aldl —A;—Sjt _Cf, (4-3)

whers C =bA;/by =v/lﬂ(1 - xz).
If we set

f= 8(59} 0’[3tbx|Y) +O((X.y)h(8,§.’l;t-x).u-‘i)
from (3.7) we have

Y
= oxp{2B(y)}} | exp{~2B (2)}dz, (4.5)
{78(3)} f exp(-2 (2)
where
ol l
B () =1 [huay = S @ - <)y - 2xy),

and the characteristic curve for (3 =ofh is given
by

dt A.,X.__t_iy_.,iﬁa_g_ (4.6)
1 y [0} “¥3%
consaguently
yzyo, x:!o+yot
t
=g, - ybj—f;g(a.‘;.’l; T, Xg * YTy ¥, 4T
$ (4.7)

where x,, y, and f}o are arbitrary constants.
According to the initial condition (3.15), x, =3,
y, =7 and B,=0.

Now, the differentiaml equation of u =
u(s,$,7;t,1,y) derived from

g=u oxp(B(y))
= u “p(z_:{z(/“(l - xt)y* « 2xy)) {4.8)

becones
L) =6 Ju _ -84 _ g, i
u) Y q{x,ylu Se =0 (4.9)
whers

i ] a*
a = qlx,y) = —5(—533; +C)

= L (u -ty - )" ewdly - ;E)) )
- 4.10
The fundamental solution of (4.9), which satisfies
the initial condition (3.17), is expressed as
follows.

U(Suflqit|XOY)

= 2(s,7;t,y) +Jdtj»p(sn]:r.a)z(t.f,;t.y)dé
5 - (4.11)
where p depends also on x implicitly and

Z2(sit,y) = F—ﬂ——"“tr'vup{- %(_t:_:%} (s<t)

(4.12)

Since L({u) = O, p must satisfy the follewing
integral equation

pla,gst,y) = —qZ(s,7;t,y)

t o0
-qj dth(u.Q:t‘.G)Z(T.g;t.y)dg
5 cee (4.13)

This integral equation can be solved by succeasive
substitutien.

Since p = —qu, p must have opesite-sign to
the sign of q,s0 that wu2 O and conssquently
g2 0. In the domain of (s,%,%7,t,x,y) for
which this condition is satisfied, we can get the
solution f.-

More general degenerate case may be treated
similarly to the above example.

5. A METHOD OF SUCCESSIVE APPROXIMATION
Again, as an example, we deal with the
stochastic van der Pol equation
¥-p(lex?)x+x=w (5.1)
Let the sclution x(t) be of the form
t

x(t) = xo+J‘ ((t-‘r)-uzﬁ-’-r)" 4-1:,(t--‘l‘)3 +...)dw(T),
° ' (5.2)

where a,,(i; 2) are stochastic processes.
Regarding a; as numerical constants and
substituting (5.2)"into (5.1), we have formally

X -ux +x

= \'1 + (2;171L)(I(t) - v(o)) * X,

b
tﬂ% {(D‘PI) (n+2).‘7‘+;",‘(n+1)a»n+|+""}J(t-t)nd'('f)
x‘i _ . zo .
i g(nﬂ)'”'( Z "‘j(t“’)bd'(t’ ))j(t-r) aw(T),

where &, = 1. Therefere if

a, = M/2 = x, /(u(t) - w(o))

o0 t .
(n+1)(n42)a,, - (n+1){1—(%n.vfo(t-t) aw(2))}an,,
+nﬁ=0 (Ln=1,2,...) (5.3)

then (5.1) is satisfied by (5.2). Aceordingly,
wo set ¢
o n
x (t) = Z-»-""f(t -t) daw(T)+x(k = 0,1,2,...)
BT (5.4)
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whers 1,3(n = 1,2,...) is the smolution of finite
difference equation

i (&)
LA (ne1)(1 -(e))a%, + 4= 0

(n=1,2,-003 k =0,1,...)

1h)

n+

(n+1)(n+2)a

(5.5)
The initial conditions are given by
x(t)=0
s, at= W2 - x, /(uw(t) - w(o)) = M/2
(k = 0,1,...) (5.6)
Therefore we get
W M- 1
ok T S
(0 _ l’- 2M
Y "2
2
A = - 3M + 1 (5.7)
Ky 120
w w3
R 7 R

and generally
e - nteh - D
0 = 201 - () - Q- 2 (e]) ¢ 1))
R LSRN 0 ) e (SR €5 Dy

.
+2(1 - 2 (t]) « 1)

= 0,1,24.0.) (5.8)

If the right hand side of (5.4) is convergent and
xk(t) converges to a stochastic process x t) as
k» o0 ( in the quadratic monn), then the x{(t) is
a eolution which starts from x{o) = x,.

—
~
H

6. THE MEAN VALUE FUNCTION

Let the mean value function of a stochastic
process x{(t) be m(t) = Ex(t). For the stochas-
tic van der Pol equation we have

a

s -/4(1 - mz)%% + m(t)

+§g‘—:i+ﬂ%6}(t) +/Anr§tl'& =0

where 0 (t) = E(x(t) - m(t))" and m,(t) =

E(x(t) - a(t)) . Therefore, the mean value
function m(t) is different from the deterministic
solution of van der Pol equation. This 1is
generally true for nonlinear stochustic differen-
tial equations.

The author is intendirng to carry eut seme
nurmerical experiments on the stochastic van der
Pol equation by means of computer.

(6.1)
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STATISTICAL-DYNAMICAL PREDICTIONS BASED ON BOTH
INITIAL STATE INFORMATION AND PRIOR PREDICTIONS*

Thomas A, Gleeson

The Florida 3tate University
Tallahassee, Floride

~. 1NTRODUCTION

Because of uncertainties in the initial
state due to lack of perfectly complete observa-
vional data, physical predictions based on this
state will necessarily contain uncertainties that
can grow with time. Gleeson (1961} describes a
procedure for recognizing initial uncertainties
and using them to furnish probability predictions
in addition to standard dynamical predictions.

It is theoretically possible that prior
predictions can supply informatiocn useful for
reducing uncertainties of an "initial state"
which is the besis for another prediction. The
present study examines two of these possibili-
ties and outlines a method for incorporating
sucht information, if it is theoretically valuable,
inte subsequent predictions of a variable and
its probability.

The method is illustrated by examples
based on Lagrangian and Eulerian techniques of
prediction, respectively. For simplicity of
presentation, kinematic rather thar dynamic
models will be used, elthough direct extension
to the latter is quite possible in actual
practise.

2. EXAMPLE BASED ON LAGRANGIAN METHOD

Consider the problem of predicting the
future position of & unit mass of air travelling
at constant speed, u, in a zonal current direct-
ed toward the east, x, at a given latitude. The
equation of motion in this case is

du
ax = 0' (1)

represanting no speed variation with time, t,
following the air parcel. A general solution to
(1) is

x = oxg +uy (t-t), (2)

where x,, u., and t_. are initial valiues of posi~
tion, speed, and time, respectively, and x is
position at time t. :

To recognize the parcel at times t, and t,
assume that it maintains a given constant tem-
perature, T, which differs from that of any other
air parcel on the x axis in the immediate vicini-
ty. These conditions are summarized in the
conservation equation:

#*The research reported in this paper has been
supported by the Sectior on Atmospheric Sciences
of the National Science Foundation under Grant
GA-100T.

4T _ 3T , . 3T .
it - 3t T Yax o (3)

where partial derivatives indicate local rates
of change. The prediction problem then essen-
tially reduces to a procedure of locating the
initial position, xg, of the point of intersec-
tion of the x axis with an isotherm representing
the given temperature, predicting the trajectory
of that point using (2),and verifying the pre-
diction by the cbserved position of the isotherm
at time t.

According to the theory of errors, the
error in predicted location of the parcel, is
given by

Ax = Ax +(t-t0) M ()

0 0’

where Axq is the initial error in location, and

N
duy = [35)0 As (5)

is the speed error, represented in (5) by an
assumed linear, constant gradient,(3u/3s)g, and
an error, As, in spatial location of an analyzed
isopleth of wind speed, uy. (Because t and t;
are specified, no errors are indicated for them. )

The variance of x is obtained by combining
(4) and (5), then squaring and aversaging, to give

— 2
Plx) = (ex)? 2o (x ) + (t—to)Q[EﬁJooe(s).(6)

The reasonable assumption is made here that 54X
and As are uncerrelated. According to a network
sampling model (Gleeson, 1961), variances of Xy
and s can be evaluated from the following rela-
tions:

o° (x,) = 0%(s) = 0.056a N

a = R/n = 1 (8)

where 0.056 is a theoretical constant without
dimensions, R is the area of the geographic
region for which the synoptic analysis is made
and n is the number of observation points (sur-
face stations or ‘instruments saloft, depending on
the analysis) in the region. Thus, a can be in-
terpreted as the average unobserved srea per
observation point, and ¢ (being a characteristic
dimension of area a) as an average distance
between observations.
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Fig. 1. Successive positions of isotherm
(dashed lines) along x axis which extends from
region 1 (having dense observations) to region
2 {having sparse observations). Streamlines
indicated by arrows.

Table 1. Values of constants and variables in
initiel and predicted states, for two prediction
periocds in first example.

Prediction Periods
0 to 12 12 to 24

Initial State

to(hr) o] 12
2 {mi) 250 500
XO A B
un(mi/hr) Lo 35
(3u/3s) ?mi/hr/lOO mi) 5 8
02(x()(102 mi2) 35.0 140.0
" Predicted State
t (hr) 12 oL
x (mi) B=A+k80 =B+420
o2{x) (102 mi2) 47.5 268.9
P (200 mi) .99+ .78

Substitution of (T) in (6) gives

2
o2(x) = 0.056a [1& (t -to)gig—ﬁ)oj .

The right side of (9) can be determined from ini-
tial data and analyses. Then, according to the
model (Gleeson, 1961), the fiducial probability,
P, that predictions made with (2) will lie within
a specified intervel, e, of the true position,
can be calculated from the normal distribution by
uge of the error function. Thus

€ 2
Ple) = erf(—gﬂ S J exp|- LA&%— a{ax), (10)
aven

where o = o(x).

As a particular application of the fore-
going equations, we now consider two successive
l12-hr predictions of the location of an isotherm
along the x axis, as depicted schematically in
Fig. 1. At the initial time,t,, of the first
prediction, the isotherm is anslyzed to be at
point A in region 1 where the number of observa-
tion points is ny. Its predicted position after
12 hr is point B in region 2. The second predic~
tion originates at B and terminates at C, also
in region 2.

Both regions 1 and 2 are assumed to have
equal areas} but region 1 has four times the
number of synoptic observation pointe that region
2 has. Thus, according to (8), if the average
distance between observations is 250 miles in re-
gion 1, the corresponding distance in region 2 is
500 miles. Quite typically then, the geography
represented in Figure 1 might be a land mass
lying upwind from the sed.

Table 1 shows assumed initial-state and
resultant predicted-state values of variables
and values of constants in two consecutive pre-
dictions. Our main concern here is the possibil-
ity of improving the second prediction by use of
information available from the first one.

In the last column of the table, note that
the predicted displacement of the isotherm {(and
air parcel) from B to C is 420 miles, and that
the predicted probability of displaced isotherms
to lie within + 200 miles of the true location
is 78 per cent. According to (6), these predic-
tion values are dependent in part on the variance
of initial location of the isotherm at tgp = 12,
given by

cz(xo) - 14,000 mi?, (1)

which is underlined in the table. By contrast,
the variance of predicted location of the isotherm
at t = 12, is given by

o¥(x) = 4,750 mi?, (12)

which is also underlined. The relative smallness
of the latter variance suggests that the earlier

prediction might be useful in reducing uncertain-
ties of the prediction in the 12- to 24-~hr period.

The per cent reduction in the variance of
the initially-analyzed isotherm location at
tg = 12, accourted for by the previous prediction,
is given by

2 2,
o (x,) - 0°(x) 2
PCR--———Q————-‘I—E—('&. (13)
Gz(x ) GZ(X )
0 0

In this case, PCR = .66, from (11) and (12).

To see how the per cent reduction can be
useful in revising a subsequent prediction, con-
sider the extreme case in which the earlier pre-
diction is without error. Then the predicted
location of the isotherm at t = 12 hr would be as
accurate as an errorless observation of tempera-
ture made from an instrument at that location at
tpn = 12 hr. One would be justified then in re-
analyzing the isotherm field with all synoptic
obgervations of temperature available for that
time plus the predicted temperature plotted at

6+ -1h



the predicted location. The revised analysis is
then the basis for a new prediction of possibly
greater accuracy.

In the more realistic case where oz(x) >0
and 0 < PCR < 1, the recommended procedure is to
plot the temperature at its predicted location and
also to plot the PCR (here, .66) nearby, for use
by the analyst as a weighting factor for that
temperature.

A revision of the probability prediction
is alsc possible by analogous reasoning. The
average unobserved area per observation point, is
now reinterpreted as an average for two points;

_.a a
a =7 * 3, (14)
in the extreme case of perfect prediczion. In
general when PCR < 1, we can define a smaller
area, a*:

a a

T % T+pR - = (s

In the present example, a* = (500)2/1.66.
Also, (2) and (6) can be rewritten as

xk = xa + Y, (t - t,.) (16)

0

and

2 2 (iu 2

o“(x)* = 0.056 a* + 0.056 a (t-t,) =, an
e 0

respectively,

where tg = 12 hr, and asterisks indicate revised
values. At t = 24 hr, P(200 mi)* = .33, from
(10) and (17). This is an improvement over .78
(the last value in Table 1).

0f course, the suggested modifications
just described are invalid 1f the per gent re-
duction is negative. In that event, ¢ (x)>02(x,)
which means that no information from the earlier
prediction is seen useful #n improving the
analysis.

3. EXAMPLE BASED ON EULERIAN METHOD

Like the previous example, the present one
is based on conservation of temperature for air
parcels, and also employs equation (3):

dr _ 3T, 3T
dt at X

where the symbols have the same meanings as
before.

= 0, (€))

Consider a deformation field as showum in
Figures 2 and 3 where isotherms (dashed lines)
are being carried toward the center by a static
flow pattern whose streamlines are depicted by
curved arrows. The problem now is to predict
future temperatures at an arbitrary point B,

(The x axis through this point is along the tem-—
perature gradient.)

The prediction equation to be used is a
solution to (3) for a single time step:

T
T = Ty -ug (5;)3(: -tg),  (18)

where o Ups and (ar/ax)B are initial values

)
T —
Y
x

Fig. 2, Static flow pattern at t = 0. Stream-
lines and isotherms indicated by curved arrows
and dashed lines, respectively.  Temperature

gradient lies along x axis,

le-
oA Bl el

Fig. 3. Static flow pattern at t = 12 hr. See
caption to Fig. 2.

obtained from a synoptic analysis at t = ty. An
operational version of (18) is obtained by
replacing (3T/3x)y with a ratio of finite differ-
rences. Thus,

T.-T
C A
T = Tp-ug {——EIT——J (t - to), 19)

where T, and T, are initial values of t;mperature
interpo%ated at points A and C (see Fig. 2), each
of which lies at the same specified distance, L,
from B.

To study errors in prediction, AT, result-
ing from errors in the initial state, one can



Table 2. Values of constants and variables in
initial and predicted states, for twc prediction
periods in second exgmple.

Prediction Periods
0 to 12 12 to 24

Initial State

tp (hr) 0 12

£ (mi) 250 250

L (mi) 300 300

T, (deg F) 39 30

Tp (deg F) 49 48

Tc (deg F) 59 66

uy (mi/hr) 22 23

up (mi/hr) 2 3

u~ (mi/hr) -18 ~17
(31/3x3, (deg/300 mt) 10 13
(37/9x)g (deg/300 mi) 10 18
(3T/3x) (deg/300 mi) 10 15
(3u/3s)g (mi/hr/300 mi) -20 -20
73 (TB) (deg?) 3.9 12.6

Predicted State

t (hr) 12 24

T (deg F) 48.2 45.8
c2(1) (deg?) 6.4 20.8
P(4 deg) .88 .62

emplo§ the procedure described by Gleeson (1961)
and demonstrated in the previous example. This
leads to an equation for the variance of T, as
follows: ' .

2
o2(1) = A% = 0.056 a (%—;f—]
B
2
(t-t,) 2 2
+ 0.056a -—;’—{(uB)z[[%%) + %} ]
4L A C
2 (9
+(T - 1)) (3-‘3)28} . (20)

where the first term on the right side repre-
sents the initial error in Ty and the other term
represents initial errors of T,, T and ug; a has
the same meaning as before; and (3T/9x)4 and
(3u/3s)y are gradients to be evaluated at points
i and B, respectively, from initial analyses of
temperature and the u component of the wind.

As in the previous example, we again con-
sider two successive 12-hr predictions, but now
of temperature and its probability. Table 2
displays hypothetical values depicting initial
and predicted states for the two 12-hr periods.

Examination of the table shows that at
t = 12 hr, the variance of the predicted tempe-
rature, 6.4 degz, is less than the variance of
the analyzed temperature, 12.7 deg?, at point B.
The per cent reduction of the latter by use of
the former'is given by

b 3 2 '
PR = 2-5 0 g Be del )
a (TB) ‘

Accordingly, from (15) and Table 2,
]
2 2
at a 2 (250) 2

- - - = 41,900 mi‘ .
1+ PCR L + PCR 1 + .49 _ 22)

1f the initial field of temperature at t, = 12 hr
is reanalyzed in the light of the additional in-
formation about temperature provided by the 0- to
12-hr prediction (as described in the discussion
of the first example), the prediction equations
for the 12- to 24-hr period become

3T

T* = Tg - ug [3;]3 (t - to) (23)

and

2
o2(T)* = 0.056 a* [?-Z]
X B

2 .

(t-t.) 2 2

+0.056 8 —2 | (u )2 [az) . [iT_J
4L2 B A

2 r3u
+ (T - T (5 | (24)
B
from (18) and (20), respectively, where asterisks
ind{icate quantities whose values have been re-

vised, as before.

By use of (22), (24), the error function,
and appropriate values from Table 2, it can be
determined that the revised probability for tem-—
perature predictions at t = 24 hr to fall within
four degrees of the true value, is 67 per cent.
This improvement over the unrevised value, 62
per cent (shown in the table), is a measure of
the theoretical improvement in prediction made
possible by information from the previous pre-
diction.

4. DISCUSSION

In the two examples above, no account was
taken of errors resulting from use of oversimpli-
fied prediction equations. Thus, because (2)
does not recognize accelerations and (18) does
not provide realistically for an increased tem-
perature gradient with time (although this was
not critically important since the wind speed
was only 2 or 3 mi/hr), the prediction probabil-
ities that were calculated must be regarded as
upper limits to more realistic values that could
be obtained with better physical models. But
even then these more realistic probabilities
would themselves be deemed upper limiting values
because every model is an oversimplification to
some extent.

The technique described in this study is
readily extendable to complex dynamic models.

" Variances can be formulated in these models, and

also predicted. It is then possible to make the-
oretical improvements in predictions of the
dynamical variables and their associated proba-
bilities. Whether such improvements are realistic
must, of course, be decided ultimately in tests
against actual observations.
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STOCHASTIC DYNAMIC PREDICTION:
THE ENERGETICS OF UNCERTAINTY AND THE QUESTION OF CLOSURE

Rex J. Fleming

Air Weather Service, USAF

National Meteorological Center
National Weather Service, NOAA
Suitland, Maryland

1. INTRODUCTION

The numerical prediction of weather is
perhaps the most unique use of the mathematical
initial value problem. More than in any other
physical science, an attempt is made to perform
the most with the least to work with.. The domain
of interest is the entire earth's atmosphere.
Yet, how well are the initial values known?

This p#per is concerned with physical
uncertajnties in any initial value problem, but
the weather prediction problem affords the best
means to express the ideas presented.

2. THE STOCHASTIC DYNAMIC EQUATIONS

Following Lorenz (1963), the deterministic
prognostic form of the hydrodynamit equations can
be written in the general form

X, = |

a X
p,q P4

pxq~2bipxp+ci (1)
P
where: the Xq(i=1,2,...,N) are the N dependent
variables describing the system, p and q are
dummy indices, (') refers to a time derivative,
and the a's, b's and ¢'s are constant
coefficients describing non-linear effects and
forces acting on the system. The N variables
form an N-dimensicnal phase space whose co-
ordinates are Xi,...,Xy\. Each point in the phase
space represents a possible instantaneous state
of the system. The initial state cf the
atmosphere is then represented by a single point
and the deterministic forecastg,gives the
trajectory of that point in phase space. In
Fig. 1, the N-dimensional phase space is repre-
sented by any two dimensions. Point § is the
initial position of a single point in phase space
and S' is a point on the deterministic trajectory
of that same point at a lattef time t;.

In view of the many limitations in the
initial atmospheric dependent variables, it seems
logical to express the initial conditions in
terms of a probability distribution similar to
the probability function in quantum mechanics as
advocated by Gleeson (1968). This would mean
considering an infinite ensemble of initial
states in phase space with relative frequencies
within the ensemble proportional to the proba-
bility densities. This approach was considered
by Epstein (1969) and called the stochastic
dynamic method of prediction. A stochastic model
would specify the complete joint probability

distribution of all the variables at each point in
time, and the whole process conceived as a con-
tinuous development in time would be a stochastic
method.

Consider the symmetric ensemble of points
in phase space represented in Fig. 1 as a circle.
Wwith E as the initial mean of the ensemble of
points, let E coincide with the injitial determini-
stic state S. The evolution of the ensemble in
time would then be computed by the stochastic
dynamic equations. A hypothetical solution of the
ensemble is shown at time t; with E' as the mean
of the ensemble trajectories. Because of the non-
linearity of the original deterministic equations,
a time is eventually reached when E' and S' will
differ as indicated in Fig. 1.

A truncated form of the formally exact
stochastic equation set corresponding to (1) was
given by Epstein (1969) as:

iy = f (upug +0p0) = g byoup * ¢y (2)
»

a
i
P Pq

q

Sy " pgq {aipq(upojq + 0G0, + rqu)

1
+ 23jpq (upoiq + uqoip+ Tipq)[
- g [bipojp + bjpoipl (3)

where: uy is the mean of X4 .
Oij is the instantaneous second meoment
about the mean
Tijk is the instantaneous third moment
about the mean.

It is evident that (2) and (3! do not form a
closed set of equations - there is no prognostic
equation for the 1. One can derive an equation
for the third moments (cf. Fleming, 1970, here-
after referred to as F), but it imvolves fourth
moments. The complete stochastic dynamic equations
form an infinite unclosed set of coupled equations.
The equations are thus unsolvable until an algor-
ithm is devised to close the system. The
algorithm or closure scheme chosen by-Epstein was
just to drop the third moment terms in (3). The
implications of this technique and other closure
methods are discussed below where the closure
problem is studied more fully. It will be
mentioned here, though, that even if the third



