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12.1 Introduction

Fueled by the rapid growth in the development of medical imaging technologies and the increasing
availability of computing power, biomedical image processing emerged as one of the most active
research areas of recent years. With their rich information content, biomedical images are opening
entirely new areas of research and are posing new challenges to researchers. Neural networks, among
other approaches, have demonstrated a growing importance in the area and are increasingly used fora
variety of biomedical image processing tasks. These include detection and characterization of disease
patterns, analysis (quantification and segmentation), compression, modeling, motion estimation, and
restoration of images from a variety of imaging modalities such as magnetic resonance (MR), positron
emission tomography (PET), ultrasound, radiography, and mammography images. For a recent
collection of examples of neural network applications to biomedical signal and image processing,
see the papers in references [1] and [9].

This chapter concentrates on two specific application areas that are increasingly important: image
analysis (quantification and segmentation) and computer assisted (aided) diagnosis (CAD) system
design. Both applications demonstrate the unique ways neural structures and learning algorithms
can effectively be used in the biomedical domain.

The image analysis application discussed here demonstrates an example of unsupervised learning
with a finite mixture network that is intimately related to the radial basis function network. We
show that the image context can be modeled by a localized mixture model and that the final image
segmentation can be achieved by a probabilistic constraint relaxation network. We give examples of
the application of the framework in analyses of MR and mammographic images.

The second application, CAD design, demonstrates two specific ways neural networks can be
used for classification (detection) type tasks in biomedical image processing. In the first application,
meaningful features that identify the disease patterns of interest are extracted and input into a neural
classifier. The second CAD system introduced herein relies on a convolutional neural network
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(CNN) to extract features of disease patterns internally and, hence, to learn to distinguish them from

non-disease patterns. We show application of the first CAD to mass detection in mammograms and
the second CAD, based on CNN, is applied to detection of clustered microcalcifications.

12.2 Biomedical Image Analysis

Model-based image analysis aims at capturing the intrinsic character of images with few parameters
and is also instrumental in helping to understand the nature of the imaging process. Key issues in
image analysis include model selection, parameter estimation, imaging physics, and the relationship
of the image to the task (how the image is going to be utilized) [2, 3]. Stochastic model-based
image analysis has been the most popular among the model-based image analysis methods as,
most often, imaging physics can be modeled effectively with a stochastic model. For example, the
suitability of standard finite normal mixture models has been verified for a number of medical imaging
modalities [4]-[7]. This section discusses a complete treatment of stochastic model-based image
analysis that includes model and model order selection, parameter estimation, and final segmentation.
We focus on models that use finite mixtures and show examples in MR and mammographic image
analysis.

In image analysis, we can treat pixel and context modeling separately, assuming that each pixel
can be decomposed into a pixel image and a context image. Pixel image is defined as the observed
gray level associated with the pixel, and finite mixture models have been the most popular pixel
image models. In particular, standard finite normal mixtures (SFNMs) have been widely used in
statistical image analysis, and efficient algorithms are available for calculating the parameters of
the model. Furthermore, by incorporating statistical properties of context images, where context
image is defined as the membership of the pixel associated with different regions, a localized SFNM
formulation can be used to impose local consistency constraints on context images in terms of a
stochastic regularization scheme [8].

The next section describes the finite mixtures model and addresses identification of the model, i.e.,
estimation of the parameters of the model and the model order selection. Section 12.2.2 discusses
approaches to modeling context and address segmentation of the MR image into different tissue
components.

12.2.1 Pixel Modeling

Imagine a digital image of N = N; x N3 pixels. Assume that this image contains K regions and
that each pixel is decomposed into a pixel image x and a context image /. By ignoring information
regarding the spatial ordering of pixels, we can treat context images (i.e., pixel labels) as random
variables and describe them using a multinomial distribution with unknown parameters 7. Since this
parameter reflects the distribution of the total number of pixels in each region, 7y can be interpreted
as a prior probability of pixel labels determined by the global context information. Thus, the relevant
(sufficient) statistics are the pixel image statistics for each component mixture and the number of
pixels of each component. The marginal probability measure for any pixel image, i.e., the finite
mixtures distribution, can be obtained by writing the joint probability density of x and / and then
summing the joint density over all possible outcomes of /, i.e., by computing p(x;) = Z;p(x;, ),
resulting in a sum of the following general form:

K
prx) =) mpe(x), i=1...,N (12.1)
k=1
where x; is the gray level of pixel i. pi(x;)s are conditional region probability density functions
(PDFs) with the weighting factor 7, satisfying m; > 0,and X 15(=17fk = 1. The generalized Gaussian
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PDF given region k is defined by [10]:

L e ~ . o rGa/e 12
Pe () = 50 s exp[— 1Bk (xi — mo)l*], @ >0, B = [m/a)} (122)

where 114 is the mean, I'(-) is the gamma function, and B is a parameter related to the variance oy
by

_ 1 [T@/a)]?
.Bk——‘l:m] : (12.3)

When o >» 1, the distribution tends to a uniform PDF; for ¢« < 1, the PDF becomes sharper;
for « = 2.0, one has the Gaussian (normal) PDF; and for « = 1.0, one has the Laplacian PDF.
Therefore, the generalized Gaussian model is a suitable model to fit the histogram distribution of
those images whose statistical properties are unknown since the kernel shape can be controlled by
selecting different o values. The finite Gaussian mixture model for ¢ = 2 is also commonly referred
to as the standard finite normal mixture model which is the identification we adopt in this chapter.
It can be written as

L 2
exp(_(x,z_;;k)) i=12...,N (12.4)
O

1
K (%) =
Piet V2moy

where uy and akz are the mean and variance of the kth normal kernel and K is the number of normal

components.
The whole image can be closely approximated by an independent and identically distributed

random field X. The corresponding joint PDF is

N K
P(x) =]'[Z 7k P (%2) (12.5)

where x = [x{, x2, ..., xn5], and x € X. Based on the joint probability measure of pixel images, the
likelihood function under finite mixture modeling can be expressed as

N
£ =[]prx0 (12.6)

wherer : {K, o, g, fix, 0k, k = 1,..., K} denotes the model parameter set. Note that pe(x;) refers
to the joint density defined in Equation (12.1); however, we have added the subscript r to emphasize
that it is a parameterized density.

Maximization of the likelihood yields parameters for the chosen distribution given the observa-
tions, i.e., the pixel images. Once the model is chosen, identification addresses the estimation of local
region parameters (k, fk, Ok, kK = 1,..., K) and the structural parameters (K, @). In particular,
the estimation of the order parameter K is referred to as model order selection.

12.2.1.1 Parameter Estimation

With an appropriate system likelihood function, the objective of model identification is to
estimate the model parameters by maximizing the likelihood function. This is equivalent to mini-
mization of relative entropy between the image histogram px(u) and the estimated PDF pr(u), where
u is the gray level [11, 12] as relative entropy measures the information theoretic distance between
two distributions and is zero only when the two distributions match.
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There are a number of approaches to perform the maximum likelihood (ML) estimation of finite
mixture distributions [13]. The most popular method is the expectation—maximization (EM) algo-
rithm [14, 15]. EM algorithm first calculates the posterior Bayesian probabilities of the data based
on the observations and obtains the current parameter estimates (E-step). It then updates parameter
estimates using generalized mean ergodic theorems (M-step). The procedure moves back and forth
between these two steps. The successive iterations increase the likelihood of the model parame-
ters being estimated. A neural network interpretation of this procedure is given by Perlovsky and
McManus [16].

We can use relative entropy (the Kullback-Leibler distance) [17] for parameter estimation, i.e., we
can measure the information theoretic distance between the histogram of the pixel images, denoted
by px, and the estimated distribution py (1) which we define as the global relative entropy (GRE):

_ px(u)
D (pxllpr) = Zu: px(u)log IR (12.7)

It can be shown that, when relative entropy is used as the distance measure, distance minimization
is equivalent to the ML estimation of the model parameters [11, 12].

For the case of the FGGM model, the EM algorithm can be applied to the joint estimation of the
parameter vector and the structural parameter o as follows [14]:

EM Algorithm

1. For @ = &min, - - -, Amax:
« m = 0, given initialized r¥.

o E-step: fori=1,...,N, k=1,..., K, compute the probabilistic membership:

(m) _ ”ém)Pk(xi) (12.8)
ik T K _m '
Zk:] T, Pk (x;)

o M-step: fork = 1, ..., K, compute the updated parameter estimates:

(m+l) _ 1 NiNp _(m)
Ty = sz:l Zik

(m+1) _ 1 N _(m)_.
M = N Dim1 Lk i (12.9)
2
2(m+1) 1 N _(m) (m+1)
T = Nt D i=1 ik (xi — Ky )

« When [GREY (pgllpr) — GRE" D (py||pr)| < € is satisfied, go to step 2.
Otherwise, m = m + 1 and go to E-Step.

2. Compute GRE, and go to step 1.
3. Choose the optimal £ which corresponds to the minimum GRE.

However, the EM algorithm generally has the reputation of being slow, since it has a first order
convergence in which new information acquired in the expectation step is not used immediately [18].
Recently, a number of online versions of the EM algorithm were proposed for large scale sequential
learning (11, 13, 19, 20]. Such a procedure eliminates the need to store all the incoming observations
and changes the parameters immediately after each data point, allowing for high data rates. Tittering-
ton et al. [13] present a stochastic approximation procedure that is closely related to the probabilistic
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self-organizing mixtures (PSOM) algorithm we introduce below. Other similar formulations for
normal mixture parameter estimation are due to Marroquin and Girosi [19] and Weinstein et al. [20].

For the adaptive estimation of the SFINM model parameters, we can derive an incremental learn-
ing algorithm by simple stochastic gradient descent minimization of D(px||pr) [5, 11] given in
Equation (12.7) with p; given by Equation (12.4):

w =l +a@ (xt+1 - //«1(:)) Zg)ﬂ)k (12.10)
2
2141 2
gl = 2 b [(xr+1 - lt;(f)) - Ukz(t):l ngink (2.1
k = 1,...,K

where a(¢) and b(¢) are introduced as learning rates, two sequences converging to zero, and ensuring
unbiased estimates after convergence.

Updates for the constrained regularization parameters, 77y in the SFNM model, are obtained using
a recursive sample mean calculation based on a generalized mean ergodic theorem [21]:

, t 1
74D = mﬂén n ng;ll)k , (12.12)

Hence, the updates given by Equations (12.10), (12.11), and (12.12), together with an evaluation of
Equation (12.8) using Equation (12.4), provide the incremental procedure for computing the SFNM
component parameters. Their practical use requires a strong mixing condition and a decaying
annealing procedure (learning rate decay) [21]-[23]. For details of the derivation, see Wang et al.
[9, 11]. In finite mixture parameter estimation, the algorithm initialization must also be carried out
carefully. Wang et al. [24] introduced an adaptive Lloyd-Max histogram quantization (ALMHQ)
algorithm for threshold selection which is also well suited to initialization in an ML estimation. It
can be used for initializing the network parameters: uy, akz, and 7y, k, 1,2, ..., K.

12.2.1.2 Model Order Selection

The determination of the region parameter K directly affects the quality of the resulting model
parameter estimation and, in turn, affects the result of segmentation. In a statistical problem formu-
lation such as the one introduced in the previous section, the use of information theoretic criteria for
the problem of model determination arises as a natural choice. Two popular approaches are Akaike’s
information criterion (AIC) [25], and Rissanen’s minimum description length (MDL) [26]. Akaike
proposes the selection of the model that gives the minimum AIC, which is defined by

AIC (Kg) = —2log (L (Far)) + 2K (12.13)
where Iy is the maximum likelihood estimate of the model parameter set r, and K, is the number
of free adjustable parameters in the model [4, 25] and is given by 3K — 1 for the SFNM model. The
AIC selects the correct number of the image regions K such that

Ko = arg min  AIC(K,) ¢ . (12.14)
I=K=KmMAX

Rissanen addresses the problem from a quite different point of view. He reformulates the problem
explicitly as an information coding problem in which the best model fit is measured such that high
probabilities are assigned to the observed data, while at the same time the model itself is not too
complex to be described [26]. The model is selected by minimizing the total description length
defined by

MDL (K,) = —log (L (fm1)) + 0.5K, log(N) . (12.15)
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Similarly, the correct number of distinctive image regions Ky can be estimated as

Ko = arg 1<K1<n13n MDL(K,,)} . (12.16)
=2=8MAX

It is also worth noting that Schwartz arrives at the same formulation by using Bayesian arguments [27].
Wax and Kailath [28] provide a good introduction to model order selection for signal processing.

12.2.2 Context Modeling and Segmentation

Once the pixel model is estimated, the segmentation problem is the assignment of labels to each pixel
in the image. A straightforward solution is to label pixels into different regions by maximizing the
individual likelihood function pi (x), i.e., by performing ML classification. Usually, this method may
not achieve a good performance since it does not use local neighborhood information in the decision.
The CBRL algorithm [29] is one approach that can incorporate the local neighborhood information
into the labeling procedure and, thus, improve the segmentation performance. The CBRL algorithm
to perform/refine pixel labeling based on the localized FGGM model can be defined as follows [7].

Let 3/ be the neighborhood of pixel i with an m x m template centered at pixel i. An indicator
function is used to represent the local neighborhood constraints R;;{;, ;) = I'({l;, 1), where [; and
I; are labels of pixels i and j, respectively. Note that pairs of labels are now either compatible or
incompatible. Similar to the procedure described in Hummel and Zucker [29], one can compute the
frequency of neighbors of pixel i which has the same label values k as at pixel i:

70 = p = kily) =

I(k1;) (1217

T jedij#
where ly; denotes the labels of the neighbors of pixel i. Since Jr,fi) is a conditional probability of a
region, the localized FGGM PDF of gray-level x; at pixel i is given by:

P (xill) = Zn(')pk (x1) (12.18)

where py(x;) is given in Equation (12.2). Assuming gray values of the image are conditional
independent, the joint PDF of x, given the context labels 1, is

Px|) = I—[Zn P (xi) (12.19)

i=1 k=1

wherel=(; :i=1,...,N).

It is important to note that the CBRL algorithm can obtain a consistent labeling solution based on
the localized FGGM model Equatlon (12.18). Sincel reprcsents the labeled image, it is consistent
if S;(l;) > Si(k), forallk =1,..., K andfori =1,..., N [29], where

Si (k) = n,ﬁi’pk (1) . (12.20)

Now we can define

N
AQ) = Z (Z 14, k)Si(k)) (12.21)

i=l k



12.2. BIOMEDICAL IMAGE ANALYSIS 12-7

as the average measure of local consistency, and

LCi=)Y 10 kSk), i=1,....N (12.22)
k

represents the local consistency based on I. The goal is to find a consistent labeling 1 which can
maximize Equation (12.21). In the real application, each local consistency measure LC; can be
maximized independently. Hummel and Zucker have shown that when R;;(/;,1;) = R;i(;, i), if
A(]) attains a local maximum at 1, then 1 is a consistent labeling [29].

Based on the localized FGGM model, li(o) can be initialized by the ML classifier,

19 = arg {mf.x Px (x,-)], k=1,...,K. (12.23)

Then, the order of pixels is randomly permutated and each label /; is updated to maximize LC;, i.e.,
classify pixel i into kth region if

2 =arg[m’flx n,fi’pk(xi)], k=1,...,K (12.24)

where py(x;) is given in Equation (12.2), yr,fi) is given in Equation (12.17). By considering Equa-
tions (12.23) and (12.24), we can give a modified CBRL algorithm as follows [7]:

CBRL Algorithm

1. Given1®, m =0.
2. Update pixel labels:

¢ Randomly visit each pixel fori =1,..., N.
« Update its label /; according to:

ll.(m) = arg [ml?xn,?)(m)pk (xi)] .
3. When &m‘?}m—)) < 1%, stop; otherwise, m = m + 1, and repeat step 2.

12.2.3 Application Examples

We present two examples to demonstrate the application of the stochastic model-based image analysis
scheme described in Sections 12.2.1 and 12.2.2. Although tissue quantification and image segmen-
tation may be simultaneously performed [30, 32, 33], a more accurate result can be achieved if the
two objectives are considered separately [11, 34]. Guided by the two information theoretic criteria,
our algorithm proceeds by fitting an SFNM with model order selection to the histogram of pixel
images and then constructing a consistent relaxation labeling of the context images. A summary of

the major steps in implementation is

1. For each value of K, perform an ML tissue quantification by applying the EM algorithm
(Equations (12.8) and (12.9)).

2. Scan the values of K = Kmin, . .-, Kmax by using AIC in Equation (12.13) and MDL
Equation (12.15) to determine the suitable number of tissue types Ko.

3. Select the result of tissue quantification corresponding to the value of K¢ determined in
step 2.
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4. Initialize image segmentation using the ML classification method Equation (12.23).
5. Finalize tissue segmentation by CBRL (implementing Equation (12.24)).

For this study, we use data consisting of three adjacent, T1-weighted MR images parallel to the
AC-PC line. Since the skull, scalp, and fat in the original brain images do not contribute to the
brain tissue, we edited the MR images to exclude nonbrain structures prior to tissue quantification
and segmentation, as explained by Wang and colleagues [8, 9]. This also helps us achieve better
quantification and segmentation of brain tissues by delineation of other tissue types that are not
clinically significant [30, 31, 34]. The extracted brain tissues are shown in Figure 12.1.

12.1 Three sample MR brain tissues.

Evaluation of different image analysis techniques is a particularly difficult task, and the depend-
ability of evaluations by simple mathematical measures such as squared error performance is ques-
tionable. Therefore, most of the time, the quality of the quantified and segmented image usually
depends heavily on the subjective and qualitative judgments. Besides the evaluation performed by
radiologists, we use the GRE value to reflect the quality of tissue quantification.

The brain is generally composed of three principal tissue types, i.e., white matter (WM), gray
matter (GM), cerebrospinal fluid (CSF), and their combinations, called the partial volume effect. We
consider the pair-wise combinations as well as the triple mixture tissue, defined as CSF-white-gray
(CWG). More importantly, since the MRI scans clearly show the distinctive intensities at local brain
areas, the functional areas within a tissue type need to be considered. In particular, the caudate
nucleus and putamen are two important local brain functional areas. In our complete image analysis
framework, we allow the number of tissue types to vary from slice to slice, i.c., we do consider
adaptability to different MR images. We let Kmin = 2 and Kmax = 9 and calculate AIC(X)
(Equation (12.13)) and MDL(KX) (Equation (12.15)) for K = Kmin,-- -, Kmax. The results with
these three criteria all suggest that the three sample brain images chosen contain six, eight, and
six tissue types, respectively. According to the model fitting procedure using information theoretic
criteria, the minima of these criteria indicate the most appropriate number of tissue types, which is
also the number of hidden nodes in the corresponding PSOM (mixture components in SFNM).

When performing the computation of the information theoretic criteria, we use PSOM to iteratively
quantify different tissue types for each fixed K. The PSOM algorithm is initialized by the adaptive
Lloyd-Max histogram quantization [24]. For slice 2, the results of final tissue quantification with
Ko = 7, 8, 9 are shown in Table 12.1 corresponding to Ko = 8, where a GRE value of 0.02-0.04
nats is achieved. These quantified tissue types agree with those of a physician’s qualitative analysis
results [11].

The CBRL tissue segmentation for slice 2 is performed with Ko = 7, 8,9, and the algorithm is
initialized by ML classification (Equation (12.23)) [13]. CBRL updates are terminated after five to
ten iterations since further iterations produce almost identical results. The segmentation results are
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TABLE 12.1  Result of Parameter Estimation for Slice 2

Tissue Type 1 2 3 4 5 6 7 8

n 0.0251 0.0373 0.0512 0.071 0.1046 0.1257 0.2098 0.3752
I 38.848 58.718 74.400 88.500 97.864 105.706 116.642 140.294
o? 78.5747  42.282 56.5608  34.362  24.1167 23.8848 49.7323 96.7227

shown in Figure 12.2. Itis seen that the boundaries of WM, GM, and CSF are successfully delineated.
To see the benefit of using information theoretic criteria in determining the number of tissue types,
the decomposed tissue type segments are given in Figure 12.3 with Kg = 8. As can be observed in
Figures 12.2 and 12.3, the segmentation with eight tissue types provides a very meaningful result. The
regions with different gray levels are satisfactorily segmented; specifically, the major brain tissues
are clearly identified. If the number of tissue types were underestimated by one, tissue mixtures
located within putamen and caudate areas would be lumped into one component, though the results
are still meaningful. When the number of tissue type is overestimated by one, there is no significant
difference in the quantification result, but white matter has been divided into two components. For
Ko = 8, the segmented regions represent eight types of brain tissues: (a) CSF, (b) CG, (¢) CGW,
(d) GW, (e) GM, (f) putamen area, (g) caudate area, and (h) WM, as shown in Figure 12.3. These
segmented tissue types again agree with the results of radiologists’ evaluations [11].

12.2  Results of tissue segmentation for slice 2 with Ko = 7.8, 9 (from left to right).

Another possible application area for the image analysis framework we introduced is in segmen-
tation and extraction of suspicious mass areas from mammographic images. With an appropriate
statistical description of various discriminate characteristics of both true and false candidates from
the localized areas, an improved mass detection can be achieved in computer aided diagnosis. Pre-
processing is an important step in image analysis for most applications. In this example, one type of
morphological operation is derived to enhance disease patterns of suspected masses by cleaning up
unrelated background clutters, and then image segmentation is performed to localize the suspected
mass areas using a stochastic relaxation labeling scheme [7, 35]. Results are shown in Figure 12.4.

The mammograms for this study were selected from the Mammographic Image Analysis Society
(MIAS) database and the Brook Army Medical Center (BAMC) database created by the Department
of Radiology at Georgetown University Medical Center. The areas of suspicious masses were
identified by an expert radiologist based on visual criteria and biopsy proven results. The BAMC
films were digitized with a laser film digitizer (Lumiscan 150) at a pixel size of 100 um x 100 ymand
4096 gray levels (12 bits). Before the method was applied, the digital mammograms were smoothed
by averaging 4 x 4 pixels into one pixel. According to radiologists, the size of small masses is
3_15 mm in effective diameter. A 3 mm object in an original mammogram occupies 30 pixels in a
digitized image with a 100 um resolution. After reducing the image size by four times, the object
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12.3  Results of tissue type decomposition for slice 2. They represent eight types of brain tissues: CSE, CG, CGW,
GW, GM, putamen area, caudate area, and WM (left to right, top to bottom).

will occupy the range of about 7 to 8 pixels. The object with the size of 7 pixels is expected to be
detectable by any computer algorithm. Therefore, size reduction can be applied for mass detection
and can save computation time.

Consider the use of the FGGM model and the two information criteria, AIC and MDL, to determine
the mixture number K. Tables 12.2 and 12.3 show the AIC and MDL values with different K and &
of the FGGM model based on one sample original mammogram. As can be observed from the tables,
even with different vatues for «, for all cases, AIC and MDL values are minimum when K = 8. This
indicates that AIC and MDL are relatively insensitive to the change of a. With this observation, we
can decouple the relation between K and « and choose the appropriate value of one while fixing the
value of the other. Figure 12.5a and b shows two examples of AIC and MDL curves with different X
and fixed & = 3.0. Figure 12.5a is based on the original, and Figure 12.5b is based on the enhanced
mammogram. With the original mammogram, both criteria achieve the minimum when K = 8.
Figure 12.5b indicates that K = 4 s the appropriate choice for the number of meaningful regions for
the mammogram enhanced by dual morphological operation, which is reasonable since the numbers
of effective regions are expected to decrease after background correction. The results of parameter
estimation with K = 8 and different values of « are shown in Figure 12.6.

The order of the model is thus fixed at K = 8, and the value of « is changed for estimating
the FGGM model parameters using the EM algorithm given in Section 12.2.2 with the original
mammogram. The GRE value between the histogram and the estimated FGGM distribution is used
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(b)

() 7 (d)

12.4 Examples of mass enhancement: (a) and (c) original mammograms; (b) and (d) enhanced mammograms.

as a measure of the estimation bias, and it is noted that GRE achieves a minimum distance when
the FGGM parameter @ = 3.0, as shown in Figure 12.6. A similar result is obtained when the
EM algorithm is applied to the enhanced mammogram with K = 4. This indicates that the FGGM
model might be better than the SFNM model (o = 2.0) in modeling mammographic images when
the true statistical properties of mammograms are generally unknown, though the SFNM has been
successfully used in a large number of applications, as shown in our previous example. Hence, the
choice of the best model to describe the data depends on the nature of the data for the given problem.
For details of this experiment, see Li et al. [7].

After determination of all model parameters, every pixel of the image is labeled to one region
(from 1 to K) based on the CBRL algorithm. Then, the brightest region, which corresponds to label
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12.5 AIC and MDL curves as functon of the number of regions K: (a) results based on the original mammogram
(Optimal K = 8); (b) results based on the enhanced mammogram (Optimal K = 4).
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TABLE12.2 Computed AIC Values for the FGGM Model with

Different o
K a=10 a=2.0 a=30 a=40
2 651250 650570 650600 650630
3 646220 644770 645280 646200
4 645760 644720 645260 646060
5 645760 644700 645120 646040
6 645740 644670 645110 645990
7 645640 644600 645090 645900
8 645550 (min) 644570 (min) 645030 (min) 645850 (min)
9 645580 644590 645080 645880
10 645620 644600 645100 645910

TABLE 12.3 Computed MDL Values for the FGGM Model

with Different o
X a=10 a=2.0 a =30 a=4.0
2 651270 650590 650630 650660
3 646260 644810 645360 646350
4 645860 644770 645280 646150
5 645850 644770 645280 646100
6 645790 644750 645150 646090
7 645720 644700 645120 645930
8 645680 (min) 644690 (min) 645100 (min) 645900 (min)
9 645710 644710 645140 645930
10 645790 644750 645180 645960

TABLE 12.4 Comparison of Segmentation Error Resulting

from Noncontextual and Contextual Methods
Method Soft Classification  Bayesian Classification  CBRL

GRE Value 0.0067 0.4406 0.1578

K, plus a criterion of closed isolated area, is chosen as the candidate region of suspicious masses, as
shown in Figure 12.7. These results are noted to be highly satisfactory when compared to outlines
of the lesions [7]. Also, similar to the previous example, GRE values can be used to assess the
performance of the final segmentation. Table 12.4 shows our evaluation data from three different
segmentation methods when applied to these real images.

12.3 CAD System Design

In order to improve detection and classification in clinical screening and/or diagnosis using radio-
graphic images, many CAD systems have been developed within the last decade. Among others,
the development of CAD systems for breast cancer screening and/or diagnosis has received par-
ticular attention [36]-[47]. This attention might be attributed to the fact that the role of a CAD
system is better defined as complementary to radiologists’ clinical duties, i.e., CAD systems can
be used for tasks that the radiologists cannot perform well or find difficult to perform. Because
of generally larger size and complex appearance of masses, especially the existence of spicules in
malignant lesions, as compared to microcalcifications, feature-based approaches are widely adopted
in many CAD systems for breast cancer screening [36]-[39], [41, 44]. Kegelmeyer et al. has reported
initially promising results for detecting spiculated tumors based on local edge characteristics and
Laws texture features [44]. Zwiggelaar et al. developed a statistical model to describe and detect
the abnormal pattern of linear structures of spiculated lesions [36]. Karssemeijer and te Brake [37]
proposed to identify stellate distortions by using the orientation map of line-like structures, while
Petrick et al. showed reduction of false positive detection by combining breast tissue composition
information [39]. Zhang et al. used the Hough spectrum to detect spiculated lesions [41].
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(a) (b)

(c) (d)

12.7 Segmentation results for suspected masses based on the original mammogram (a) and (c); (b) and (d) results

based on the enhanced mammogram, K =4, a = 3.0.

As is the case in most classification type applications, the first and most critical step in CAD design
is the construction of the database (choice of cases to include preprocessing of data, extraction and
definition of relevant of features, and labeling of data, i.e., identification of classes). The next
step involves design of the classifier, which typically is a problem in a high-dimensional space,
requiring use of complex classifier structures due to the inherent complexity of the problem. For
this reason, modular network structures that aim at partitioning the problem into simpler sets that are
then weighted to form the decisions (e.g., as those discussed in Chapter 5) are particularly attractive
solutions for the task. Section 12.3.1 introduces such a modular network and discusses its application
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to a carefully constructed featured knowledge database of suspicious mass sites for breast cancer
screening/detection.

Another approach in CAD systems is to choose a network structure that can extract relevant
features of disease patterns internally rather than defining explicit features. The second part of this
chapter introduces an example of this approach and shows that convolutional neural networks can
be effectively used for this task and applied to CAD design for breast mammography.

12.3.1 Feature-Based Modular Networks for CAD

In the following sections we describe the two main steps in the design of a feature-based CAD
system: construction of a featured database and the database mapping, i.e., design of the modular
neural network for performing the classification task. Even though our concentration in the discussion
to follow is on CAD for breast cancer, most of the discussion and methodology is applicable to a
variety of CAD design tasks such as electrocardiogram beat classification [42] and detection of
malignant melonoma [43].

12.3.1.1 Feature Extraction

Even though feature extraction has been a key step in most pattern analysis tasks, the procedure
is often carried out intuitively and heuristically. The general guidelines are

1. Discrimination — features of patterns in different classes should have significantly dif-
ferent values.

2. Reliability — features should have similar values for patterns of the same class.

Independence — features should not be strongly correlated to each other.

4. Optimality — some redundant features should be deleted. A small number of features is
preferred for reducing the complexity of the classifier. Amonga number of approaches for
the task, principal component analysis has, by far, been the most widely used approach.

b

Many useful image features have been suggested by the image processing and pattern analysis
communities [3, 48, 49]. These features can be divided into three categories, intensity features,
geometric features, and texture features, whose values are calculated from the pixel matrices of the
region of interest (ROI). Though these features are mathematically well defined, they may not be
complete since they cannot capture all relevant aspects of human perception. Thus, we suggest
inclusion of several additional expert-suggested features to reflect the radiologists’ experiences.
The typical features are summarized in Table 12.5, while Figure 12.8 shows the raw image of the

corresponding featured sites.

(a) (b) (c)

12.8 Oneexample of mass segmentation and boundary extraction: (a) mass patch; (b) segmentation; and (¢) bound-

ary extraction.
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TABLE 12,5 Summary of Mathematical Features

Feature Subspace Features

Contrast measure of ROI
. Standard derivation inside ROI
. Mean gradient of ROI’s boundary

A. Intensity Features

Area measure

. Circularity measure

. Deviation of the normalized radial length
Boundary roughness

B. Geometric Features

BN SN

C. Texture Featurcs Energy measure

Correlation of co-occurrence matrix
Inertia of co-occurrence matrix
Entropy of co-occurrence matrix
Inverse difference moment

Sum average

. Sum entropy

. Difference entropy

. Fractal dimension of ROI surface

VRN ARSI~

The joint histogram of the feature point distribution extracted from true and false mass regions is
studied, and the features that can better separate the true and false mass regions are selected for further
study. Our experience has suggested that three features, the site area, two measures of compactness
(circularity), and difference entropy, led to better discrimination and reliability. They are defined as:
1. Compactness 1:

A
A
where A is the area of the actual suspected region and A is the area of the overlapping region of
A and the effective circle A., defined as the circle whose area is equal to A and is centered at the

corresponding centroid of A.
2. Compactness 2:

Ci (12.25)

P
G = i7A (12.26)
where P is the boundary perimeter and A is the area of region.
3. Difference Entropy:
L-1
DHyg=—Y  pry(k)log pz—y (k) (12.27)
k=0
where
L-1L-1
Paey®) =D papli, ), li— jl =k. (12.28)
i=0 j=0

Several important observations are worth reiteration:

« The knowledge database that will be used by the CAD system is constructed from the
cases selected by both lesion localization and human expert experience. This joint set
provides more complete information and, during the interactive decision making, allows
the CAD system to provide input when the cases are missed by the localization procedure
but presented to the system by the radiologists.

+ The knowledge database is defined quantitatively in a high-dimensional feature space.
It provides not only the knowledge for training the neural network classifier, but also
an objective base for evaluating the quality of feature extraction or a network’s learning
capability and the online visual explanation possibility.



