Introduction to Neural Networks
for Signal Processing

L1 Introductionccociiiiiiiiiiiiii e,
1.2 Artificial Neural Network (ANN) Models — An
OVEIVIEW ...
Basic Neural Network Components * Multilayer Perceptron
(MLP) Model ® Radial Basis Networks * Competitive Learning
Networks ®* Committee Machines ® Support Vector Machines
(SVMs)
Yu Hen Hu 1.3 Neural Network Solutions to Signal Processing
Problems...................
Digital Signal Processing
Jeng-Neng Hwang 1.4 Overview of the Handbook ..., 1-28

University of Washington References. ...

University of Wisconsin

1.1 Introduction

The theory and design of artificial neural networksfhave advancgg significantly dyring the pas

20 years. Much of that progress has a direct bearingjon signal sing=th parg , the non

linear nature of neural networks, the ability of neuralfnetworks t fromi gheir onments i
proximati

supervised as well as unsupervised ways, as well as tf§e universal a
networks make them highly suited for solving difficult signal processing problems.

From a signal processing perspective, it is imperative to develop a proper understanding of basic
neural network structures and how they impact signal processing algorithms and applications. A
challenge in surveying the field of neural network paradigms is to identify those neural network
structures that have been successfully applied to solve real world problems from those that are still
under development or have difficulty scaling up to solve realistic problems. When dealing with
signal processing applications, it is critical to understand the nature of the problem formulation so
that the most appropriate neural network paradigm can be applied. In addition, it is also important
to assess the impact of neural networks on the performance, robustness, and cost-effectiveness of
signal processing systems and develop methodologies for integrating neural networks with other
signal processing algorithms. Another important issue is how to evaluate neural network paradigms,
learning algorithms, and neural network structures and identify those that do and do not work reliably
for solving signal processing problems.

This chapter provides an overview of the topic of this handbook — neural networks for signal
processing. The chapter first discusses the definition of a neural network for signal processing
and why it is important. It then surveys several modern neural network models that have found
successful signal processing applications. Examples are cited relating to how to apply these nonlincar

0-8493-2359-2/01/$0.00+$1.50
® 2001 by CRC Press, LLC 1-1

1-2 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

computation paradigms to solve signal processing problems. Finally, this chapter highlights the
remaining contents of this book.

1.2 Artificial Neural Network (ANN) Models — An Overview

1.2.1 Basic Neural Network Components

A neural network is a general mathematical computing paradigm that models the operations of bio-
logical neural systems. In 1943, McCulloch, a neurobiologist, and Pitts, a statistician, published a
seminal paper titled “A logical calculus of ideas imminent in nervous activity” in Bulletin of Mathe-
matical Biophysics [1]. This paper inspired the development of the modern digital computer, or the
electronic brain, as John von Neumann called it. At approximately the same time, Frank Rosenblatt
was also motivated by this paper to investigate the computation of the eye, which eventually led to
the first generation of neural networks, known as the perceptron [2]. This section provides a brief
overview of ANN models. Many of these topics will be treated in greater detail in later chapters. The
purpose of this chapter, therefore, is to highlight the basic concept of these neural network models
to prepare the readers for later chapters.

1.2.1.1 McCulloch and Pitts’ Neuron Model

Among numerous neural network models that have been proposed over the years, all share a
common building block known as a neuron and a networked interconnection structure. The most
widely used neuron model is based on McCulloch and Pitts” work and is illustrated in Figure 1.1.

1.1 McCulloch and Pitts’ neuron model.

In Figure 1.1, each neuron consists of two parts: the net function and the activation function. The
net function determines how the network inputs {y;; 1 < j < N} are combined inside the neuron.
In this figure, a weighted linear combination is adopted:

N
u=Y wjy;+96 (1.1)
j=1

{w;j:1 < j < N} are parameters known as synaptic weights. The quantity 9 is called the bias
(or threshold) and is used to model the threshold. In the literature, other types of network input
combination methods have been proposed as well. They are summarized in Table 1.1.

1.2. ARTIFICIAL NEURAL NETWORK (ANN) MODELS — AN OVERVIEW 1-3

TABLE 1.1 Summary of Net Functions

Net Functions Formula Comments
N
Linear U= Z wiy;+60 Most commonly used
j=1
N N
Higher order (2nd order formula = Z Z wWikyjyk +0 u; is a weighted linear combination of higher order polynomial
exhibited) j=lk=1 terms of input variable. The number of input terms equals
N4 where d is the order of the polynomial
N
Delta (3° —T) U= I_[w;y; Seldom used

-
|

The output of the neuron, denoted by ¢; in this figure, is related to the network input u; via a linear
or nonlinear transformation called the activation function:

a= f(u. (1.2)
In various neural network models, different activation functions have been proposed. The most

commonly used activation functions are summarized in Table 1.2.

TABLE 1.2 Neuron Activation Functions

Activation Function Formulaa = f(u) Derivatives & (u") Comments
Sigmoid flu) = +u/T fa)l — f)/T Commonly used; derivative can be
I+e computed from f(u) directly.
Hyperbolic tangent f(u)tanh (%) (1 - [f(u)]z) /T T = temperature parameter
— 2 a1 2 1
Inverse tangent flw) = ztan' (%) AT v Less frequently used
Threshold flu) = [_11 : z g; Derivatives do not exist at
’ u=20
Gaussianradial basis () = exp [—llu - m“z/(rz] 20 —m) - fw)/a? Used for radial basis neural network; m
and o2 are parameters to be specified
Linear flu)y=au+b a

Table 1.2 lists both the activation functions as well as their derivatives (provided they exist). In
both sigmoid and hyperbolic tangent activation functions, derivatives can be computed directly from

the knowledge of f(u).

1.2.1.2 Neural Network Topology

In a neural network, multiple neurons are interconnected to form a network to facilitate dis-
tributed computing. The configuration of the interconnections can be described efficiently with a
directed graph. A directed graph consists of nodes (in the case of a neural network, neurons, as well
as external inputs) and directed arcs (in the case of a neural network, synaptic links).

The topology of the graph can be categorized as either acyclic or cyclic. Refer to Figure 1.2a; a
neural network with acyclic topology consists of no feedback loops. Such an acyclic neural network
is often used to approximate a nonlinear mapping between its inputs and outputs. As shown in
Figure 1.2b, a neural network with cyclic topology contains at least one cycle formed by directed
arcs. Such a neural network is also known as a recurrent network. Due to the feedback loop,
a recurrent network leads to a nonlinear dynamic system model that contains internal memory.
Recurrent neural networks often exhibit complex behaviors and remain an active research topic in
the field of artificial neural networks.

14 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

L2

(a) Acyclic topology (b) Cyclic topology

1.2 Illustration of (a) an acyclic graph and (b) a cyclic graph. The cycle in (b) is emphasized with thick lines.

1.2.2 Multilayer Perceptron (MLP) Model

The multilayer perceptron [3] is by far the most well known and most popular neural network among
all the existing neural network paradigms. To introduce the MLP, let us first discuss the perceptron

model.

1.2.2.1 Perceptron Model

An MLP is a variant of the original perceptron model proposed by Rosenblatt in the 1950s [2].
In the perceptron model, a single neuron witha linear weighted net function and a threshold activation
function is employed. The input to this neuron x = (x1,Xx2, ..., Xn) is a feature vector in an
n-dimensional feature space. The net function u(x) is the weighted sum of the inputs:

ulx) = wo+Zwixi (1.3)

i=l1

and the output y(x) is obtained from u(x) via a threshold activation function:

o[1w =0
y(x) = { 0 u(x) <0, (1.4)
K Xy

b e Wy X 0

n a i b f u

P r X g > i >

u u . Zl P

t r . ‘ | u

1.3 A perceptron neural network model.

The perceptron neuron model can be used for detection and classification. For example, the weight
vector w = (wy, wy, ..., Wy) may represent the template of a certain target. If the input feature
vector x closely matches w such that their inner product exceeds a threshold —wo, then the output
will become +1, indicating the detection of a target.

The weight vector w needs to be determined in order to apply the perceptron model. Often, a set
of training samples {(x(i), d(i));i € I} and testing samples {(x(i), d()); i € I, } are given. Here,
d(i)(€ {0, 1}) is the desired output value of y(x (i) if the weight vector w is chosen correctly, and
I, and I, are disjoined index sets. A sequential online perceptron learning algorithm can be applied
to iteratively estimate the correct value of w by presenting the training samples to the perceptron

1.2. ARTIFICTAL NEURAL NETWORK (ANN) MODELS — AN OVERVIEW 1-5
neuron in a random, sequential order. The learning algorithm has the following formulation:
wk + 1) = wk) + n(dk) — yk))x(k) (1.5)

where y(k) is computed using Equations (1.3) and (1.4). In Equation (1.5), the learning rate
n0 < n < 1/|x(k)|max) is a parameter chosen by the user, where |x(k)|max iS the maximum
magnitude of the training samples {x(k)}. The index k is used to indicate that the training samples
are applied sequentially to the perceptron in a random order. Each time a training sample is applied,
the corresponding output of the perceptron y(k) is to be compared with the desired output d (k).
If they are the same, meaning the weight vector w is correct for this training sample, the weights
will remain unchanged. On the other hand, if y(k) # d(k), then w will be updated with a small
step along the direction of the input vector x(k). It has been proven that if the training samples
are linearly separable, the perceptron learning algorithm will converge to a feasible solution of the
weight vector within a finite number of iterations. On the other hand, if the training samples are not
linearly separable, the algorithm will not converge with a fixed, nonzero value of 7.

MATILAB Demonstration Using MATLAB m-files perceptron.m, datasepf.m, and
sline.m, we conducted a simulation of a perceptron neuron model to distinguish two separa-
ble data samples in a two-dimensional unit square. Sample results are shown in Figure 1.4.

Initial hyperplane Final hyperplane location
1 = 1
& * “ 3
0.8 * 0.8
0.6 0.6
ol ¥
X
0.4 0.4
0.2 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

1.4 Perceptron simulation results. The figure on the left-hand side depicts the data samples and the initial position of
the separating hyperplane, whose normal vector contains the weights to the perceptron. The right-hand side illustrates
that the learning is successful as the final hyperplane separates the two classes of data samples.

1.2.2.1.1 Applications of the Perceptron Neuron Model
There are several major difficulties in applying the perceptron neuron model to solve real world
pattern classification and signal detection problems:

1. The nonlinear transformation that extracts the appropriate feature vector x is not specified.
2. The perceptron learning algorithm will not converge for a fixed value of learning rate 7
if the training feature patterns are not linearly separable.

3. Even though the feature patterns are linearly separable, it is not known how long it takes
for the algorithm to converge to a weight vector that corresponds to a hyperplane that
separates the feature patterns.

1-6 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

1.2.2.2 Multilayer Perceptron

A multilayer perceptron (MLP) neural network model consists of a feed-forward, layered
network of McCulloch and Pitts’ neurons. Each neuron in an MLP has a nonlinear activation function
that is often continuously differentiable. Some of the most frequently used activation functions for
MLP include the sigmoid function and the hyperbolic tangent function.

A typical MLP configuration is depicted in Figure 1.5. Each circle represents an individual neuron.
These neurons are organized in layers, labeled as the hidden layer #1, hidden layer #2, and the output
layer in this figure. While the inputs at the bottom are also labeled as the input layer, there is usually
no neuron model implemented in that layer. The name hidden layer refers to the fact that the output
of these neurons will be fed into upper layer neurons and, therefore, is hidden from the user who only
observes the output of neurons at the output layer. Figure 1.5 illustrates a popular configuration of
MLP where interconnections are provided only between neurons of successive layers in the network.
In practice, any acyclic interconnections between neurons are allowed.

Output Layer

Hidden Layer #1

Input Layer

1.5 A three-layer multilayer perceptron configuration.

An MLP provides a nonlinear mapping between its input and output. For example, consider the
following MLP structure (Figure 1.6) where the input samples are two-dimensional grid points, and
the output is the z-axis value. Three hidden nodes are used, and the sigmoid function has a parameter
T = 0.5. The mapping is plotted on the right side of Figure 1.6. The nonlinear nature of this mapping
is quite clear from the figure. The MATLAB m-files used in this demonstration are mlpdemol . m
andmlp2.m.

It has been proven that with a sufficient number of hidden neurons, an MLP with as few as two
hidden layer neurons is capable of approximating an arbitrarily complex mapping within a finite
support [4].

1.2.2.3 Error Back-Propagation Training of MLP

A key step in applying an MLP model is to choose the weight matrices. Assuming a layered
MLP structure, the weights feeding into each layer of neurons form a weight matrix of that layer (the
input fayer does not have a weight matrix as it contains no neurons). The values of these weights
are found using the error back-propagation training method.

1.2. ARTIFICIAL NEURAL NETWORK (ANN) MODELS — AN OVERVIEW 1-7

MLP demo1: nonlinear mapping

1.6 Demonstration of nonlinear mapping property of MLP.

1.2.2.3.1 Finding the Weights of a Single Neuron MLP

For convenience, let us first consider a simple example consisting of a single neuron to illustrate
this procedure. For clarity of explanation, Figure 1.7 represents the neuron in two separate parts: a
summation unit to compute the net functions u, and a nonlinear activation function z = f(u). The

1 d
wWo

K’

S

1.7 MLP example for back-propagation training — single neuron case.

output z is to be compared with a desired target value d, and their difference, the errore = d — z,
will be computed. There are two inputs [x; x2] with corresponding weights w; and w,. The input
labeled with a constant 1 represents the bias term € shown in Figures 1.1 and 1.5 above. Here, the
bias term is labeled wq. The net function is computed as:

2
u:Zwix,- = Wx (16)
(=0

where xg = 1, W = [wo w w;] is the weight matrix, and x = [1 x| x2]7 is the input vector.

Given a set of training samples {(x(k), d(k)); 1 < k < K}, the error back-propagation training
begins by feeding all X inputs through the MLP network and computing the corresponding output
{z(k); | < k < K}. Here we use an initial guess for the weight matrix W. Then a sum of square

1-8 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

error will be computed as:

K K K
E=>[e)] =) [dk) — z()) =) _[dk) — f (W) . (1.7)
k=1

k=1 k=1

The objective is to adjust the weight matrix W to minimize the error E. This leads to a nonlinear
least square optimization problem. There are numerous nonlinear optimization algorithms available
to solve this problem. Basically, these algorithms adopt a similar iterative formulation:

Wi+ 1)=W(E +AW() (1.8)
where AW(?) is the correction made to the current weights W(t). Different algorithms differ in the

form of AW(t). Some of the important algorithms are listed in Table 1.3.

TABLE 1.3 Iterative Nonlinear Optimization Algorithms to Solve for MLP Weights

Algorithm AW() Comments
Steepest descend gradient = —ng(r) = —n dE/dW g is known as the gradient vector. 7 is the step size or
method learning rate. This is also known as error

back-propagation learning.

Newton's method =—Hg() H is known as the Hessian matrix. There are several
different ways to estimate it.

- [dzE/dwz]_] (dE JdW)

Conjugate- = np(¢) where
Gradient method pit +1)=—g(+ 1)+ 8 p@)

This section focuses on the steepest descend gradient method that is also the basis of the error back-
propagation learning algorithm. The derivative of the scalar quantity E with respect to individual
weights can be computed as follows:

K K
IE ~~ole®)])? B _ dz(k) .
—8;;_2::1 ™ *§2[d(k) z(k)](") for i =0,1,2 (1.9)
where
2
dzk) _ f(w) qu ., 3 i = Fuox
B, = o w7 Oy | 2 | = S (1.10)
Hence,
AE £ ,
5o =2 > ld(k) — 21 £ (lle))x; (k) . (1.11)
! k=1

With §(k) = [d(k) — z(k)] f'(u(k)), the above equation can be expressed as:

K
9E
o = —2’;8(k)x,~(k) (1.12)

8 (k) is the error signal e(k) = d(k) — z(k) modulated by the derivative of the activation function
f'(u(k)) and hence represents the amount of correction needed to be applied to the weight w; for the

1.2. ARTIFICIAL NEURAL NETWORK (ANN) MODELS — AN OVERVIEW 1-9

given input x; (k). The overall change Aw; is thus the sum of such contribution over all K training
samples. Therefore, the weight update formula has the format of:

K
wit+ 1) =wi (1) + 1Y 80k)x; (k) . (1.13)
k=1

If a sigmoid activation function as defined in Table 1.1 is used, then 8 (k) can be computed as:
OE
3(k) = i [d(k) — z(k)] - z(k) - [1 — z(k)] . (1.14)

Note that the derivative f'(u) can be evaluated exactly without any approximation. Each time the
weights are updated is called an epoch. In this example, K training samples are applied to update
the weights once. Thus, we say the epoch size is K. In practice, the epoch size may vary between
one and the total number of samples.
1.2.2.3.2 Error Back-Propagation in a Multiple Layer Perceptron
So far, this chapter has discussed how to adjust the weights (training) of an MLP with a single layer
of neurons. This section discusses how to perform training for a multiple layer MLP. First, some
new notations are adopted to distinguish neurons at different layers. In Figure 1.8, the net-function
and output correspondmg to the kth training sample of the jth neuron of the (L — 1)th are denoted by
L 1(k) and z (k) respectively. The input layer is the zeroth layer. In particular, z; 0(k) = x; (k).

The output is fed into the ith neuron of the Lth layer via a synaptic weight denoted by wL (t) or, for

simplicity, w;;, since we are concerned with the weight update formulation within a smgle training
epoch.
1
L-1
w;(k -
Y R Wi
f(e) fte) >

1.8 Notations used in a multiple-layer MLP neural network model.

To derive the weight adaptation equation, 9E/ aw must be computed:

IE ~ OE dulk . L
22 = =2 8k (k k
dw; Z duF (k) wh Z{ = Zw""z ©
= —225}@)-1}—1(@. (1.15)
k=1

In Equation (1.15), the output zL“l (k) can be evaluated by applying the kth training sample x(k) to
the MLP with weights fixed to w . However, the delta error term SL(k) is not readily available and

has to be computed.
Recall that the delta error is defined as 61.1‘ (k) =0E/ 8uiL (k). Figure 1.9 is now used to illustrate

how to iteratively compute 8- (k) from 8%+1 (k) and weights of the (L + 1)th layer.

1-10 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

51“' (k) o

Sk u/ (k) 205

&, (k) <

8" k) <----@

1.9 Tlustration of how the error back-propagation is computed.

Note that ziL(k) is fed into all M neurons in the (L + 1)th layer. Hence:

oF M JE Aul+1 (k) M 3 J
5k = = Cm S sE k- Lol (k
i () aulL(k) mZ=1 aurl;l-f-l(k) aulL(k) mX::I m () aulL(k) ;wmjf (uj())
M
A CHO) B BEAN ORI (1.16)

m=1

Equation (1.16) is the error back-propagation formula that computes the delta error from the output
layer back toward the input layer, in a layer-by-layer manner.
1.2.2.3.3 Weight Update Formulation with Momentum and Noise
Given the delta error, the weights will be updated according to a modified formulation of Equa-
tion (1.13):

K
whe+ D =wh© +n- Y 6w 0 + [wiLj(t) —wh - 1)] +ebo. @1
k=1

On the right hand side of Equation (1.17), the second term is the gradient of the mean square error with
respect to w lL The third term is known as a momentum term. It provides a mechanism to adaptively
adjust the step size. When the gradient vectors in successive epochs point to the same direction,
the effective step size will increase (gaining momentum). When successive gradient vectors form a
zigzag search pattern, the effective gradient direction will be regulated by this momentum term so
that it helps minimize the mean-square error.

There are two parameters that must be chosen: the learning rate, or step size 7, and the momentum
constant . Both of these parameters should be chosen from the interval of [0 1]. In practice, 7
often assumes a smaller value, e.g., 0 < n < 0.3, and p usually assumes a larger value, e.g.,
06 <u <09

The last term in Equation (1.17) is a small random noise term that will have little effect when
the second or the third terms have larger magnitudes. When the search reaches a local minimum
or a plateau, the magnitude of the corresponding gradient vector or the momentum term is likely to
diminish. In such a situation, the noise term can help the learning algorithm leap out of the local
minimum and continue to search for the globally optimal solution.

1.2.2.3.4 Implementation of the Back-Propagation Learning Algorithm

With the new notations and the error back-propagation formula, the back-propagation training
algorithm for MLP can be summarized below in the MATLAB m-file format:

Algorithm Listing: Back-Propagation Training Algorithm for MLP

1.2. ARTIFICIAL NEURAL NETWORK (ANN) MODELS — AN OVERVIEW 1-11

% configure the MLP network and learning parameters.
bpconfig; % call mfile bpconfig.m

% BP iterations begins
while not converged==1,
% start a new epoch
% Randomly select K training samples from the training set.

[

[train,ptr,train0] =rsample (train0,K,Kr,ptr); % train is K by M+N

z{1}=(train(:,1:M))’; % input sample matrix M by K, layer# = 1
d=train(:,M+1:MN)’; % corresponding target value N by K

% Feed-forward phase, compute sum of square errors

for 1=2:L, % the 1-th layer
u{l}=w{l}*[ones(1,K);z{1-1}1; % u{l} is n(l) by K
z{l}=actfun(u{l}, atype(1));

end

error=d-z{L}; % error is N by K

E(t)=sum(sum{error.*error)) ;

% Error back-propagation phase, compute delta error
delta{L}=actfunp(u{L}, atype(L)).*error; % N (=n(L)) by K
if L>2,

for 1=L-1:-1:2,

delta{l}=(w{l+1}(:,2:n(1)+1)) ' *delta{l+1}...
.*actfunp (u{l},atype (1)) ;

end

end

% update the weight matrix using gradient,
% momentum and random perturbation
for 1=2:1,
dw{l}=alpha*delta{l}*[ones(1,K);z{1-1}]1"+...
mom*dw{1l}+randn(size (w{1l}))*0.005;
w{l}=w{l}+dw{1};
end

% display the training error
bpdisplay; % call mfile bpdisplay.m

% Test convergence to see if the convergence
% condition is satisfied,

cvgtest; call mfile cvgtest.m

t =t + 1; increment epoch count

end % while loop

o

oo

This m-file, called bp . m, together with related m-files bpconfig.m, cvgtest .m, bpdis
play.m, and supporting functions, can be downloaded from the CRC website for the convenience
of readers.

There are numerous commercial software packages that implement the multilayer perceptron
neural network structure. Notably, the MATLAB neural network toolbox™ from Mathwork is a

1-12 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

sophisticated software package. Software packages in C++ programming language that are available
free for non-commercial use include PDP++ (http://www.cnbc.cmu.eduw/PDP++/PDP++.html) and

MLC++ (http://www.sgi.com/tech/mlc/).

1.2.3 Radial Basis Networks

A radial basis network is a feed-forward neural network using the radial basis activation function.
A radial basis function has the general form of f(||x — mg||{} = f(r). Such a function is symmetric
with respect to a center point Xo. Some examples of radial basis functions in one-dimensional space

are depicted in Figure 1.10.

A

1.10 Three examples of one-dimensional radial basis functions.

Radial basis functions can be used to approximate a given function. For example, as illustrated
in Figure 1.11, a rectangular-shaped radial basis function can be used to construct a staircase ap-
proximation of a function, and a triangular-shaped radial basis function can be used to construct a
trapezoidal approximation of a function.

»

1.11 Two examples illustrating radial basis function approximation.

In each of the examples in Figure 1.11, the approximated function can be represented as a weighted
linear combination of a family of radial basis functions with different scaling and translations:

C
F(x) =Y wig (Ix = mill/o:) . (1.18)

i=l1

This function can be realized with a radial basis network, as shown in Figure 1.12.

There are two types of radial basis networks based on how the radial basis functions are placed and
shaped. To introduce these radial basis networks, let us present the function approximation problem
formulation:

Radial Basis Function Approximarion Problem Given a set of points {x(k); 1 <k < K} and the
values of an unknown function F'(x) evaluated on these K points {d (k) = F(x(k)); 1 <k < K}, find
an approximation of F(x) in the form of Equation (1.18) such that the sum of square approximation

1.2. ARTIFICIAL NEURAL NETWORK (ANN) MODELS — AN OVERVIEW 1-13

y(k) = F(x(k))

1.12 A radial basis network.

error at these sets of training samples,

K 2
> [dtw) - Fean]

k=1
is minimized.
1.2.3.1 Type I Radial Basis Network

The first type of radial basis network chooses every training sample as the location of a radial basis
function [5]. In other words, it sets C = K and m; = x(i), where 1 < i < K. Furthermore, a fixed
constant scaling parameter o is chosen for every radial basis function. For convenience, ¢ = 1 in
the derivation below. That is, 0; = o for 1 < k < K. Now rewrite Equation (1.18) in a vector inner
product formulation:

wi
w2
[@Ulxk) —milly ¢ Ulx(k) —m2ll) -+ @ lx®k) —mcDI| . | =d&). (1.19)
we
Substituting k = 1, 2, ..., K, Equation (1.19) becomes a matrix equation ®w = d:
S Ux() —mil) @ Ux() —mal) -+ @ (x(1) —mcl) w] d(l)
dUx2)—mil) oUx@2)—m2l) - S(x(2) —mclD w2 | d@)
S (XK —mil) UK —mal) - G —mely | | we d(K)
[— | ——
® w d

(1.20)

® isa K x C square matrix (note that C = K), and is generally positive for commonly used radial
basis functions. Thus, the weight vector w can be found as:

1-14 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

w=o"d. (1.21a)

However, in practical applications, the @ matrix may be nearly singular, leading to a numerically
unstable solution of w. This can happen when two or more samples x(k)s are too close to each other.
Several different approaches can be applied to alleviate this problem.

1.2.3.1.1 Method 1: Regularization
For a small positive number A, a small diagonal matrix is added to the radial basis coefficient

matrix ® such that
w=(®+ArAD)"d. (1.21b)

1.2.3.1.2 Method 2: Least Square Using Pseudo-Inverse
The goal is to find a least square solution wy g such that ||®w — d||? is minimized. Hence,

w==a&%d (1.22)

where @7 is the pseudo-inverse matrix of ® and can be found using singular value decomposition.

1.2.3.2

The type Il radial basis network is rooted in the regularization theory [6]. The radial basis
function of choice is the Gaussian radial basis function:

lx — mllz] .

202

Type II Radial Basis Network

¢ (llx —mll) =exp [—

The locations of these Gaussian radial basis function are obtained by clustering the input samples
{x(k); 1 < k < K}. Known clustering algorithms such as the k-means clustering algorithm can
be applied to serve this purpose. However, there is no objective method to determine the number
of clusters. Some experimentation will be needed to find an adequate number of clusters C(< K).
Once the cluster is completed, the mean and variance of each cluster can be used as the center location
and the spread of the radial basis function. A type II radial basis network gives the solution to the
following regularization problem:

Type I Radial Basis Network Approximation Problem Find w such that || Gw—d||? is minimized
subject to the constraint w1 Gyw = a constant.
In the above, G is a K x C matrix similar to the € matrix in Equation (1.20) and is defined as:

B 82
e

2
exp [_ (€3 (2;;15" 1)

20§

2
exp [_ (e)—m)

)
]

)

.
exp [_ (1(1;;;'12)
2 d

.
o[-tz

)
exp ':—_—“(X(Kz)(;;zmz)
J

.-
o [zt

2
exp [_ @@=mc)]

2
205

exp [_ (X(K)—mc)z} |

203-

1.2. ARTIFICIAL NEURAL NETWORK (ANN) MODELS — AN OVERVIEW

and Gy is a C x C symmetric square matrix defined as:

1-15

B 2] 32 _ 2]]
exp l:_ ("1120'1;11) exp l:_ (m1202;2)] exp [_ (mlzafgc)
exp| — (ma—m)? exp | - (my—my)? exp | — (ma—mc)?
GO — 2012] 2022 20%
exp | — (mc—m)? exp | — (mc—my)? exp | — (mc—mc)?
| 2(712] 2(722 2r1C J J

The solution to the constrained optimization problem can be found as:

w=(GTG +1Go) GTd (1.23)
()

where A is a regularization parameter and is usually selected as a very small non-negative number.
As A — 0, Equation (1.23) becomes the least square solution.

MATLAB Implementation The type I and type II radial basis networks have been implemented
in a MATLAB m-file called rbn.m. Using this function, we developed a demonstration program
called rbndemo . m that can illustrate the properties of these two types of radial basis networks.
Twenty training samples are regularly spaced in [—0.5 0.5], and the function to be approximated is a
piecewise linear function. For the type I RBN network, 20 Gaussian basis functions located at each
training sample are used. The standard deviation of each Gaussian basis function is the same and
equals the average distance between two basis functions. For the type II RBN network, ten Gaussian
basis functions are generated using k-means clustering algorithm. The variance of each Gaussian
basis function is the variance of samples within the corresponding cluster.

Type | RBN Type Il RBN
0.91 & testsamples * i 0.9 L & test samples .
+ approximated curve * 4- approximated curve *t .
081 o radial basis © . 08| o train samples P R
07 * 4O | 07LL* radial basis v o
+
06} ¢ . 06 & :
0.5} * . 05} 1
+ &
0.4 o 1 04} &
0.3 * 03 N %
§ ok i 3+ 4
0.2¢ - 0.2+
olae “ ﬁﬁ e ¢
01! & i 01l & 1
M * +‘*;-f?5 Eﬁ ES
0+ p OM;}.
ok
-0.5 0 05 -0.5 0 0.5

1.13 Simulation results demonstrating type I and type II RBN networks.

1-16 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

1.2.4 Competitive Learning Networks

Both the multilayer perceptron and the radial basis network are based on the popular learning
paradigm of error-correction learning. The synaptic weights of these networks are adjusted to reduce
the difference (error) between the desired target value and corresponding output. For competitive
learning networks, a competitive learning paradigm is incorporated.

With the competitive learning paradigm, a single-layer of neurons compete among themselves to
represent the current input vector. The winning neuron will adjust its own weight to be closer to the
input pattern. As such, competitive learning can be regarded as a sequential clustering algorithm.

1.2.4.1 Orthogonal Linear Networks

1.14 An orthogonal linear network.

In a single-layer, linear network, the output y, (t) = E,’,‘,”:I Whm (t)Xm (¢). The synaptic weights are
updated according to a generalized Hebbian learning rule [7]:

k=1

AWy (1) = Wy (F + 1) — Wy () = nyp (t) l:xm(t) - Z wkm(‘))’k(’)} .

As such, the weight vector w, = [w,] Wy ... wy, m17 will converge to the eigenvector of the nth
largest eigenvalue of the sample covariance matrix formed by the input vectors

C= Zx(:)xT(z)
t

where
xT(ty = 1 () x2(0) ... xme(@D)] .

Therefore, upon convergence, such a generalized Hebbian learning network will produce the prin-
cipal components (eigenvectors) of the sample covariance matrix of the input samples. Principal
component analysis (PCA) has found numerous applications in data compression and data analysis
tasks. For the signal processing applications, PCA based on an orthogonal linear network has been
applied to image compression [7].

A MATLAB implementation of the generalized Hebbian learning algorithm and its demonstration
can be found in ghademo.m and ghafun.m.

1.2. ARTIFICIAL NEURAL NETWORK (ANN) MODELS — AN OVERVIEW 1-17

1.2.4.2 Self-Organizing Maps

A self-organizing map [8] is a single-layer, competitive neural network that imposes a pre-
assigned ordering among the neurons. For example, in Figure 1.15, the shaded circles represent a
6 x 5 array of neurons, each labeled with a preassigned index (i, j), 1 <i < 6,1 < j < 5. Inl

In1 In2

1.15 A two-dimensional self-organizing map neural network structure.

and In2 are two-dimensional inputs. Given a specific neuron, e.g., (3,2), one may identify its four
nearest neighbors as (3,1), (2,2), (4,2). and (3,3). Each neuron has two synaptic connections to the
two inputs. The weights of these two connections give a two-dimensional coordinate to represent
the location of the neuron in the input feature space. If the input (Inl, In2) is very close to the
two weights of a neuron, that neuron will give an output 1, signifying it is the winner to represent
the current input feature vector. The remaining losing neurons will have their output remain at 0.
Therefore, the self-organizing map is a neural network whose behavior is governed by competitive
learning. In the ideal situation, each neuron will represent a cluster of input feature vectors (points)
that may share some common semantic meaning. Consequently, the 6 x 5 array of neurons can be
regarded as a mapping from points in the input feature space to a coarsely partitioned label space
through the process of clustering. The initial labeling of individual neurons allows features of similar
semantic meaning to be grouped into closer clusters. In this sense, the self-organizing map provides
an efficient method to visualize high-dimensional data samples in low-dimensional display.

1.2.4.2.1 Basic Formulation of Self-Organizing Maps (SOMs)

Initialization: Choose weight vectors {w,,(0); 1 <m < M} randomly. Set iteration count t = 0.
While Not_Converged

Choose the next x and compute d(x, wy,(t)); 1 <m <M.

Select m* = mim,,d (x, w,, ())

| wn®) +0x —wa(t)) me Nim*, 1),
W+ 1) = { Wiglt) m ¢ N(m*, 1)

% Update node m* and its neighborhood nodes:
If Not_converged, then t = ¢ + |
End % while loop

This algorithm is demonstrated in a MATLAB program somdemo .m. A plot is given in Fig-

