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INTRODUCTION

1.1 HISTORY

The origin of the branch of mathematics known as differential
equations dates back at least to 1671 and Newton’s classification of first order
ordinary differential equations into three classes. Sir Isaac Newton (1642
1727) called these equations fluxional equations instead of differential equa-
tions. He assumed that the solution of these equations could be expressed
as an infinite series, and he successively determined the coefficients in a
manner similar to the technique employed today. However, he did not
consider the convergence of the series. The notation y for the derivative of
'y with respect to the independent variable was also introduced by Newton.

Gottfried Leibniz (1646-1716) invented the differential notation dy and
the symbol _[ for integration. To our knowledge he first used these notations
in conjunction in 1675, when he wrote:

[y =pn

In 1676 Leibniz used the term ‘“ differential equation ” to denote a relationship
between two differentials dx and dy. Thus was christened the branch of
mathematics that deals with equations which involve differentials or deri-
vatives.
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The word integral was introduced into mathematics in 1690 by Jacques
Bernoulli (1654-1705). In 1691 Leibniz discovered the technique of separation
of variables and in 1692 he reduced the linear homogeneous first order
differential-equation to quadratures. Jean Bernoulli (1667-1748) introduced
the concept of an integrating factor in 1694 and the technique of changing the
dependent variable. By the end of the seventeenth century the techniques
which are usually employed when attempting to solve first order ordinary
differential equations were known. As we shall discover, these techniques
often prove to be inadequate.

However, early in the development of the study of differential equations,
it was believed that elementary functions would be sufficient for the represen-
tation of solutions of differential equations arising from geometry and
mechanics. Thus, early attempts at solving differential equations were
directed toward finding explicit solutions or reducing the solution to a finite
number of quadratures. By 1723 at the latest it was recognized that even
some first order ordinary differential equations do not have solutions which
can be expressed in terms of elementary functions. As a matter of fact, if an
ordinary differential equation is written down at random, the probability of
being able to write the solution in terms of known functions or their integrals
is nearly zero. This emphasizes the necessity for developing methods for
obtaining approximate solutions.

In 1739 Léonard Euler (1707-1783) introduced the method of variation
of parameters. Jean Bernoulli had unsuccessfully attempted to solve the
general linear homogeneous differential equations with constant coefficients.
Euler gave a complete discussion of this problem in 1743. He also devised
the classical method for solving nonhomogeneous linear differential equations.

No adequate discussion of differential equations as a unified topic existed
prior to the lectures developed and presented by Augustin-Louis Cauchy
(1789-1857) in the 1820s. In these lectures Cauchy developed the first
existence and uniqueness theorems for first order differential equations.
Cauchy extended his theory to a system in # first order differential equations
in n dependent variables which was equivalent to a single nth order differential
equation. Rudolf Lipschitz (1832-1903) generalized Cauchy’s existence and
uniqueness theorems in 1876. Emile Picard (1856-1941) improved upon the
theorems of Cauchy and Lipschitz in 1893 by introducing the method of
successive approximations. '

1.2 CLASSIFICATION OF DIFFERENTIAL EQUATIONS

By a differential equation (DE) we shall* mean any equation that
involves derivatives or differentials of a function or functions. The order of
a differential equation is the largest positive integer n for which the nth
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derivative or differential occurs in the differential equation. If a differential
equation is written as a polynomial, then the highest power to which the
highest derivative appears in the equation is called the degree of the equation.

In the study of differential equations, it is both. advantageous and con-
venient to classify the equations into different categories—much as one
classifies chemical compounds into organic and inorganic categories in the
study of chemistry. The first and most obvious two categories into which
differential equations are classified are those of ordinary differential equations
and partial differential equations. This classification is based on the unknown
function appearing in the differential equation. If the unknown function
depends on only one independent variable, then the differential equation is
called an ordinary differential equation (ODE). Whereas, if the unknown
function depends on two or more independent variables, then the differential
equation is called a partial differential equation (PDE).

For example,

M Yo+ x4 xp = x° ‘

is a second order ordinary differential equation of degree one;

2) : "2+ +xy + y* =sinx

is a third order ordinary differential equation of degree two;

(3) ' yz. + x’% = xy

is a first order partial differential equation in two independent variables; and
@ U = altyx + thy + Uz)

is a second order partial differential equation in four independent variables.
It should be noted that order is defined for all differential equations, but degree
is not defined for some. For instance, y” = sin y is a second order differential
equation. However, degree is not defined for this equation, since the equation
is not a polynomial.

Throughout this text we shall concern ourselves primarily with the
solution of ordinary differential equations. However, both ordinary differ-
ential equations and partial differential equations are subdivided into two
large classes, according to whether they are linear or nonlinear.

The general form of an nth ordpr ordinary differential equation is

) $(x, y, YU, N, y®) =0,

where y® denotes the kth derivative of y with respect to x. An nth order
ordinary differential equation is linear if ¢ is a linear function in each of the
variables y, y*,..., . Hence, the general form of a linear nth order
ordinary differential equation is

(6) @)Y + XYV + -+ a(x)y = f(%).
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An nth order ordinary differential equation that cannot be written in the
form (6) is called a nonlinear nth order ordinary differgntial equation.
Hence, (1) and (2) are nonlinear ordinary differential equations while

-~
) xX3y" 4+ (x2 = 2)y" + (sinx)y’ + €y = x2 -1

is a third order linear ordinary differential equation. Notlce that every linear
ordinary differential equation is of first degree but not every ordinary
differential equation of first degree is linear.

An explicit solution of the nth order DE (5) on an interval / is a function
¥(x) defined on I and satisfying $(x, ¥(x), y¥(x), ..., ¥™(x)) = 0 for all x
in I. Notice that this definition implies that an exphclt solution y has n
derivatives on I and, therefore, that y, y®, ..., y*~Vare all continuous on I.
Generally, the interval I is not specified explicitly, but it is understood to be
the largest interval on which y is defined and satisfies (55.

ExampLE Consider the differential equation

@® y+y=0
The function y,(x) = e™* is defined and continuous on the interval
(—c0, o) and the derivative y3(x) = —e~* is defined on (—0, o). Since

Yix) + yy(x) = —e"* + e =0 forall x in (—c0, ©);

that is, since y,(x) = e~ * satisfies the differential equation y° + y = 0 for all
x in (=00, ), y;(x) = e~ * is an explicit solution of the given differential
equation for all real x.

The function

-x
ya(x) = [ o ¥e 2
L2 % Az
is not an explicit solution of the given differential equation on the interval
(—c0, ), since y(x) is not continuous and therefore not differentiable at
x = 0. However, the function y,(x) is an explicit solution on any interval
that does not contain tae point x = 0.

A relation f(x, y) = 0 is said to be an implicit solution of the nth order
DE (5) on an interval I if the relation defines at least one function y,;(x) on
I such that y,(x) is an explicit solution of (5) on I. We shall usually refer to
both explicit and implicit solutions simply as solutions.

ExampLe Consider the differential equation

6] yw +x=0.
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We shall show that the relation

(10) S, =y +x"-16=0

is an implicit solution on the interval (—4, 4). The graph of equation '(10)
is a circle of radius 4 with center at the origin. See Figure 1.1(a). Solving
equation (10) for y in terms of x, we get

s o(x) = 1+416 — x3.
i ¥
/ \ / 1)
-4 4 x -4 4 x
(a) (b)
y y
s
-4 4 4
x -4 x
ya(x) yy(x)
(c) (d)
Figure 1.1

The functions

(11a) »nix) = V16 — x2?
and
(11b) ya(x) = —V16 — x2

are both defined and real for x in [—4, 4]. The graph of y,(x) is shown in
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Figure 1.1(b) and the graph of y,(x) is shown in Figure 1.1(c). Differentiating
equations (11a) and (11b), we obtain

"(x) = — e
(123) yi(x) - m
and
’ _ X
(I2b) .Va(x) - m' -

’)
Both y; and yj are defined and real for x in (—4, 4). Substituting y; and ]
into the differential equation (9), we find that

v16—x2(—7]_6x__2) +x=—-x+x=0.
. — X

So y,(x) is an explicit solution of (9) on the interval (—4, 4), and therefore
equation (10) is an implicit solution of (9). Likewise, y,(x) can be shown to
be an explicit soiution of (9) on the interval (=4, 4). Thus, the implicit
solution (10) defines at least two explicit solutions of (9) on the interval
(-4, 4). The function

. VIe—-x*, -4<xx0
Valx) = -
-V16=x%, 0<x<4

shown in Figure 1.1(d) satisfies relation (10), 2 + x2 — 16 = 0; however,
ys(x) is not an explicit solution of (9) on the interval (—4, 4), since y(x) is
not continuous and therefore not differentiable at x = 0.

In this case it was fairly easy to determine an explicit solution from the
implicit solution and to determine the interval on which the solution exists.
However, this will not generally be the case. Normally, we will not be able
io sulve a given relation in x and 3 explicitly for 3. Therefore, we will nsually
obtain a relation in x and y by some means, verify that this relation formally
satisfies the particular differential equation under consideration, and say that

the relation is an implicit solution. For example, we will say that the relation
(13) P+ 2y — X2 =,
where ¢ is a constant, is an implicit solution of the differential equation
, 2x—=2
(14) y = 3}’2 + 2x'

In order to verify that (13) formally satisfies the differential equation (14),

we differentiate (13) with respect to x and solve for ', which gives us (14).
We shall soon discover that, in theory, we will be able to explicitly solve

linear differential equations and, in theory, determine the interval on which
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the solution exists directly from the differential equation itself. However, the
best that we will usually be able to accomplish for nonlinear differential
equations is to obtain a series or implicit solution. This is one of the primary
- differences between the kinds of results that we can expect to obtain for linear
differential equation versus nonlinear differential equations.
An n-parameter family of functions

(15) f(x, y,¢1,€0,...,¢,) =0

is called the general solution of the nth order DE (5), if (15) is a solution of (5)
(explicit or implicit) for every choice of the parameters ¢, cs, . . ., ¢, and the
set of parameters cannot be replaced by another set of parameters with fewer
elements and still represent the same set of solutions,

Although the two-parameter family of functions y = ¢;e** s satisfies the
second order differantial equation

(16) Yy —-y=0

for every choice of the parameters ¢; and c,, it is not the general solution.
The set of solutions represented by ¥ = ¢,e**°z can aiso be represented by
the one-parameter family y = ke*, since y = c,€**“2 may be rewritten as
¥ = c,e%2¢* = ké*. Furthermore, there may be more than one function of the
form (15) which is the general solution of (5). For example, y; = ¢;e™* +
cze* and y, = k; sinh x + k, cosh x are both general solutions of equation
(16). (The reader is asked to verify this fact in Exercise 12 at the end of this
section.) So one might well argue that the terminology a general solution
should be used instead of #he general solution. However, y, and y, are just
two different representations of the same set of solutions—the general solu-
tion. Therefore, we shall follow the customary practice of calling any function
of the form (15) which satisfies (5) the general solution. Any solution that
is obtained by assigning definite values to the n parameters ¢, ¢,,. .., ¢, of
the general solution is called a particular solution. ‘

The general solution of the first order differential equation(8) y' + y = 0
is the one-parameter family of functions y = ce~*. Notice that this is an
explicit solution. To verify that this is the general solution, we differentiate
and obtain )’ = —ce~~. Substituting into the differential equation, we see
that p" + » = —ce™™ + ce™™ = 0 for all x and all ¢. So y = ce™* is the
general solution on the interval (—oo, o). The function p,(x) = e~ * is the
particular solution which is obtained from the general solution by choosing
c=1

The general solution of the first order differential equation (9) yy’ +
x=0is

a7 ¥+ x? =2

Notice that this is an implicit solution with one parameter, c. ‘Differentiating
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(17), we obtain 2yy' + 2x = 0 for any c, and dividing by 2 we get equation
(9). So we have formally verified that (17) satisfies (9) for any choice of c.-
Choosing ¢ =4 or ¢ = —4, we get the particular implicit solution (10)
¥+x2-16=0.

ExAMPLE ' Show that

(18) y=ce ¥ + cpe* + x
is the general solution of the second order linear differential equation
(19) Y +y -2=1-2x
Differentiating equation (18) twice, we obtain
(20) Y =—2ce7% 4+ cge” + 1
and
#3)) Y = dcie™* 4 cue®.

Substituting equations (18), (20), and (21) into equation (19), we get
(4cre™ + ca€") + (—2c1e7*  + " + 1) ~ 2(re™** F e+ x) =1 — 2x

for all constants c1 and ¢, and all real x. So equatlon (18) is the general
solution of (19) for all real x. '

~ EXAMPLE Verify that

22) y=(2+cp
is the general solution of
(23) (')? — 16x3y = 0.

Differentiating (22), we gét
(24) " = 4x(x? + ¢) for 4ll real x and any constant ¢.

Squaring equation (24) and substituting for the factor (x2 + ¢)? from equation
(22), we find that

(»)? = 16x% for all real x and any constant c.
So (22) is the general solution of (23) for all real x.

Let us consider for the moment the function y = x2 +$l. The graph of
this function is a parabola with axis the y-axis, with vertex at (0, 1), and
which opens upward. The derivative of this function is y’ = 2x. Given the
function y we arc able to calculate the derivative y’. The inverse problem is:
given the function y’, how do we obtain the original function y? The differ-
ential equation ' = 2x = f(x, y) defines a real value for each point (x, y)
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of the xy-plane. The value at the point (x, y), f(x, y) = 2x in this case,
represents the slope of the tangent line to the solution of the differential
equation which passes through (x, y). A small segnient of the tangent line
at various points of the xy-plane are shown in Figure 1.2. The one-parameter

VW 4

Slope -4 -2 |0 2 4

Figure 1.2 Integral curves for the differential equation ' = 2x.-

family of curves (x) = x3 + C—parabolas with axis the y-axis, with vertex
at (0, C), and which open upward—where C is an arbitrary real number,
constitute the set of indefinite integrals of the differential equation y = 2x.
The members of this one-parameter family of curves are called the integral
curves of the differential equation. The curve y = x? + 1 is a member of this
family. Hence, to obtain the original function we must specify, in addition
to the differential equation, a point through which the curve is to pass. We
might specify, for example, that y is to satisfy ' = 2x and to pass through
the point (1, 2)—that is, (1) = 2.

Proceeding one step further we see that y" = 2. The set of indefinite
integrals of this differential equation is the two-parameter family of curves
¥(x) = x* + Ax + B, where 4 and B are arbitrary real constants. To obtain
the original function y = x? + 1 in this instance, we must specify a com-
bination of conditions that will require us to choose 4 = Q0 and B ='1.
Specifying that (i) (1) = 2 and y'(1) = 2 or (ii) (1) = 2 and ¥3) = 10
will accomplish the desired result. The problem of determining a function
that satisfies the differential equation y” = 2 subject to the conditions in (i),
called initial conditions, is called an initial value problem; while the problem
of solving the differential equation subject to the conditions in (ii), called
boundary conditions, is called a boundary value problem.

Thus, in the study of ordinary differential equations 'we are confronted
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" with two large classes of problems—initial value problems and boundary
value problems. A precise statement of these two types of problems for nth
order ordinary differential equations follows. '

An initial value problem (IVP) is a differential equation of the form (5)
together with a set of » constraints, the initial conditions {IC), of the form

Y(xo) = ¢co;  YV(x0) = €33 vy Y (x) = Caeys

where x,, ¢g, €y, - . ., Cn -, are real constants,

A boundary value problem (BVP) is a differential equation of the form
(5) together with a set of n constraints, the boundary conditions (BC),
specifying values of the function y and/or its derivatives at two or more
distinct values of the independent variable x.

Given an algebraic equation such as the polynomial equation 2x* —
3x® + 3x2 — 3x + 1 = 0, we seek the solution set—those values of x which
when substituted into the equation yield a true statement. The solution set
is often restricted to be a subset of a given set, such as the integers, rationals,
reals, or complex numbers. For the example given, the solution set for the
integers is {1}, the solution set for the reals is {1, }, and the solution set for
the complex numbers is {1, 4, +i#, —i}. The Fundamental Theorem of
Algebra states that: “Every polynomial of degree n > 1 with complex
coefficients—p(x) = a,x" + a,_x" "' +-- -+ a,, where @, d,_1, ..., ao are
complex numbers, #» > 1, and a, # 0—has n (not necessarily distinct) roots
among the complex numbers.” Hence, the Fundamental Theorem of Algebra
tells us two things concerning the roots of a polynomial with complex co-
efficients of degree n > 1. First, the polynomial has n roots, and second, all
the roots can be found in the set of complex numbers.

One would like theorems of this nature for both initial and boundary
value problems. That is, one would like to have a Fundamental Theorem
for Initial Value Problems and a Fundamental Theorem for Boundary Value
Problems which state conditions under which a solution to the probiem is
guaranteed to exist and which also state conditions under which a solution is
guaranteed to be unique. The theory for initial value problems is well
established and relatively simple. In Chapter 4 we shall state a Fundamental
Theorem for an Initial Value Problem and sketch the proof of the theorem.
On the other hand, the theory for boundary value problems is very compiex
and consequently not as well developed. Therefore, we shall not present any
general theory for boundary value problems. The complexities inherent in
boundary value problems can be attributed at least partially to the interaction
of the bourdary conditions with the differential equation. The following
example illustrates this interaction. '

Consider the relatively simple boundary value problem

-(25) Yy +y=0;  y0)=0, ya = e
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The general solution of the differential equation is: y = 4 sin x + B cos x,
where A and B are arbitrary constants. Imposing the first boundary condition,
¥0) = 0, results jn the equation 0 = B cos 0. From which we conclude that
B = 0. Hence, any solution of the BVP (25) must bave the form y =
A sin x. We now try to satisfy the second boundary condition (@) = «.
If a # nm, where n is dn integer, then the BVP (25) has a unique solution,
namely, y = o sin x/sin @. If a = nw for some integer n and « # 0, then there
is no solution, since imposing the boundary condition results in the equation
—and contradition—

o« = ya) = y(nm) = Asinnm = 0.

If a = n= for some integer n and « = 0, then there are infinitely many solu-
tions, since any value of A satisfies the equation

Asinnr =0,

which results from imposing the second boundary condition.

Because of the inherent complexities, we shall defer the study of the
theory of boundary value problems until much later in the text, and then we
shall only consider special types of boundary value problems.

EXERCISES
1. For each of the following, state whether the ordinary differential equa-

tion is linear or nonlinear, and determine its order and degree
(@) ¥ =alx)y + bx)
®» —a(x)y+b(x)y" (n#0,n#1)
© () +x = x“’
@ y +ky=
() xdx + 2ydy =0
() 2pdec+ xdy=0 .
@ YY)V +x()) +ysinx=1.
(h) x2y*® + y =tanx

2. Is y(x). = 1/x a solution of the differential equation y’ = —?
(a) on the interval [—1, 1]? Why?
(b) on the interval (0, ©©)? Why?

3. Is (x) = |x| a solution of the differential equatxon yY=1
(a) on the interval [—1, 1]? Why?
(b) . on the interval (0, ©0)? Why .

4. For each of the following differential equations, verify that the given
function or functions is an explicit solution and specify the interval or
intervals on which the solution exists.

@ y—-y=1Ly=tax '
B YV +3y=1+4+3x;p=x,y, =2 % 4 x
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11.

12.

13.

14.

15.
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(©) »" —4y =05y, = €, y; = 3sinh 2x

@ X +x)—y=0;y=xy,=1/x
X n

(f) y =sinx?; p =J‘ sin t2dt, y, = _f

0 x

sin t2 dt

Verify that y> — x = 1 is an implicit solution of the differential equation
2yy’ = 1 on the interval (—1, o).

Verify that xy® + x = 1 is an implicit solution ot the differential equa-
tion 2xyy’ + y? = —1 on the interval (0, 1). ”

Verily that x = ¢*¥ is an implicit salution of the differential equation
¥ = (1 — xp)/x? on the interval (§, o).

Veﬁfy that the relation xy® + yx? = 1 formally satisfies the differential
equation ' = =y(2x + y)/x(2y + x).

Verify that the relation y = e*¥ formally satisfies the differential equa-
tion y' = y%f(1 — xy).

Show that y = ce®* + xe®* is the general solution of the differential
equation y' — 2y = e?*,

Show that y = c; sin x + ¢; cos x + x is the general solution of the
differential equation " + y = x.

(;1) Show that y = c,e™* + c,e* is the general solution of the differ-
ential equation y" — y = 0.

(b) Show that y = k, sinh x + k. cosh x is also the general solution
of the differential equation y" — y = 0.

Show that y = c¢(x + c) is the general solution of the differential equa-
tion(y): + xy —y=0.

Given that y = ce*® is the general solution of the differential equation
(*) ¥ = 2xy, solve the initial value problem consisting of the DE(*) and
the following initial conditions: i '
(@) »0)=0 (b) y0) =2

(© yi)=¢e

Given that y = c,¢* + c,e™* is the general solution of the differential
equation (0) y”,— y = 0, solve the initial value problem consisting of
the DE (0) and the following initial conditions:
@ 10 =1,)y0)=0 (b) »0)=10,y(0) =1
Solve the boundary value problem consisting of the DE (0) and the
following boundary conditions:

© O =1,p1) = (e + 1)2e (d) y0) =0, K1) = (e* — 1)]2e



Exercises 13

16. Given tha. y = ¢, sin x + ¢, cos x is the general solution of the differ-
‘ential equation (+) y” + y = 0, solve the boundary value problem
consisting of the DE(+) and the following boundary conditions:
(@ 0) =0, yx/2) =1 (b) 0 =0, y(m) =0
(©) ¥0) =0, y=2) =0 {(d) ¥0) =0, (=) =1



