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Preface

Fourier analysis 1s not a new subject. . .3 been around since the early 1800s when
J.B.J. Fourier developed the initial concepts and theory. Since then numerous papers
and books dealing with Fourier theory have been published, and the Fourier series
and integral have found their way into various college curricula.

So why another book on Fourier theory? Fourier analysis exists in a different
context today. It used to be a pencil-and-paper issue, an interesting mathematical
approach to getting frequency-domain information, but generally too difficult to apply
in most practical cases. And even with the arrival of the digital computer, useful
Fourier analyses were too time-consuming and computer-expensive for widespread
use. Then, in the 1960s, J W. Cooley and J.W. Tukey published An Algorithm for
the Machine Calculation of Complex Fourier Series. Their algorthm became known
as the fast Fourier transform, or FFT, and has become the new context for Fourier
analysis. This is not just a digital context either, but a new context that allows quick,
economical application of Fourier techniques to a wide vanety of measurement and
analysis tasks.

Thus the FFT 1s becoming a general analysis tool. FFT routines are found in
most comprehensive software hibranes, and FFT analyzers are becoming a more fre-
quently encountered item. But even more than that, the FFT has joined forces with
general-purpose instrumentation.

Today, mstrument manufacturers are offering a vanety of waveform digitizers,
the most common type being what 1s generally referred to as a digitizing oscilloscope.
These waveform digitizers are usually operated in conjunction with a minicomputer
or desk-top calculator and a software library that often includes an FFT algonthm.
The result 1s that Founer analysis, as well as convolution and correlation, has been
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X ’ Preface

taken out of the textbook and put on the engineering bench. Because of its usefulness
and increasing availability, it is expected that the FFT will become a major and
commonplace measurement tool.

There is still, however, a missing link in the chain of events leading to general-
purpose use of the FFT. That missing link is general familiarity with Fourier theory.
You don’t have to know all the details of the equations and their derivations. But
you do need to know the concepts that they embody. To successfully use the FFT
as a measurement tool, you do need to know what to expect in the frequency domain
and how digital techniques affect the frequency domain.

For the most part, these concepts can be demonstrated through simple diagrams
and pictures and can be discussed in simple terms. That is the approach taken in
the following pages. Part I introduces classical Fourier theory with a slant toward
later discussions of digital implementations. Part II covers the digital approach to
Fourier analysis and makes heavy use of a waveform digitizer and an FFT algorithm
to provide specific examples. Every effort has been made throughout to illustrate
fully each concept and to discuss each concept in easy-to-understand terms Part
III provides a brief look at an FFT algorithm.

Why another book on Fourier theory?—to bridge the gap between classroom
theory and practical use, and to do it in a language that people of different backgroun:ds
and technical levels can understand.

ROBERT W. RAMIREZ
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Part | | _

INTRODUCTION
TO FOURIER ANALYSIS

There are two chapters in Part |. The first is but a few pages—just enough to
start you thinking about time and frequency as two related concepts. Though the
relationship may not be intuitively obvious, an important relationship does exist.
This relationship becomes more obvious in the second chapter, where the Fourier
transform is explored. A good grasp of the concepts covered in these first two
chapters is necessary to understand the digital analysis techniques covered in Part
il






Chapter 1

Time and Frequency: -
Two Bases of Description

Time. This is one of the fundamental concerns of people. How often during the
day do we look at a clock or check our watches? Since birth, our lives have been
geared to time. There is a time to wake up, a time to eat, a time to work, a time
to play, and a time to go to sleep. We measure each day of our lives in time and
use it to order the events that concern and affect us.

Time is universal. All people recognize its passage. All people live by it. Time,
in itself, is central to many philosophical questions: Does time flow by us, or do we
advance through time? And the measurement of time is an established science (horol-
ogy) with a long history.

As far back as 3500 B.C., people were erecting poles and towers to cast shadows,
the length of the shadow being an indication of the time of day. By the eighth century
B.C., the Egyptians had refined this shadow concept to a fairly accurate sundial.
They also developed water clocks to substitute during the night and on cloudy days.
Later, the Romans and Greeks refined these devices further. But it wasn’t until the
fourteenth century A.D., that anything resembling a modern timepiece was developed.
Then, in 1582, Galileo observed the constancy of a pendulum, and Christian Huygens,
in 1665, incorporated Galileo’s observation into the first pendulum clock. Until the
advent of electrically driven clocks, the pendulum clock was the most accurate time-
piece available. Now, by the 1967 agreement of the International Conference on
Weights and Measures, the atomic clock is the ultimate standard.



4 Time and Frequency: Two Bases of Description Chap. 1
TIME HISTORIES NEED TIME BASES

Today, one second is equal to 9,192,631,770 transitions between two specified, hyper-
fine levels of the cesium 133 atom.

But why so much precision in measuring the passage of time? The answer:
Science demands it. A great deal of scientific theory is couched in terms of time
histories. Furthermore, experimental proof of these theories requires time-domain
measurements, and the precision of these measurements depends upon our ability
to measure time.

As an example, Galileo reportedly used his own pulse as a timepiece in making
his original pendulum observations. Each complete swing of a large pendilum took
so many heart beats. With no greater precision than that, it was a natural experimental
conclusion to say that a pendulum always shows the same simple harmonic motion.
But theory tells us that this is not the case. In fact, for large displacements, the
time for a complete swing of a pendulum is greater than for small displacements
(Fig. 1-1). Proving this experimentally, however, requires a more premse timepiece
than what Galileo had access to.

An electronic oscillator is in many ways analogous to a mechamcal pendulum.
The output of a sine-wave oscillator has a time history that closely resembles the
time history of a pendulum’s angular displacement. Galileo’s concept of counting
pulse beats can also be applied to measure the time for a complete voltage swing in
an oscillator. The modern version of this concept is used in frequency counters.
However, as shown in Fig. 1-2, an electronic pulse is used as a time base instead
of a human pulse.

There is a time base involved in all time-domain measurements. In the case
of Fig. 1-2b, the time base is used directly to measure the period of the signal. In
other types of measurements, the time base is used to generate a_time axis for an
amplitude history. The precisely controlled speed of the paper drive for a chart recorder
is an example of this latter case. Another example is the oscilloscope, which uses a
ramp voltage to drive an electron beam at a constant rate across the face of a CRT
(cathode ray tube). In both examples, the event or activity being captured for observa-
tion drives the pen or CRT trace in a direction normal to the time-base drive. The
result is a time history of amplitude variation, as shown in the CRT photo of Fig.
1-3.

At this point, it might be well to pause and examine the CRT photo of Fig.
1-3 in a little "gnore detail. This examination may seem trivial at first. But then it is
surprising how, much insight can be gained by starting with the seemingly trivial
aspects of a subject. It is also surprising—no, embarrassing—to think of the number
of measurements that get tripped up by trivia. So let’s get on with the examination,
which can justly be described as “‘attention to detail.”

Referring to the CRT photo in Fig. 1-3, it is conventional to assign time zero
to the left side of the display. Then, according to the time-base setting, time proceeds
to the right. In Fig. 1-3, the CRT readout in the upper right portion indicates the
time increments for each major division of the display. Vertical amplitude scaling

!
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Figure 1-1 The period of a pendulum, T, varies according to its angular displacement, 8

is indicated by the readout in the upper left corner. But what is the vertical amplitude
referenced to?

In the case of Fig. 1-3, which is a photo of a waveform captured by a digitizing
oscilloscope after a zero-referencing operation, the reference is indicated by the 0

DIV in the lower right corner. Here, the 0 DIV refers to the vertical center division

as being the vertical zero reference. Other possibilities for zero reference might be
above (for example, 3 DIV) or below (for example, —3 DIV) center.

With these three things defined—vertical and horizontal scale factors and a
zero reference—the value of any point on the displayed waveform is defined. However,
this is still not enough to fully define or describe a waveform

To fully describe a waveform in time, it must not only be possible to pick off
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Figure 1-3 Time history of sinusoidal amplitude variations obtained with an oscilloscope.

its values at various points, but there must also be enough of the waveform displayed
to discern its shape or type. For example, imagine the display if the sinusoid in
Fig. 1-3 had been captured with a time-base setting of only 0.01 msec per division.
That would stretch just the first tenth of a time division to cover the entire display.
The waveform would appear to be a ramp instead of a sinusoid!

However, the CRT photo of Fig. 1-3 does give a complete time-domain descrip-
tion of a sinusoid. It is complete because it is fully scaled in time and at least one
full repetition of the waveform is displayed. From this it can be assumed that the
waveform is sinusoidal, at least within the bounds of the display area. What happens
outside the display is not recorded and, therefore, is actually undefined. In the case
of Fig. 1-3, however, experience and common sense lead us to assume continuation
of the waveform in the same manner beyond the confines of the display. And so,
we have a time history of a sinusoid.

SINUSOIDS LOOK DIFFERENT
FROM A FREQUENCY VIEWPOINT

Once a sinusoid is completely described with respect to time, you can construct a
new description of it with respect to frequency. This is shown in Fig. 1-4.

Figure 1-4 depicts a three-dimensional waveform space with amplitude as one
axis and time and frequency as the other two axes. The time and amplitude axes
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Figure 14 Twne and frequency description of a sine wave.



Sinusoids Look Different from a Frequency Viewpoint 9

define something that can be called a time plane. In the same manner, the frequency
and amplitude axes define a frequency plane that is normal to the time plane.

The time history of a sinusoid, such as that in Fig. 1-3, can be treated as a
projection on the time plane. In concept, the sinusoid can be thought of as actually
existing at some distance from the time plane. This distance is measured along the
frequency axis and is equal to the reciprocal of the waveform period.

Similarly, the sinusoid also has a projection onto the frequency plane. This -
projection takes the form of an impulse (a pulse of instantaneous rise and fall) with
an amplitude equal to the sinusoid’s amplitude. Because of symmetry, it is necessary
to project only the peak amplitude rather than the full peak-to-peak swing. This is
shown in Fig. 1-4 by the positive amplitude impulse on the magnitude diagram.
The position of this impulse on the frequency axis coincides with the frequency of
the sinusoid. (For now, just consider an impulse to be a line.)

The single impulse in the magnitude diagram defines both the amplitude and
frequency of the sinusoid. With only this information, the sinusoid can be reconstructed
in the time domain. Some additional information is needed, however, to fix the sinu-
soid’s position relative to the zero time reference. This additional information is pro-
vided by a phase diagram, which also consists of an impulse located on a frequency
axis. The amplitude of this latter impulse indicates the amount of phase associated
with the sinusoid.

Phase diagrams for sinusoids can be determined by looking at the positive peak
closest to time zero. For the case of Fig. 1-4, the positive peak occurs after time
zero by an amount equal to one-fourth the period. There are 360° in a cycle or
period, and the peak is shifted by one-fourth of this. So the phase in Fig. 1-4 is
360°/4, or 90°. Since the positive peak occurs after time zero, the sinusoid is said
to be delayed. As a matter of convention, delay is denoted by negative phase. If
the closest positive peak had been located before time zero, then the sinusoid would
have been advanced. An advance is denoted by positive phase. The conventions are
further illustrated in Fig. 1-5, and more examples are provided in Fig. 1-6.

In looking at Fig. 1-6, it should be pointed out that the total range of shift is
—180° to +180°, or 360°. With no reference point fixed to the sinusoid, an actual
shift out of the 360° == 27 range corresponds to a shift within the 27 range. For
example, a sinusoid advanced by 360° + 90° = 450° is not generally distinguishable
from the same sinusoid advanced by just 90°, so it can be represented as having
just a 90° shift. This systerm: of representing phase within a 27 range is referred to
as modulo 2m phase. If on the other hand, a reference can be attached to the sinusoid,
then shifts beyond the 27 range can be represented as such. This latter approach is
referred to as a continuous phase representation and is detailed later in Part II.



