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PLASMA TRANSPORT AND BUBBLING MODEL FOR JUPITER’S MAGNETOSPHERE

B Coppi, J W Belcher, P S Coppi, R L McNutt Jr & R S Selesnick

Massachuserts Institute of Technology, Cambridge, MA, USA

ABSTRACT

A series of plasma vcids ('drop-outs') in “he low
erergy particle population and of associated mag-
netlc field perturbations has been observed in
Jupiter's magnetosphere during the Voyager-2
spacecraft encounter. We suggest that these drop-
outs are evidence of a state of bubbling of the
Jcvian magnetosphere that alternates with 'laminar’
states where, as in the case of the encounter

with Voyager-1, voids are not present, and that
trese states correspond to difference processes

by which plasma is transported out. The nature of
thece states is related to the relative value up-
stream solar wind ram pressure, In the bubbling
state this pressure iz higher than in the laminar
state and drives an intermittent instapility whose
onset can be described by the ideal MHD approxima-
tion, involving the frozen-in condition. We con-
sider a particular type of ballooning modes that
is appropriate for the high-R plasmas, character-
1zing the considered region of the Jovian magneto-
sphere, and that have a double peak about the mag—
netis equatorial plane. This is in fact consistent
with the observation of drop-outs both northerly
and southerly of this plane. At times of low solar
wind ram pressure, as observed during the Voyager—1
encounter, the plasma pressure gradient that is

assumed to be lower than the instability threshold
of the relevant ideal MHD modes while the cold
plasma population is seen to cool further. In this
case cross field plasma transport is attributed

to a different class of plasma modes, that depend
on microscopic processes involving a violation of
the frozen-in law, and unload, at a nearly steady
state, the plasma injected by To into the system.
The development of this type of interpretation has
been motivated by a re—examination of the Voyager-2
data that has led to conclude that the drop-outs
phenomenon cannot be a manifestation of a geo-
metrical wake produced by Ganymede 4as, given the
relative proximinity of this satellite during the
Vayager-2 encounter, had been originally proposed.
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RELATIVISTIC PLASMAS IN ACTIVE GALACTIC NUCLEI

Fumio Takahara

Nobevama Radio Observatary, Tokvo Astronomical Observatory, University of Tokvo, Japan

ABSTRACT

I discuss the processes and properties of
relativistic astrophysical plasmas in connection
with active galactic nuclei and gquasars. Such
plasmas are expected ro be produced as a result of

accretion onto massive black holes. Firstly
important elementary processes such as
Comptonization and electron~-pocitron pair

production are reviewed, Then the properties of
optically thin pair equilibrium plaswmas are
summarized and it is shown that pairs constrain the
attainable states of the plasmas. Finally
applications to accretion plasmas are attemted and
the importance of the study of time-dependent
problems is emphasized. Some preliminary numerical
results are also presented.

Keywords: Relativistic Plasmas, Electron-Positron
Pairs, Radiation Processes, Comptonization,
Accretion onto Black Holes, Active Galactic Nuclei,
Quasars

L. INTRODUCTION

The most prevailing models of active galactic
nuclei and quasars assume that accretion onto
massive black holes powers their various activities
on the bases of enormous luminosities and rapid
time variabilities (Refs. 1-3). However, processes
leading to their activities have not been clarified
well in this picture. The overall observed spectrum
from radie to X-rays suggests that a major part of
the spectrun should be due to nonthermal! mechanisms
such as the synchrotron radiation and the inverse
Compton scattering, which presuppose the existence
of rclativistic electrons with a power law energy
distribution. The conversion mechanism of accretion
energy to nonthermal particles remains to he
investigated. Of course, some portion of the
spectrum may be due to thermal mechanisms. For
exanple, ultraviolet radiation from some AGNs may
be a superposition of black body radiation from
accretion disks (Refs. 4,5). The unsaturated
Comptonization in a hot plasma is another thermal
mechonism proposed to explain the X-ray emission
(Rets. 6-11).

Some radio galaxies and quasars have long radio
jets emanating from their nuclei and reaching cut

to their extended radio lobes. Clearly jets are
supplying emnergy from nuclei to lobes. The
mechanism of the jet formation 1is not well
understood. Thus at present we have no established
models for the formation of emergent spectra and
jet structure. The standard accretion disk model,
which was originally invented for galactic binary
X~ray sources, has not been so successful in
explaining these features (Ref. ) and many
variants of accretion models have been proposed
such as two-tenmperature disks (Refs. 7,8,12), thick
radiation tori (Refs, 13,14) and spherical
accretion with shock formation (Refs. 15,16).

In this lecture, instead of describing those
models, I concentrate on the basic physical
properties of relativistic and mildlv relativistic
plasmas. When applying to accretion plasmas, 1
assume that optically thin plasmas are produced by
the rapid dissipation of infalling kinetic energy
near the central black holes. Of course such
plasmas may be produced in other places such as
accretion disk coronas through magnetic mechanisms
etc.

In section 2, 1 describe the expected properties of
accretion plasmas near the black holes and estimate
the relevant time scales of various physical
processes. Among important processes, the
unsaturated Comptonization is discussed in section
3 and electron-positren  pair preoduction is
discussed in sections 4 and 5. In section 4,
elementary processes in and properties of pair
equilibrium plasmas are treated and section 5 is
devoted to applications to accretion plasmas and
attempts to treat the time-dependent problems.
Finally in section 6 several future problems are
remarked.

2. UNDERLYING MODEL

The underlying model discussed here assumes that
the infalling kinetic energy is dissipated rapidly
by some mechanisms to produce a mildly relativistic
plasma near the central black hole. The following
analysis was made in Ref. 17. We assume that cthe
infall of a plasma into the hole is approximated by
a radial flow with a velocity of a factor a of the
free fall. The slowing down of the infall ;elocity
may be due to a small amount of angular momentum or
large pressure gradient and the factor a is
supposed to take on a value of 10 “v 1. This

Proceedings of the Joint Varenna-Abastumani ernational School & Borkstiop on "PLASMA ASTROPHYSICS ™ held in Sukluimi. USSR,
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approximation is made only for the rough estimation
of physical quantities below.

Then the velocity v, proton density N, and the
optical thickness to the Thomson scattering T,y are
estimated as

10 -1/2 -1
v=vff§?1.7x10 T, a cm sec , o)
N=2.ZXLoloﬁ*Ms—zr*_Blzgfl cm_3 (2)
and
o -1 =1/2 -1
rth—thhr—l.BM*M8 1 a , (3)

respectively, where ﬁ* and M, are the accretion
rate and the masg of the central black hole in
units of 1 Mgyr = and 210 Mg, respectively, and
r,=r/(3r ) with r_z2C6M/c”; 9, denotes the Thomson
cross se%tion. He%e the effegk of pair production
is not taken into account. If all the dissipated
energy is converted to thermal energy of protons,

protons attain the maximum temperature T max’
which is given by P
T -1.2x10'%r, 7!k, (4)
p,max

2-1 Time scales

Here we enumerate several relevant time scales. The
infall time scale is estimated as

3/2271

~r/v=5.1x10Hyr, sec )

Yfall

and the Thomson scattering time and escape time for
a photon are

_ B 3o -1, 2 3/2

oy =1/n, 0, c=2.3x10"M, Mg'r,” "a sec, (6)

and
_ _ 3

tesc—r(l+1th)/c—3.0XIO Msr*(l+1th) sec, 7
respectively.
Thus if a is as small as 0.1 and ﬁ*/M is larger
than 0.1, we obtain t at r*=1, then

<t <t

steady states for photo%hdigigibg%%%n are expected.
On the other hand for a smaller ratio of accretion
rate to mass and a close to one, photons are
swallowed into the hole or escape from a plasma
before they are reprocessed in a plasma. Hereafter
we confine our concern to a range of ﬁ*/M < a few
because higher value of M,/M;, leads to super-
Eddington 1luminosity if the conversion efficiency
of rest mass to radiation is an order of 0.1.

2-2 Relaxation time scales

Next we examine relaxation processes. The two body
processes 1in relativistic plasmas have recently
been investigated by several authors (Refs. 18-20).
Here we mainly use nonrelativistic approximations.
First, the proton-proton relaxation time is
estimated as

W et
to-p Cth T s (8)
P~P InA m, P

where T __=kT /m c2 and InA is the

1ogar1thnp. ItPis shown that t _ 1s fairly long
compared to teal for plausiglg parameters and
protons do not %ake a Maxwellian distribution and

Coulomb

T represents only the mean kinetic energies of
random motion.

The proton-electron relaxation time is given by

T 1 m
€ ot Jjj P (1,41 332, (9)
p-e 2 InA m P
e
2 , .
where T*—kTe/mec . Comparing tp-e and teapy we find

that t is shorter than t if gEﬁ*/M8a is
p-e =

3/2fall
greater than 50(T,+T ,)7°". Tf this condition is
satisfied, significang energy transfer from protons
to electrons occurs; protons are cooled, while
electrons are heated since T is supposed to be
much less than Tp. €

It is to be noted that electron-electron relaxation
time is rather short as

T
te o= 1,32, (10)
inA

so that electrons are safely assumed to take a
Maxwellian distribution.

2.3 Electron temperature

When we examine the radiative properties of a
plasma, it is essential to estimate the electron
temperature. If the infall velqggity of electrons is
thermalized, it is about 6x10°K, but they can be
heated by collisions with hotter protons. As
electrons are heated, ¢t becomes 1longer and
cooling due to radiative EE% pair processes comes
into play.

The attainable electron temperature can be
estimated by balancing the two body heating rate
with the cooling rate and by taking a finite life
time ¢t 1 into account. If we take account of only
bremssgga%lung 28 cooling mechanism, the resultant
electron, temperature is obtained as a function of

gEﬁ*/M a” (Ref. 17). The cooling time of electrons
due to bremsstrahrung is given by
In{mw
1/2
t, =t - T ’ (11)
*
br “th Saj;.
for T,<1, where a=1/137 is the fine structure
constant.
The results are tabulated in Table 1.
Table 1
e 2
g:M*/Mag T,
1.7g2%<1
0.2500.4
1.631/2>1
13
5.6
450 i
T4In(5T,)=8500g" ", 5.6>T,>1
5300
T,<1




RELATIVISTIC PLASMAS IN ACTIVE GALACTIC NUCLEI

Here for T >1 relativistic expressions for t —e and

~ are adopted properly, but effects of
Qgﬁptonization and pairs are mnot taken into
account. As 1is seen, T, turms out to less than 5.6
in any case. For g>450, t_ is shorter than tro1n
and proton temperature tBnds to be equal to %%e
electron temperature. In reality other cooling
mechanisms through electron-positron pair
preduction and Comptonization will mucihh reduce the
attainable electron temperature, which results in
the decrease of the <c¢ritical value of g for

<
to-e Fral1”
3, COMPTONIZATION

As was discussed in the previous section, various
cooling processes should be properly taken into
account to determine the electron temperature and
also to obtain the emergent spectrum from plasmas.
Optically thin tenucus hot plasmas are not very
efficient radiator. As 1is seen in Eg.(1l1), t is
fairly long, which implies that bremsstrahlung is
not an efficient radiation mechanism. But for
g>450, which 1is realized for nearly Eddingten
accretion rate and fairly slow infall velocity, the
calculated Prﬁmsstrahlung luminosity becomes as
high as 0. 1Mc

As one of the efficient mechanisms to radiate a
significant fraction of the dissipated energy, the
unsaturated Comptonization of soft photons has been
discussed these ten years.

3.1 Unsaturated Comptonization

If a plasma ceontains soft photon sources other than
bremsstrahlung, repeated scattering of photons off
hot electrons produces high energy photons. The
efficiency of this process 1ig determined ,by the
Comptonization parameter ¥ =4T*Max(1 ,T Y. TFor
each scattering a photon has a fractional increage
of its energy 4T, on average and Max(Tth,Tt )
represents the number of scattering before a pho?on
escapes from a plasma. For y of less than a few,
only a small fraction of injegted photons gain high
energy to reach the Wien region. A major portion of
injected soft photons escape from a plasma with an
energy proportional to the number of scattering
before escape. This situation is similar to that in
Fermi acceleration process of galactic cosmic rays
and a power law spectrum is formed. For larger
value of y a significant portion of injected
photons are scattered into the Wien region to form
a Wien spectrum.

3.1.1 Methods of treating Comptonization
Comptonization may be treated by various methods.
Kowpaneets equation is useful for relatively low
temperature and large optical thickness since it
assumes the Fokker-Planck approximation on the
bases of Thomson cross section and isotropic
distribution of photons (Refs. 21,22). However for
T,°0.1 and 1t _ < a few, deviations from Thomson
cross section and 1isotropy become large and
different treatments are needed.

Monte Carlo simulation 1is a suitable method to
calculate the emergent spectrum and photon
distribution function for such cases. Several
groups have performed simulations to obtain steady
state spectra for a given electron temperature and
geometry (Refs. 23-27). An example of such
simulations is shown in Fig.l.
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Fig.} Emergent spectra from a uniform sphere
through Comptonization of soft photons by electrons
with T,=0.25. Soft photons are injecg?d gﬁiformly
within the sphere ©below xZhv/m c £10 with
Rayleigh-Jeans spectrum mimicing the” self-absorbed
cyclotron higher harmonics. (taken from Ref. 10).

Another method is to solve the transport equation
directly, where calculation of differential
scattering rate 1is needed. Lightman and Rybicki
proposed a method by making approximations about
scattering rate and assuming the separability
between spatial transport and energy change (Refs.
28-30). This method has not been extended to
regimes of mildly relativistic  temperatures.
Guilbert proposed a useful method, which expresses
the differential scattering rate in tabular forms
and interpolation formula and can be incooporated
in finite difference equations (Ref. 31). This
method has been applied to calculations of time
development of pair concentration by Guilbert and
Stepney (Ref. 32) and Kusunose (Ref. 33). It is to
be noted that the original formula contain an error
when evaluating an integral containing § function
which represents the conservation of energy and
momentum, as was pointed out by Kusunose.

3.2 Problems of the unsaturated Comptonization

The wunsaturated Comptonization 1is particularly
interesting in producing power law emergent
spectra. X-ray observations of Seyfert galaxies
show power law spectrum with a small range of index
centered on o= 0,7 (Ref, 34). This poses a
difficult problem on theoretical side; the
predicted index strongly depends on T, and 1 and
we maturally expect e broad range of a among
various sources and during time variabilities,
which contradicts the observational facts. There
may be unknown mechanisms to produce this universal
power law spectrum or X-ray emission 1is due to
other mechanisms.

Another problem is the source of soft photons. It
may be supplied either externally outside from a
plasma or through cyclotron higher harmonics. If a
plasma has magnetic fields with roughly
equipartition with proton pressure, self-absorbed
cyclotron higher harmonics can supply a sufficient
amount of soft photons for T,20.25 {Refs. 9,10,35,
36) . However, in this estimation very high energy
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tail of a Maxwellian distribution function
contributes to the highest harmonics utilized for
soft photons and a wore careful examination of
distribution function is needed.

It is to be noted that the power law portion of the
spectrum cannot explain observed optical radiation,
which has also a power law form, but a slightly
steeper one than the X-rays. The extrapolation from
X-rays to optical bands lies an order of magnitude
below the cbserved flux, so that optical emission
is due to other mechanisms, probably synchrotron
radiation by nonthermal electrons. With these
reservations, however, Comptonization itself surely
plays an important and decicive role 1in an
optically thin mildly relativistic plasma.

4. ELECTRON-POSITRON PAIRS

Another important role 1is played by electron-
positron pair production and annihilation. The wost
relevant process 1s photon-photon pair production,
the cross section of which is an order of Thomson
cross section if ¢ product of energies of two

photons 1is mZ(mec )”. Then this process 1is
important for
La.x
Y th
1 =n 0  re=————unx > |, 12)
YY Y th Anrzm c3
e
in other words, if
3 _ 29 -1
Ly/r>4ﬂmec /cth-SXIO erg cm (13)

Here n and L are the number density aad
]uminosyty with ¥hotons with energy around mc.
This c¢ondition is satisfied for high luminosity
sources even for sub-relativistic temeratures and
in reality may have important implications for
observed properties of compact X-ray sources (Refs.
37-39),

Now before I discuss their role in accretion
plasmas, it is better to describe here elementary

processes and pair equilibrium states.

4.1 Elementary pair processes

There are several pair processes important in
astrophysical plasmas enumerated below.

+ -
pte > prete +e , (14)
+ -
ete » etete +e , (15)
+ -
pty - pte +e , (16)
+ -
ety + ete +e , (17
+ -
Yty » e +e (18)
and
+ -
e te —~ y+vy. (19)
Here e denotes an electron or a positron. As for
details and other processes which have
comparatively minor importance, see Svensson (Ref.

40) and Stepney and Guilbert(Ref. 19).

4.1.1 Particle-particle processes

The processes (l4) and (15) are collisions of two
particles and have cross sections of an order of

2 .
¢ o, . If we assume that thermal motions of protons

are neglected and that electrons take a Maxwellian
distribution, the pair production rates due to
these processes are given by

Nnec ® 2 /T
(ny) ) o=——————f(y"-De xe _ (Ddy, 20

TuK, (1/T,) 3
and

2

n c © 2

(n,) e D w0 (n)dy,
+ e~ Z(T*Kz(l/T*))z 7 YI 1Y1° %" Temge
(21)

where vy =JZ(Y+1) and n_=n +n,. In the relativistic

limit o T,>>1, the sufi of EES.(ZO) and (21) gives
rise to
7
() = o'W c2y-1) (8y-3) (1nT,) >,  (22)
pt-pt 18n2 th b LA
where y=n /N, the ratio of number density of

electrons to that of protons, is a measure of pair
concentration,

4,1.2 Particle-photon process

The cross sections of processes (16) and (17) are
an order of ucth and the producticn rates are given
by

nc ® n(x)
(n_) fdx
+ e-y 2
2,(1/T,) 0 x
e xy 1
xJ’dyoe_ (y)y exp{-(—+—)—} (23)
4 Y ¥y x 2T,
and
=N
(n+)P‘Y cﬁdxn(x)op_Y(x), (24)

where n(x) is, the photon number density per unit x
with thv/mec .

4.1.3 Photon-photon processes

This process has an order of Thomson cross section
and become important for high energy photon
sources. The rate is calculated as

c
> >
(n+)Y‘Y=EJdX1dQldXZdQZH(xl’nl)n(XZ’HZ)(I_U)dy—y’
(25}

where n(x,g) is the photon distribution function
per unit x and per unit solid angle around n and
u=n1n N The rate for anisotropic case was
calcu%ated by Stepney and Guilbert (Ref. 19), but a
factor 2 should be multiplied in their equations
(B4) and (BS).

4.1.4 Pair annihilation

The pair annihilation cross section is an order of
Thomson cross section and the rate is approximated
by




