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cAMP inhibits mitogen-activated protein (MAP) kinase activation and
resumption of meiosis, but exerts no effects after spontaneous germinal vesicle
breakdown (GVBD) in mouse oocytes
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Abstract.

Varicus signaling molecules have been implicated in the oocyte G2/MI! fransition, including

protein kinase C (PKC), cAMP and mitogen-activated protein (MAP) kinases. However. the cross-talk
among these signaling pathways has not been elucidated. The'present study demonstrates that both germi-
nal vesicle break down (GVBD) and MAP kinase phosphorylation (activation) are inhibited when
intracocyte cAMP 15 increased by treating the GV-imtact oocytes with dibutyryl cyclic AMP (dbcAMP).
forskolin, or isobutylmethylxanthine (IBMX). Okadaic acid, a specific inhibitor of protein phosphatase-1
and -2A, completely overcame this effect. Calphostin C. a specific inhibitor of PKC, accelerated both
GVBD and MAP kinase phosphorylation, andi this effect was atenuated by increased infracocyte cAME,
whereas PKC activation infibited these events. Once GVBD ocourred, the progression of oocyte masuration
and MAP kunase phosphorylation wers independent of cAMP. These results indicate that an increase in
intracocyte cAMP, in synergy with PKC activation, initiates a cascade of events resulting in mhibution of
MAP kinase phosphorylation and GVBD in the mouse oocyte.

Extrn keywonds: meiotic cell eycie, 0ocyte maturation, protein kinase A (PKA). protein kinase C (PKC).

protein phosphatase.

Introduction
Mammalian oocytes, arrested at the G2 phase of the cell
cycle, can resume meiosis spontaneously in vitro upon their
release from antral foliicles. This spontaneous resumption of
meiosis can be blocked by the addition of dibutyryl cyclic
AMP (dbcAMP), a membrane-permeable cAMP analogue,

(MPF), or immediately after germinal vesicie breakdown
(GVBD), is also thought t6 play an important role in cocyte
maturation (Maro er al. 1994; Verlhac er al. 1996; Sun ef al.
1999a, 1999%). It has been reported by us and others that
activation of PKC by phorbol ester initiates a cascade that
ultimately prevents spontaneous GVBD and MAP kinase
i in mouse oocytes (Lefevre ef al. 1992; Sun et al.

by isobutyl-methy! hine (IBMX), a phosphodi
inhibitor, or by forskolin, an adenylate cyclase activator (Cho
et al. 1974; Schuliz e gl 1983a). A drop in intraceliular
cAMP levels followed by inactivation of the cAMP-depen-
dent protein kinase A (PKA) is associated with resumption of
meiosis (Schultz ef al. 1983; Bornslaeger er afl. 1986a).
Thercfore, the cAMP/PKA pathway is assumed to play a crit-
ical role in maintaining meiotic arrest. However, little is
known about the biochemical events occurring downstream
0 PKA inactivation.

Tyrosine dephosphorylation of p3dede? is a prerequisite
for the G2/M transition of mammalian oocytes, and protein
tyrosing  phosp gulated  depbosphorylation  of
P34ede2 occurs to the i i
drop in the intracocyte concentration of cAMP (Goren and
Dekel 1994). Mitogen-activated protein (MAP) kinase,
which is activated later than maturation-promoting factor

©CSIRO Austratia 1999

1999a).
The present study clarifies the cross-talk between cAMP
and MAP kinase during mouse cocyte maturation.

Materials and methods

Oocyre codlection

In order to colfect preovulatory cocytes. sexually mature, unstimulated
Balb/c mice (28-30 days old) were killed by cervical dislocation. Ovanes
were removed and placed in Hepes-buffered CZB medium (Chatot ef af
1989) containing 100 1U mL-! penicilln and 100 pg mL~" streptomycin.
Cumulus-free and GV-imtact follicular oocytes were released from the farge
antral follicles into the medium by puncturang with a needle.

Qocyte manwration in vitzo

“The basic maturation cultwe medism used in the present study was.
Pulbeceo’s Modified Eagle Medium (DMEM, Gibeo, Grand Island, NY,
USA} conwining H0OTU mL™ penicillin, 100ug mL-? streptomycin and

1031-3613/99/62008}



0.5% BSA (fraction V). All cultures were performed in Petri dishes contain-
ing miicrodrops of medium under mineral o at 37°C in a humidified atmos-
phere of $% CO in air. All chemicals and inhibitors used in this study were
purchased from Sigma Chemmucal Co. (St Lows, MO, USA) except for those
specially mentioned.

Qocyte treatments

To testthe effect of cAMP on the maintenance of meiotic arrestand acti-
vation of MAP kinases, denuded GV oocytes were randomly allocated to
100-pL draps of control medium oc medium containing vareus addisives, as
shown in Fig. 1, and cultwed for the times indicated in the Figure.

In the second experiment, in order ta determine the effect of CAMP on
the phosphorylation of MAP kinase and meiotic maturation afier GVBD,
occytes that had recently gone through GVBD, 2.5 h after mitiation of
culture, were treated as shown in Fig. 2.

Q.. Sun er al.

In the third experiment, the role of PKC inhibation 1n MAP Kinase phos-
phorylation and resumption of meiosis. and the possible interaction between
PKC and cAMP in regulating these events were investigeted by cumulus-
free GV-intact ocytes in drug-containing media for § b The treatments are
shown: i Fig. 3

In 2l experiments, the developmental stages of cocytes (GV. GVBD,
M) after culture were cvaluated under an inverted microscope. MI was

Hoechst 33342 by observation under an
inverted fuorescent microscope. All data were evaluated by Chi-squared
analysis. Differences of P<0.0S were considered sigaificant.

Immunoblotcing

Proteins from a total of 30 cumulus-free oocytes per freatment wers
extracted with double-strength electrophoresis sampie buffer, and the lysates
were kept frozen at ~20°C. Before electrophoresis, samples were heated to

Control IVM5h IVM 16h
100 pm dbecAMP GVBD and MAPK PBL and MAPK evaluated
E—
100 pw forskolin evaluated
GV-intact oocytes 500 pm IBMX
100 ps dbeAMP +2 uMOA | IVM 5h

100 pu forskolin + 2 pm OA
500 v IBMX +2 pm OA

Fig. 1.

GVBD and MAPK evaluated

Germinai vesicle-intact aocytes were subjected to various trearments to examine the effect of cAMP on the maintenance of

meiotic arrest and activation of MAP kinases. GV, germinal vesicle: 1VM. in vitro maturation; G VBD, germinal vesicle breakdown; PBA.

d protcin kinase: OA. okadaic acid

————————————— M, PB1 and MAPK evaluated

ficst polar body; IBMX. isobutyl-methyl-xanthine: MAPK. mitog:
Controi
GVBD oocyles 100 pns dbcAMP IVM75hor16h
@s5h) 100 pm forskolin
500 pm IBMX

Oocytes immediately following GVBD were subjected to four different treatments to examine the effect of cAMP on MAP

Fig. 2.

kinase phosphorylation and meiatic maturation. MI, metzphase I. (See Fig. |. for abbrevianons.)
Controt

GV-intact oocytes | 62 nv PMA

500 nM calphostin C (light, 15 min)

IVM 5h GVBD and MAPK

evaluated

500 nm calphostin C
500 nM calphostin C + 100 puM dbcAMP
500 nM calphostin C + 500 uM IBMX

Fig. 3. GV-intact oocytes were subjected to diffcrent treatments. des)gned to exzmine the interaction berween cAMP and PKC in regulat-
ing MAP kinase actiity. PMA, phorbal 12-myriatale 13-acetate. (See Fig. |. for ather abbreviations.)




Regulanon of MAP kinase by cAMP in mouse oocytes

160°C for 3 min, and then centrifuged for S min at 14 000 after cooling on
ice for § min_ The supetnants wete loaded onto gels.

Samples were separated on 10% SDS-polyacrylamid gel by vsing a 7 x
& em? gel apparatus (Bio-Rad, Richmond, CA, USA), and then transferred
oato nirocellulose membrane by using a Milliblot Trans-blot apparatus
(Bio-Rad) for 2h at 200 mA, 4°C, in wransfer buffer. Afier blocking, the
‘membrane was incubated overnight at4°C in anti-Active™ MAPK anubody
(Promega Corporation, Medacin, WI, USA} diluted | : 1000 with Tris-
buffered saline with Tween-20 (TBST, pH 7.6) contamung 1% skimmed
milk, washed threc times, for 10 min cach e, with TBST, followed by
incubation for 1h at 37°C with horseradish peroxidase { HRP)-conjugated
goat anti-rabbit 1gG (Jackson Laboratories, West Grove, PA, USA) dihuted
1- 2000 in TBST contaming 1% skimmed milk After washing three times,
for 16 min each time, with TBST, the bands were visvalized by an ECL
detection system { Amersham Company). To detect the total quantity of
MAP kinase in each treated group, the same blots were treated with stripping
buffer (62.5 mu Tris, pH 6.7, 2% SDS, 100 my B-mecaptoethnol ) for 30
mirt it 3 50°C water bath with occasional agitation in order to remove the
bound antibedy, and then reprobed with anti-ERK2 anvibody (Santa Cruz
Biotechnology Ine, Santa Cruz, CA, USA), which rescts to both phosphory-
lated and dephosphorylated forms of ERK2, and to a lesser extent to ERK I,
the twomain forms of MAP kinase. The antibody was diluted 1 : 300 and the
stripped membrane was reprobed by the same procedure described earlier.
C ipping of the blet was verified by exposing the membrane tothe
ECL detection system before immunoblotting with anti-ERK2 antibody.
Image processing was conducted using Photoshop 4.0 software. All experi-
ments were Tepeated thiee times.

Results

Effects of cAMP and okadaic acid on MAP kinase
phosphorylation and resumption of meiosis
GVBD is associated with a reduction in intracocyte
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Fig. 4. Effects of cAMP modulators and okadaic acid on MAP Kinase

phosphorylation (activation} (top) and expression (bottom) in mouse
oocytes. Lane 1: GV oocytes; lane 2: oocytes matured in virro for 5 h; lane
3: GV oocytes culured with dbe AMP for 5 h; lane 4: oocytes cultured with
both dbcAMP and OA for 5 k; lans 5: GY oacytes cultured with forskalia
for 5 Iy, lane 6: oocytes cultured with both forskolin and OA for 5 h; lane 7:
GV ocytes cultured with [BMX for 5 b lane 8. oocytes cultured in vito
with both IBMX and OA for 5 b; lane 9: GV oocytes cultured with dbcAMP
for 16 b; lane 1 GV oocytes cultured with forskoliz for 16 h; lane L1: GV
oocytes cultured with [BMX for 16 h. This blot is representative of three
similar experiments. (See Fig. 1. for abbreviations.)

Tablel. Effects of cAMP and okadaic acid (OA) on resumption of
meiosis in mose oocytes
Germinal vesicle-ntac, cumyius-free mouse oocytes were collected and
“reated with ¢AMP modulators and the protein. phosphatase inhibitor.
okadgic acid. The presence of germinal sesicles was evaluated 5.and 16 b
afier the various treatments. Numbers in parentheses denote percent of

cAMP followed by
(Bornslaeger 1986a; Schultz 1983a, 1983b). This process is
immediately followed by MAP kinase activation {Verlhac et
al. 1993). We therefore wished to examine whether MAP
kinase activation is induced by the drop in intraceflular

cells.
Germunal vesices (%)
Treatments Sh 16h
of PKA

500 s [BMX 55.35 (1008 49/55 (89.1)
100 pv dbeAMP 5355 (9648 52/55 (94.5)
100 v forskolin 4550 (9007 45/50 (90)°
500 pm [BMX + 2 im O3 750 (14.0)° 0150 (0)°
100 jm dbcAMP + 2 M OA 1036 (27.89 0136 (0)°
100 pu forskolin + 2 M OA 450 (807 0150 (0)°

cAMP. MAP kinase was present ina ylated form
in GV-intact oocytes (Fig. 4, lane 1), whereas it was activated
when the denuded oocytes were cultured for 5 h (Fig. 4, lane
2). However, the occurrence of GVBD and the phosphory-
lation of MAP kinases were blocked when intracellular
cAMP was increased by dbc AMP, forskolin or IBMX (Fig. 4,
lanes 3, 5, 7; Table 1). The inhibition of GVBD and MAP
kinase activation by cAMP, forskolin or IBMX could be com-
pletely overcome by okadaic acid, a specific inhibitor of
protein phosphatase-1 and -2A (Fig. 4, lanes 4, 6, 8; Table 1).
Both GVBD and MAP kinase phosphorylation were inhib-
ited by increased cAMP even after 16k culture with
forskolin or IBMX, whereas MAP kinase was fuily phos-
phorylated in the control oocytes that were in MII stage
(Fig. 4, lanes 9-11).

Lack of effect of cAMP on MAP kinase phosphorylation and
meiotic maturation after GVBD

In order to determine whether the effects of cAMP persist
following GVBD, we induced clevated cAMP levels in

av.b, PO01.

oocyles immediately after GVBD. MAP Kinase was present
in a dephosphorylated form in cocytes soon afier GVBD,
similar to GV oocytes (Fig. 5, lanes 1, 2). However, an
increase in intrace!lular cAMP after GVBD affected neither
MAP kinase phosphoryiation nor the progression of oocyte
maturation. The extent of oocyte maturation and the degree
of MAP kinasc phosphorylation in oocytes treated by
dbcAMP, forskolin or IBMX (Fig. 5, lanes 3-5) were not
different from the control 16 h after culture (Fig. 5, lane 6;
Table 2).

Possible interaction berween cAMP and PKC in regulating
MAP kinase and the meiotic cell cycle

We have previously shown that phorbol 12-myriatate 13-
acetate (PMA) inhibits both MAP kinase activation and
GVBD (Sun e al. 1999a). We thercfore wished to determine
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Fig. 5. Effects of cAMP on MAP kinase activation upon GVBD and
effects of PKC inhibitor on MAP kinase activation in GV oocytes Lane 1
Qocytes at the GV stage: lane 2: oocytes immediately foltowing GVBD (2.5
b after tulture); lane 3: cocytes treated with dbcAMP for 75 h: lane 4
oocytes tieated with forskolin for 7.5 h; lane S: oceytes treated with IBMX
for 7.5 b lane 6: oocytes cultured in medium without additians for 7.5 h
{control); lane 7: cocytes cultured for 3 h: lane B: oocytes cultured with PKC
inhibitor. calphostin C, fot 3 h: lane 9: socytes that were initally treated with
ealphostin C for 15 min, and then trested with BMX for up 10 3 h. lane 10-
oocytes that were first treated with calphostin C for 15 min, and then treated
with dbcAMP for up 10 3 h. This biot 5 representative of three sumilar exper-
iments. {See Fig, 1. for abbreviations.)

Table 2. Effects of cAMP on cell cycle progression fullowing germinal
vesick breakdown (GVBD) in monse oocytes
Oocytes immediately following germina! vesicle breakdown were treated
with different cAMP modutators. Metaphase T (MI) was evaluated by
Hoechst 33342 staining and metaphase [ (MI1} was identified by the
presence of the first polar body. Numbers in parentheses denate percent of

cells.
Treatments MI(%). 75 h MIL(%), 16h
Contro! 30°30(100) 617137 (83.6)
500 pM IBMX 38 38 (100) 27133 (81.8)
100 pM dbcAMP 34:34(100) 79/98 (80.6%
100 pwe forskolin 3232(100) 20136 (83.3)

whether inhibition of PKC affects these processes. To this
end, we tested the effects of PKC inhibitor on GVBD and
MAP kinase activation. As can be seen in Fig. 5, lanes 7 and
8, and in Table 3, treatment of oocytes with calphostin C
under light accelerated both GVBD and MAP kinase activa-
tion compared with the control groups in which calphostin C
was not added or which were without light illumination of
calphostin, IBMX and dbcAMP attenuated this effect (Fig. 5,
lanes 9, 10; Table 3). This suggests that cAMP and PKC may
interact with each other in regulating MAP kinase activity
during oocyte maturation.

Discussion
MAP kinases are activated in tesponse to extracetiular
signals, including growth factors, hormones and neurotrans-
mitters. The modulation of MAP kinase activity by cAMP
has been proposed in a varety of cell types: however,
depending on the system, CAMP has been shown to have

QY. Suneral

Table 3, Effects of protein kinase C (PKC) modulators oa resump-
tiom of meiosis in mouse oocytes
Cumulus-free, germinal vesicl were collected and

treated with PKC modulators. of treated first with the PKC inhibitor
calphostin C. for 15 min under bight, and then with cAMP modulators.
The presence of germinal vesicles was determined 1.5. 3and 5 h afier
culture,

Germinal vesicles (%)
Treatmenis 15h 3h 5h

Control 38148 (7921 1067386 (27.5F 36420 (11.1)
162 0 PMA 60160 (100)*  56/50 (91.97%  56/59 (94,9
500w cal. (15 min, light 13/32(40.8)°  7B221.9F 3520940
500 cal (15 nuin, light)

500 un IBMX A1MB(85.4) 2848 (SB.I) 27M8 (56.3)
500 oM cal. (15 min, dight)  *
100 pv dbeAMP 40148 (S33) 24448 (S0.01" 24148 (50.0*

Cal, calphostin ax b.axc.bwccvdewfarhcvhhyjand
Juv k. P=00L

opposing effects on MAP kinase activity. In neonatal rat car-
diomyocytes, PKA activators, such as forskolin, IBMX,
dbcAMP or isoproterenol, significantly activate Raf-1 and
MAP kinases (Yamazaki er af. 1997). Elevation of intra-
cellular cAMP was also shown to activate MAP kinase in
other cell types, such as PC12 cells (Frodin er al. 1994;
Vossler et al. 1997, Yao et al. 1998). On the other hand, ele-
vation of intraceliular cAMP has been demonstrated to atten-
vate MAP kinase activation induced by growth factors and
insulin in other cell types, such as rat hepatoma H4EII cells
(Nagasaka er al. 1994), Schwann cells (Kim eral. 1997), rat
smooth mascle cells (Plevin et al. 1997), human osteoblastic
and bone marrow stromal cells (Chaudhary and Avioli,
1998), and others. The possible cross-talk between pathways
wtilizing cAMP and the MAP kinase pathway in the mam-
malian meiotic cell cycle, however, has not been analysed.

Many signaling molecules are involved in mammalian
oocyte maturation, of which cAMP was the first to be identi-
fied. Resumptior of meiosis is associated with a reduction in
the intraoocyte concentration of cAMP, followed by inactiv-
ation of PKA. Increased intraoocyte cAMP induced by treat-
ment of cocytes with dbcAMP, forskolin, purines or IBMX
inhibits denuded mouse oocyte meiotic maturation, suggest-
ing that cAMP may play a critical role in the maintenance of
meijotic arrest in a PKA-mediated manner (Downs and Eppig
1986; Dekel 1996; Tsafrivi er al. 1996; Downs 1997). In the
present study, we show that the increased intracocyte cCAMP
levels induced by the treatment of GV oocytes with dbcAMP,
forskolin or IBMX tnhibit both GVBD and MAP kinase acti-
vation 5 and even 16 h after culture. This result suggests that
cAMP-dependent PKA acts as a negative regulator for the
G2/M transition and MAP kinase activation. Our result is
consistent with that obtained in Xenopus oocytes, whereby
injection of the catalytic subunit of PKA (PKAc) prevents
progesterone-induced MAP kinase activation (Matten ef al.
1994).




Regulaion of MAP kinase by cAMP in mouse oocyles

We also observed that the inhibitory effect of cAMP an
MAPkinase activation and GVBD could be completely over-
come by okadaic acid, a protein phosphatase inhibitor.
Previous studies conducted by us and others suggested that
proten phosphatases control MAP kinase activation in
mouse and rat oocytes (Zemicka-Goetz et al. 1997; Sun eral.
1998, 19994, 1999¢). It has been proven that protein phos-
phatase can inactivate the MAP kinase cascade via dephos-
phorylation of ERK1/2 on thri83 (Hunter 1995). Therefore,
we suggest that both cAMP and protein phosphatases control
the resumption of meiosis and MAP kinase phosphory-
tation/dephosphoryiation, and that protein phosphatases act
at a stage downstream to cAMP.

MAP kinase is present in a dephosphorylated (inactive)
form at the time of GVBD and it is fully activated 3.5 h after
incubation in vitro. However, in mouse oocytes that fail to go
through GVBD 4 h after incubation in vitro, MAP kinase is
not activated, suggesting that the ability of coplasm to phos-
phorylate MAP kinase is a prerequisite for GVBD (Sun etal.
19994). We showed that cAMP inhibits neither meiotic cell

In summary, our data suggest that an increase in intra-
ceflular cAMP, in synergy with PKC activation, inhibits a
cascade of events resulting in inhibition of the resumption of
meiosis and MAP kinase activation in mouse ococytes.
However, these pathways have no effect on MAP kinase acti-
vation or on the meiotic cell cycle progression foliowing
GBVD.
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