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Preface

This monograph undertakes to present systematically the methods for solving
inverse problems of lidar sensing of the atmosphere, with emphasis on lidar
techniques that are based on the use of light scattering by aerosols. The
theory of multi-frequency lidar sensing, as a new method for studying the
microphysical and optical characteristics of aerosol formations, is also pre-
sented in detail. The possibilities of this theory are illustrated by the
experimental results on microstructure analysis of tropospheric and low
stratospheric aerosols obtained with ground-based two- and three-freguency
lidars. The lidar facilities used in these experimental studies were construc-
ted at the Institute of Atmospheric Optics SB USSR Academy of Sciences. Some
aspects of remote control of dispersed air pollution using lidar systems are
also considered.

A rigorous theory for inverting the data of polarization lidar measure-
ments is discussed, along with its application to remote measurement of the
complex index of refraction of aerosol substances and the microstructure pa-
rameters of background aerosols using double-ended 1idar schemes. Solutions
to such important problems as the separation of contributions due to Rayleigh-
molecular and Mie-aerosol 1light scattering into the total backscatter are ob-
tained by using this theory. Lidar polarization measurements are shown to be
useful in this case. The efficiency of the methods suggested here for inter-
preting the lidar polarization measurements is illustrated by experimental
results on the investigation of the microphysical parameters of natural aero-
sols and artificial smokes using polarization nephelometers.

A brief discussion is also given of the inverse problems related to the
remote sensing of profiles of such atmospheric parameters as humidity, tem-
perature, wind velocity, and characteristics of atmospheric turbulence.

We are indebted to our co-workers at the Institute of Atmospheric Optics
for the fruitful collaboration that provided the results for this book, and
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we should 1ike to express our particular appreciation to B.S. Kostin, E.V.
Makienko, V.V. Veretennikov, and B.P. Ivanenko, all at the Laboratory of In-
verse Problems of Atmospheric Optics. We are also verv arateful to T.V.
Kuznetsova and N.P. Malincheva for typing the manuscript, and to all those
other people who helped us in preparing the graphic material.

Tomsk, March 1982 V.E. Zuev - |.E. Naats
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1. Introduction

The first papers devoted to atmospheric research by means of lasers appeared
just after their discovery. Two circumstances were decisive in this situation.
First, the development of new facilities for remotely measuring atmospheric
parameters was urgently needed. Secondly, lasers were found to be very promis-
ing for use in atmospheric research.

As a matter of fact, conventional methods for measuring atmospheric par-
ameters are as yet incapable of obtaining the bulk of specialized information
(over space and time) that is required for solving the very important problem
of long-range weather forecasting. In addition, the standard method being
used in the world-wide meteorological network cannot provide operative inform-
ation on atmospheric pollution produced by industrial facilities.

The main disadvantages of standard methods are caused by the inherently
low spatial and temporal resolutions they can offer, as well as by the limited
number of the parameters sounded (e.g., pressure, temperature, humidity, wind).
These methods are also characterized by relatively low heights of measurements
and by the low accuracy with which the humidity can be determined in the upper
troposphere and stratosphere.

The principal way to overcome these difficulties is to develop basically
new methods for remotely measuring the atmospheric parameters. Laser methods
occupy a special place among those methods and their rapid development began
as soon as the first lasers appeared [1.1].

The advantages of the laser methods for sensing the atmospheric parameters,
as compared with those of other remote methods (radar, acoustic, spectroscopy
of emitted radiation) are a result of the significant number of sufficiently
strong interactions accompanying the propagation of 1ight through the at-
mosphere [1.2]. The following effects should be mentioned among those inter-
actions: Rayleigh scattering by molecules; light scattering by aerosols;
spontaneous, stimulated, and resonance Raman effects; absorption of radiation
by molecules; Doppler and collisional broadening of molecular absorption



lines; Doppler frequency shifts due to scattering on moving inhomogeneities;
amplitude and phase fluctuations due to turbulent effects in the atmosphere;
as well as a series of nonlinear effects observed at certain powers and pulse
durations of the laser radiation. Laser methods provide, in principle, the
ability to study atmospheric processes in a real time scale. The information
on these processes enters the receiver in a "coded" form at the speed of
Tight. Therefore, if the methods for "decoding" it are known, i.e., one knows
the solution of the corresponding inverse problems, final results can be ob-
tained in a time interval determined by the capabilities of the digital data
acquisition system used.

In general, the pulse of backscattered radiation from the atmosphere con-
tains information on the profiles of the atmospheric parameters along the
sounding paths. The spatial resolution of sounding is determined by the sound-
ing pulse duration. Commonly used Tasers have pulse durations of about tens
of nanoseconds, which provide a spatial resolution of several meters if, and
only if, the digital data acquisition system being used possesses a corres-
ponding time response.

In recent years lasers have become available that deliver 103-104 pulses
per second with a pulse duration of about 10'8 s. The use of such lasers in
lidar facilities makes it possible, in principle, to obtain up to 104 pro-
files with a spatial resolution of about 1 m within one second.

Lidar methods can be expected to be widely used in the investigation and
monitoring of atmospheric aerosol and gaseous pollution from industrial
sources [1.2]. There is no doubt about their advantages in comparison with
the methods currently in use. They are especially advantageous for investi-
gating the dynamics of air-pollution diffusion.

Light scattering by aerosols is the phenomenon most widely used in lidar
studies of the atmosphere. It allows, first of all, the study of atmospheric
aerosol distribution. Here not only the distribution of aerosol mass concen-
tration and aerosol stratification are meant, but also the spatial behavior
of such microphysical parameters of atmospheric aerosols as size spectra,
complex index of refraction, and shape of particles [1.3,4].

Light scattering by aerosols can also be used for sounding atmospheric
humidity profiles as well as the profiles of other atmospheric molecular
constituents and for measuring wind speed and characteristics of atmospheric
turbulence [1.5,6]. In such measurements, aerosols serve as tracers for ob-
taining information on different atmospheric parameters.




The many promising prospects for using aerosol light scattering for lidar
sounding of atmospheric parameters and aerosols as well as the very impor-
tant role of aerosols in radiation transfer [1.7] and various physico-chemi-
cal processes in the atmosphere, including atmospheric pollution, were the
main reasons that extensive investigations on the development of various
Tidar methods have been undertaken in the Institute of Atmospheric Optics
SB USSR Academy of Sciences. This monograph summarizes the most important
results of the theoretical and experimental studies that have been carried
out during thé Tast decade at this Institute under the leadership of the
authors.

The book consists of five chapters. The second chapter is devoted to the
general theory of optical sounding of polydispersed aerosol systems. An ana-
lysis is presented of the basic functional relationships between optical
characteristics of dispersed media and their microphysical parameters. The
Fredholm integral equation of the first kind is considered as a basic mathe-
matical model. The possibilities of using this equation in problems of lidar
sounding of dispersed media are studied, taking into account the morphology
of aerosol particles.

The third chapter presents the theory of multifrequency lidar sounding
aimed at obtaining information about aerosol microphysical parameters. In
parallel with the theory, a justification of the inversion algorithm is given
for numerically interpreting the data of optical measurements. Some particu-
lar applications of this method for the solution of various practical prob-
lems are also included. The capabilities of this method are illustrated with
the results of three-frequency lidar sounding of microstructure parameters
of tropospheric and stratospheric aerosols.

The material discussed in the third chapter clearly demonstrates the high
efficiency of the multifrequency lidar technique suggested for studying aero-
sol microphysical parameters. There is no doubt that multifrequency lidar is
the most advantageous technique for optical sounding of aerosols at the
present time.

The fourth chapter presents a discussion of the inverse problem for poly-
dispersed scattering phase matrices. The method for determining simultan-
eously the refractive index of an aerosol substance and the microstructure
parameters of aerosol ensembles is also presented. Its possibilities are il-
tustrated using experimental data. Some methods for solving the inverse prob-
lems of bistatic lidar sounding are presented, and the generalized mathema-
tical scheme for inverting the data of sounding obtained with the use of com-
bined mono- and bistatic schemes is discussed. Such a combined sounding
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scheme allows separating the contributions due to Rayleigh molecular and
aerosol Mie scatterings and evaluating the aerosol microphysical parameters.
The material presented also demonstrates the promising possibilities of using
polarization characteristics of lidar returns for the remote determination
of aerosol chemical composition which is of great importance in air pollution
control. In addition, the polarization characteristics of lidar returns al-
Tow, in principle, the study of the shape and spatial orientation of aero-
sol particles.

The fifth chapter of the book presents a description of methods and results
on sensing different atmospheric parameters using 1ight scattering by aero-
sols. This chapter also presents the differential absorption lidar technique
and its applications to the sounding of the profiles of atmospheric water
vapor and ozone. The authors further describe the logarithmic derivative
method and discuss its application to the determination of such atmospheric
parameters as humidity, temperature, and aerosol characteristics. The ques-
tions on lidar sounding of wind speed and parameters of atmospheric turbu-
Tence are also briefly discussed.

The concluding remarks contain a summary of the material presented in
the monograph and a discussion of possible future developments of the lidar
method for sounding the atmospheric parameters based on the use of light
scattering by aerosols.

JE————



2. Theory of Optical Sensing in Aerosol Polydispersed Systems

Optical methods for investigating aerosol formations in the atmosphere are

in fact indirect methods and therefore their use in practice is, as a rule,
connected with the solution of systems of functional equations. These are,
first of all, the transfer equations for optical signals propagating through
the scattering atmosphere, and, secondly, the relationships between optical
characteristics and microphysical parameters of the aerosol systems. These
relations lead, as a rule, to integral equations of the first kind in studies
of microstructures of atmospheric aerosols by the methods of optical scund-
ing. The equations are one-dimensional if sphericity of the particles is
assumed.

In the general case of an arbitrary particle shape, the determination of
the microstructures of such polydispersed systems requires the solution of
multi-dimensional equations as well as the performance of very complicated
optical experiments. It is obvious that the solution of the inverse problems
of light scattering in the form of one-dimensional integration equations is
the simplest approximate method for determining the microstructures of real
dispersed media. This is why the first problem of optical sounding theory is
to assess the possibility of investigating the microstructures of atmospheric
aerosols using optical methods based on the solution of one-dimensional in-
verse problems of light scattering. A detailed analysis of this problem is
given in this chapter by an example of the determination of the microstruc-
ture of a polydispersed system of convex particles randomly oriented in an
illuminated volume.

The efficiency of the optical data inversion and, as a consequence, of
the optical methods depends also on the choice of a kernel in a correspond-
ing integral equation [2.1]. Only in the case of spherical particles can
such a choice easily be made, since in this case the working apparatus for
the solution of inverse problems is the Mie theory [2.2]. A detailed descrip-
tion of the theory and methods for determining the scattering efficiency




