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On Energy Dispersion in the Atmosphere

By Tu-cheng YEH
University of Chicago
(Manuscript received 27 April 1948)

Abstract

In this paper the energy pfopagation through dispersive waves in four atmospheric models is
investigated. These waves are characterized by an approximate geostrophic balance. Diagrams
showing the relation between group velocity, wave velocity, and wave length in the four types of
atmosphere are given. It is found that; |

1. In each of the four models there is always a range of wave length for which group velocity
is larger than wave velocity, so that new waves can be formed ahead of initial waves.

2. Both divergence or convergence and horizontal solenoids give rise to waves with negative
group velocity. But only in the presence of solenoids is there a range of wave length for which the
speed of propagation of energy upstream is greater than the wave speed in the same direction. This
means that only the horizontal solenoids make possible the formation of new waves upstream.

A graphical method is used to construct the distribution of phase resulting from an instanta-
neous point source disturbance. The phase curves are constructed for each of the four atmospheric
models. | |

Two applications of the theory are made. The formation of a new trough over North Anerica

- following an intense cyclogenesis in the Gulf of Alaska is interpreted as a result of dispersion from
a continuous point source of cyclonic relative vorticity into a previously straight westerly current.
Computations show a pressure rise next to the region of cyclogenesis downstream and a trough far-
ther to the east. -

The blocking action observed in the west-wind belt is explained by the dispersion of an initial
solitary wave. Calculations indicate that the life time of a “blocking action” is longer in high lati-
tudes than in low latitudes; this is in agreement with observation.

I. Introduction |

Margules (1905) first attempted to explain the origin of storm energy by conversion of
potential energy into kinetic ehergy in a closed system. He obtained wind velocities of the
correct order of magnitude to account for the kinetic energy of the storm from the release of
potential energy of two air masses of different temperature standing side by side in a confined
system. However, it is frequently observed that the kinetic energy and solenoidal energy in-
crease at the same time in a cyclone. An excellent example has been givén recently by Cress-
man (1948). A statistical investigation was made by Carson®, who found that an increase of
the intensity of the solenoid field in the middle troposphere accompanied deepening in about

80 percent of the cases investigated. There exists, in fact, a considerable amount of evidence

D ‘_Carson, J.E., 1948: The variation of horizontal solenoidal concentration in the middle and low trﬁo—

posphere during cyclone formation, Master’s thesis, University of Chicago.
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that strdngly suggests the necessity of rejecting or modifying the concept of ‘internal’ or
‘localized’ transformations of the energy of certain characteristic atmospheric circulations,
and that points to the need for investigating systematically the mechanisms of energy transfer
in the atmosphere.

One such mechanism, and the most apparent, is the advective transport of energy, with
the speed of the prevailing current. But energy can be transmitted without the help of advec-
tion. This paper is devoted to a study of the nonadvective transport of energy due to the
rapid adjustment between pressure field and velocity field, a process which is a consequence
mainly of the earth’s rotation.

Namias and Clapp (1944) has described the chain of events appearing downstream after
sudden formation of an intense low in the Gulf of Alaska. The subsequent changes in circula-
tion, which certainly cannot be explained by air-mass transport, provide an illustration of
the process of rapid adjustment between pressure and velocity fields; we shall refer to the en-
ergy transmission resulting from this process as a dispersive transfer of energy.

The importance of dispersive processes in the atmosphere has recently been brought to
the attention of meteorologists by Rossby (1945). Earlier (Rossby, 1936) he had advanced
the hypothesis that the horizontal pressure gradients observed in current systems of the at-
mosphere and the ocean to a large extent must be interpreted as reactions to the Coriolis
forces impressed upon these systems by the rotation of the earth. He then showed (Rossby,
1937, 1938) that any sudden local addition of momentum to a rotating fluid body will initiate
some type of inertia oscillation of that body. A small part of the initial energy goes into iner-
tia oscillations, but the final equilibrium configuration set up between the pressure gradient
and the current system is established in only a few pendulum hours. Part of the initial energy
also goes into outlying portions of the fluid through dispersion by gravitational waves, as
was demonstrated later by Cahn (1945), who gave a complete mathematical analysis of the
problem. Through Rossby’s work it is clear that a velocity field can result in a pressure field
which in turn affects the velocity field. This is the physical mechanism of the dispersion pro-
cess in the atmosphere.

Generally speaking, in a dispersive process the speed of propagation of energy is differ-
ent from that of the prevailing current. The energy is propagated with the group velocity
which, in the one-dimensional case, can be expressed in terms of phase velocity or wave
length. A simple synoptic manifestation of dispersion is the common observation thaf a
downstream pressure rise (or fall) usually follows an upstream pressure fall (or rise).

In this paper we shall investigate the role of dispersion in certain observed phenomena in
the atmosphere. Before entering into a detailed discussion the following point should be not-
ed. Dispersion arises from unbalanced motion. Once equilibrium is reached dispersion will
cease. As pointed out above, dispersion essentially arises from the tendency for mutual ad-
justments between the pressure and velocity fields, but when these two fields are in balance

dispersion ceases.
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I'. Wave length, phase velocity, and group velocity in different atmospheric models
The close relation between energy propagation and group velocity may be explained as

follows. By group velocity we mean the velocity of a group of waves as a whole. The individ-

ual waves which compose this group may advance through it or may be left behind it,, while

the place of the individual wave in the group is occupied in succession by other waves. If we
assume that the energy of wave motion is concentrated at the crests of the wave groups, the
velocity of propagation of energy will certainly be associated with the group velocity, Group
velocity, phase velocity, and wave length are related by the well-known formula

G=C— LdC/dL, - (1)
where G is the group velocity, C the phase velocity, and L the wave length.

In the atmosphere and the ocean almost all forrns of wave motion are dispersive, i. e.,
the phase velocity of individual waves depends on their wave length The speed of energy
Propagation in such systems is usually different from that of the individual waves. Whether
new waves will be formed ahead or in the rear of an initial wave train, or whether an increas-
ingly long trailing wave train may develop, depends on the speed of propagation of energy.
Since the energy propagatlon depends on group velocu:y Whlch in turn is determmed by wave
length and phase velocity, a discussion of these three elements in dlfferent atmosphenc mod-
els is desirable.

We shall consider in turn four atmospheric models ;

Model A; A uniform, incompressible atmosphere of infinite depth, or of finite depth
with a rigid cover.

Model B: A uniform, incompressible atmosphere with a free surface.,

Model C; An incompressible atmosphere with a: uniform north-south density: gradtent
and a rigid cover. | ' |

Model .D: An incompressible atmosphere with a uniform north-south density gradient
and a free surface. '

In each of these models there is a basic current with uniform and constant velocity U,

Model A. — The first model is the simplest and has been studied by Rossby et al.
(1939) and later by Haurwitz (1940). In this atmosphere divergence and convergence are ab-

sent, and for small one-dimensional motion the vort1c1ty equation may be written as follows .

EF F

s TUSR+R=0,

where v is the perturbation velocity transverse to the x-direction, and — ﬁ represents the rate

of change northward of the vertical component of the earth s angular veloc1ty Assumlng a

solution of the form &“=— ’ the frequency equation from (ZA) is v/k =U — ﬂ/k , where v is

the frequency and % the wave number, or

C=U-pL’, | (3A)
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where C = v/k is the phase velocity and L = 1/ the wave length®. The group velocity, from
(1), is then
G =U 4 BL:. (4A)
In this atmosphere the group velocity G is always positive and larger than the phase velocity
C. It has a minimum value U and increases with wave length (Figure 1). Since G is always
positive and larger than U, the energy is always propagated downstream with a speed larger
than C. In this system new waves will be formed ahead of initial waves.
Model B. —Removing the rigid cover from the first model we obtain the second type of
atmosphere. In this model divergence and convergence are possible. The vorticity equation

will then take the form

d{f+¢
dt( D

where D is the depth of the atmosphere, ¢ the relative vorticity , and f the Coriolis parameter.

|=o,

Assuming the north-south motion to be geostrophic® and perturbations to be small, the vor-

ticity equation may be written in the expanded form

ID L L PD D
ar2&+U"3_.r_3'+ﬁar A > = 0 (2B)

where A* = f*/gD,, D, is the undisturbed depth, and D’ the deformation of the free surface.

The wave velocity is

U — BL?
and the group velocity may be obtained by substituting (3B) in (1), the result being
2 2r2
G=U—|—ﬂL +2/1LC. (4B)

1 + AL
The graphs for C and G are shown in F igure 2. The solid curve is the wave velocity C , ob-
tained from (3B); the dashed curve is the group velocity G , from (4B). Both C and G have
the same lower limit — 8/4?, corresponding to infinite wave length. Thus the phase velocity
C decreases with increasing wave length asymptotically to the limiting value — 8/4%, not as in
the nondivergent case where it decreases without limit. At the wave length L, = vU/B cor-

responding to zero phase velocity,

2U
14 ALY

The group velocity G first increases with wave length until the latter reaches a value where
d*C/dL? = 0; at this point

G=0G,=

@ For simplicity in notation we shall depart from the usual convention of defining the wave length as
2n/k. Thus L , as used throughout this paper, is equal to the ‘conventional’ wave length divided by 2x .

@ The geostrophic assumption results simply in the omission of long gravitational waves, in which we
are not interested (Charney, 1947). The approximation of using the geostrophic relation after the vorticity e-
quation has been written down does not mean that acceleration terms are neglected. The analysis of phase and

group velocity in model B has been presented in Prof. Rossby’s lectures and is reproduced here with his kind -
permission.
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G = Gn.=—(9U + A%,

C=

mlm oo |1

16 (83U — BA7%). ;

After this wave length is reached, the group velocity decreases first rapidly and then asymp-
totically to the value — B/A%. o

A striking difference between the nondivergent case and the present one in which con-
vergence and divergence appear, is that in the latter the group veloqity can be negative. This
means that in divergent motion énergy can be propagated upstream. Specific examples of this
process will be given later. From Figure 2 it is seen that the group velocity is always larger
than the phase velocity. Hence new waves may be formed downstream ahead of the initial
disturbance, but not upstream in the rear of the initial disturbance, though energy can be:
propagated upstream. Since G = C for L — oo, energy will be propagated with the speed of
these long retrogressive waves which may therefore retrograde without changing in intensi-
ty. ' ‘ o LT

The particular interest of this model lies in the second group of waves, long and retro-
gressive with negative group velocity. The llmmng value of this negative phase or group ve-
locity is — B/A?, as already noted. These very long waves are nondlsperswe waves and mqve'
with practically constant relative vort1c1ty The change of vorticity due to latitude is balanced’
by the effect of divergence, as is easily seen from (2B). For very long wave length the first
two terms in (2B) may be neglected since they are inversely proportional to the square or
cube of wave length. Then the remaining two terms—expressing respectively, the vorticity
change produced by latitude variation .and by diverge_nce?-—must balance each other;

DoeprZ o, | |
_ R
giving a phase velomty equal to — ﬁ/;lz Takmg _r_ep:esezitative values in middle l'atitudqs,,wg
find that — 8/A? is of the order of 100 m s™'. However, this unrealistically large value ¢an
never occur in the atmosphere due to the fact that the wave length is limited by the, circum-
ference of the earth. @ _ - - | .
Model C ®—-To 1nvestlgate the effect of honzontal solenmds in purely hqnzontal mo-

tion we may imagine an infinitely deep atmosphere which has uniform density vertically and a,

. uniform north-south density gradient. In this model convergence and divergence are absent, .

e
® The reduction of the unrealistically large value of the mximuﬁ negative group velocity was suggest-
ed by J. Charney. ., _ | ,

@ It should be noted that the two following atmospherical models, C and D, are not selfconsistent. In
these two models the presence of horizontal stratification implies that the basic current U must increase with
height, so the assumption of constant U is not justified. However, in the present paper we are concerned only
with one level. As long as vertical motion does not appear (in model C) there may not be interference be-

tween upper and lower layers and thus it may be justified to deal with one level only; but in model D, vertical

motion will be present and the analysis of this model is therefore only an approximation.
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and the vorticity equation is

zﬁv ___Gadp  ddp _
+U“+& &@+@&“m

a being the specific volume, p the pressure, and n the number of solenoids per unit area. For

the purpose of evaluating = it is reasonable to substitute the geostrophic wind relation®; one

then obtains

._—-+U +ﬂv‘“f

dq &
d  a/’

where ¢ = In @. Since the motion is incompressible and horizontal we have

_ % dq q _
dt | +Ua2;+vy 0.

Writing s =— dg/dy for the undisturbed value of the horizontal stratification, and assuming

perturbations independent of y , the ,vorticity equation becomes

¢ v Fv oy d _—
= T U aﬁa:"’U : + (ﬂ+fs) > TP = 0, 20
Assuming a solutlon of the form ¢“*™ the wave velocity C = u/k is found to be
S C=U=Zol’A £ D), . (3C)

where o = B+ fs,l'=Q — Lt/LHT , and L, =2 v/ fsU /o . This is exactly the same result
as derived by Jaw (1946) usmg a dlfferent approach. The group velocity corresponding to
@30 is | .

G=U+Lara+in. ' (4C)

~ Equation (3C) reveals immediately one important aspect of this model, i. e., there ex-
ists a criticél wave length L, below which C becomes complex. This implies the existence of
unstable waves in this type of atmosphere. The instability increases with sand U. (It is easy
to see that the instability increases with s. It increases with U because the isobaric slope is
proportional to U and so also is the number of horizontal solenoids per unit area. ) These un-
stable waves are relatively short and progressive. |
" There are two solutions for C corresponding to the two signs in the parenthesis of (3C).
For L<< L. , the positive sign represents a damped wave system, while the negative sign rep-
resents unstable waves. ‘Whether we choose the positive or negative sign (or both)is depen-
dent on the type of boundary or initial conditions imposed on the disturbance. The wave sys-
tem may therefore be unstable for certain types of disturbances and damped for other types.
When L > L, the waves are neutral, for either choice of sign in (3C).
Damped or unstable waves . For wave lengths smaller than the critical one the distur-
bance will be either damped or unstable. In-either case Cis a complex number. The wave ve-
locity will be the real part of (3C)

C = U———%—oLZ for L<L.,

@ See footnote of @ in Page 6.

~— 7 ATEARL{V

[ Tt
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and the group velocity is
G=U+ ol’, for L<L.

Thus G is always létger than C for this range of wave length. At the critical wave length,
G—>GC.=UA+ 2fs/0), for L—~L,.

Neutral waves. When the wave leﬁgth is larger than the critical value, we may take ei-
ther the positive sign or the negative sign or both in (3C), depending on the nature of the
disturbance. For simplicity we will consider the first two possibillities only.

Taking the positive sign in (3C), it is readilyl seen that

C—>C.=UQ —2fs/a), i for L—L,;
and C —— oo , for L - co. Differentiating (3C) with respect to L we have (for L > L, )

;—*—% =— -’%—&,‘L(z‘ +2+0), '.

which approaches negative infinity as L — L, » since/— 0. The relation between group velo-

city and wave length is given by (4C) with plus sign. At the stationary wave length L, ,

which can be seen to be equal to vU/Z, - .

GG, =280/(8 — fs), for L—1L, |
Also, G —>ocoas L+ L,or L—+ co. Hence, the group velocity ;)vill first decrease with increas-
ing wave length until the minimum value Gu, = U (1 + 8f5/0) is reached » and then increases
without limit. The curves for wave velocity and group velocity are shown in Figure 4, The
solid curve represents wave velocity and the dashed curve group velocity; both curves have a
distinct discontinuity at L = L. | |

Now let us consider the negative sign in the parenthesis of (3C), for thecase L>L, . It
is réadily seen that | \
- C—C.=UQ —2fs/0), for L—~1L,

C—>C.=UQ— fs/o), for L-» o0}

Further, dC/dL — oo aé L~ L. . Thus C increases very rdpidly Lfrbm:C;‘ and ;chen asymptoti-

cally to C.. as wave length further increases (Figure 3). - R

' The expression for group velocity is given by (4C) with the minus sign, from which,

C—>G.=U0 — fs/0), for L -» oo,

and G-—+—ooasL— L. From the curve for C'it is seen that C increases first very rapidly

and then asymptotically to G.. . The curves for C and G are shown in Figure 3, solid line for

C and dashed line for G. Both curves are discontinuous at L = L, . One interesting point is-

that no stationary wave length exists for this case; all waves are progressive. Since G— C as

L increases, long individual waves can travel downstream without changing Intensity.

For the first type of disturbance—positiiré sign in (3C), damped waves for L <L, —ener-
gy can be propagated only downstream. Since grohup' velocity is lérger than wave velbcit); i;iew'
waves can be formed ahead of initial wave trains. For the second type of disturbance—nega-
tive sign in (3C), unstable waves for I < L, —energy can be propagated in both directions.

Since the speed of energy propagation in either direction can be larger in magnitude than the
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wave speed, new waves may be formed both downstream and upstream.
Model D — We come now to the fourth and last model, in which both horizontal
solenoids and divergence or convergence are operating. The vorticity equation in this case

may be written:

d _ f+¢dD

For small motions we have

?—v-+U o+ -4 = =0

In writing the above equation the geostrophic-wind relation was used in evaluating the diver-
gence and solenoid terms of the vorticity equation. ®

The geostrophic-wind equation for the north-south velocity component is

_ &
= Z 5
and the condmon for 1ncompress1b111ty is
| i ﬂ )
+U ax
Through elimination of D' and g we have
;;,+2Ua'v+Uz?-£—/lz@+ﬂUazz+bﬂ-—*‘0, . 2D)

where A* = f*/gDyand b = 8 + fs — AU . Assuming a disturbance of wave form &“~* the
phase speed C is found to be

U — $L:b % la)
1+ &2 7 3D
where /== (1 — Lt/L*)'?, a a= (&' + 4:ﬂ/12U)”2 yand L, =2 v fsU /ais the critical wave length

below which C becomes complex. It can be verlfled that (3D) reduces to Equation (3B) by

C=

putting s = 0 and goes to (30) by puttmg A2 = 0 (or gDo — o). The group veloc1ty corre-
sponding to (3D) is |

U + Lz(b + l“a) + 2/1"L2C

.Gh—'. 1 + A2 | . | (4D)

Damped or unstable waves. The wave velocity and group velocity have a discontinuity at

L = L, as in model C. When L << L. we may take the wave velocity to be the real part of
(3D) as before:

U — 2L
=T e

It decreases with increase of L . 'For the group velocity we have, from (3D),
U + 251 + 2R LC

G = 1+ AL?

@ -, See fotnote of (D in Page 6.
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This is always positive and larger than C .
Neutral waves . For L > L. we take first the case of positive sign in (3D). As L increas-

es, C will first decrease very rapidly and then asymptotically to its limiting negative value;

thus

-2
The group velocity (plus sign in (4D)) approaches posmve infinity for L —- L., and decreases
very sharply to a minimum value at approximately L = 0. 9L, . It increases again from this
wave length to a maximum value at ab'proicimately L = 2.3L, and then decreases to its
asymptotic value G = C,, for L = oo . Figure 5 shows the curves for C and G in relation to
I | | . )
Taking the negatlve 31gn in (3D) » we can see that dC/dL — oo aa L — L, and that

C—+C.=— —1-,1-2(b—a), for Lo,

2 |
Thus, C first increases rapidly and asymptotically to the limiting value C.. . The group yelo-
city (minus sign in (4D)) approaches negative infinity as L = L. and grows very rapidly to its
maximum value (which is only very slightly higher than C.. ) and then gradually falls off to a

limiting value G, = Cw as L — oo (Figure 6).

| in the first case of this model—posntlve sign in (3D), damped waves for L < L. —new
waves can be formed both upstream and downstream. Since G — C > 0 as L increases, long
progressive waves can travel without changing intensity. In the second case—negative sign in
(3D), unstable waves for L << L. —new waves can be formed only downstream. In this case
energy can be propagated upstream, but only for very long waves can energy travel with the

individual waves, which then will not change in intensity.

S
™
= S 5
g - 4
o = ..
5 % . ewTT S -
= > : . l‘" ‘.‘\ G
o §f\ 2- t',’ \\
+ AT | I oo
5 .Wa\re length(Unit=L,) T Wave Iength(‘)nit=L.)
A j f . | L= Ot Y Y g
> , . 4 5 5> ' é .4 N\
£ - R S e | & AN
3 > >
4 | E et
o,
g ® 3 .
O g s, \
3 5
QO e 18 Cmin =Coo— = — — = e e - = —— — ——

Flgure 1 Grpup velocity (broken line) and phase Figure 2 Groug_(velocity and phase velocity as a
velocity (sohd lme) asa function of wave length in function of wave length in model B. Both curves are

model A, i limited by the honzontal asymptotxc hne G = G

It is 1nterestmg to compare Flgures 1, 2, 4, and 5. In Flgure 1 there 1S only branch of

waves, w1th only posmve group veloc1ty; the phase veloc1ty decreases w1thout llmlt whlle
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Figure 3 Group velocity and phase velocity as a  Figure 4 Group velocity and phase velocity as a
function of wave length in model C when the function of wave length in model C when the waves

waves with wave length below the critical value L,  with wave length below the critical value L, are

are unstable (negative sign in Equation (3C)). - damped (possitive sign in Equation (3C)).
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Figure 5§ Group velocity and phase velocity as a Figure 6 Group velocity and phase velocity as a
function of wave length in model D when the function of wave length in model D when the waves
waves with wave length below the critical value L,  with wave length below the critical value L. are un-
are damped (positive sign in Equation. (3D)).  stable (negative sign in Equation (3D)).

Both curves are limited by the honzontal asymp-

totic line Go. = G- |

~the group velocity increases without limit as wave length increases. The effect of divergence
(Figure 2) is to add another branch of waves and to give rise to waves with negative group

velocity. In the presence of divergence the magnitudes of the group and phase velocity are

limited: - - |

Comparlng Fi igures 1 and 4 we see that the presence of solenoids also gives rise to anoth-
er branch of waves, but the group velocnty of thlS branch (frorn G to Gain) is also posmve
The combmed effect of dxvergence and solenmds is clearly shown in Fi igure 5. Both G,,,,, of
Fi igure 2 and Guin of Figure 4 appear in Flgure 5, as well as the effect of dlvergence in hrmtmg
the magmtude of the ‘group and phase veloc1ty ( C— G and G —- G, as, L — oo )

We may call the branch of waves which appears in each of the four models the
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‘barotropic-nondivergent’ branch, the branch of waves which appears only in the presence
of divergence the ‘divergent’ branch, and the branch of waves which appears only in the
presence of solenoids the ‘solenoidal’ 'bra.nch. ‘With this terminology® we can see that in
Figure 1 we have only the barotropic-nondivergent branch. In Figure 2 the waves with wave
| length smaller than L,,, (where G = Gp., ) belong to the barotropic-nondivergent branch,
while for wave lengths larger than L,,, the waves belong to the divergent branch. In Figuré.4
the waves with wave length between L. and L., (where G = Gy ) are of the solen_bidal
branch; all other wave lengths in this model may be considered to belong to the barotropic
branch. In Figure 5 the solenoidal branch is between the wave length L, and Ly, , the diver-
gent branch corresponds to wave length larger than L.., and the barotropic-nondivergent
branch consists of waves of wave length smaller than L, and between Ly, and Ly,

If we consider Figures 3 and 6, we cannot separate the divergent from: the solenoidal
branch. In these two figures, only waves with wave length smaller than L. are of barotropic-
riondivergent character. | | o

From the foregoing discussion we may note that the divergence affects maihly the long
waves, that the solenoids affect mainly the waves of moderate wave length, .and that the
very short waves are not appreciably affected by either of these factors. |

The foregoing analysis for models C and D was based on the assumption that the tem-
perature gradient is not very strong so that fs < 8. For a temperature gradient strong enough
so that fs > B the analysis must be modified somewhat.

Let us discuss model C first. The wave velocity for this model, when the wave length is
smaller than the critical one, is - ﬁ R

C=U-— o}, for L<L,
where 0 = 8 4 fs. The stationary wave length for this range is

VeU/(B + F9).

This is easily verified to be larger -than-,‘. equal to, or smaller than the critical wave length L,

according as fsis smaller than, equal to, or larger than B . Hence there will not be a station-
ary wave in the region L << L. if fs << 8. In case fs > B there will then exist two stationary
waves of wave lengths L', = V2U /(B + f5) and L, = +U/B respectively in the regions L <
Liand L>L,. If fs > B, it can be seen that both stationary waves will occur in Figure 4

while only the statxonary wave of wave length L', will occur in Flgure 3.

By differentiating the expressmn for L, with respect to fs we obtain a maxlmum value of

L. for fs = 8. This maximum value of L, is equal to vU/B. Hence the value of L, will always

stay between L = V4 2U / B+ 7_) and L, = /m The three wave lengths, namely, L’ "y
L., and L, will coincide when fs = 8.

® The terms are not rigorous because the effect of divergence or solenoids does show up in the
barotropic-nondivergent branch of waves of models C and D.



