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OSCILLATORY
MOTION

The study of vibration is concerned with the oscillatory motions of bodies
and the forces associated with them. All bodies possessing mass and
elasticity are capable of vibration. Thus most engineering machines and
structures experience vibration to some degree, and their design generally
requires consideration of their oscillatory behavior.

Oscillatory systems can be broadly characterized as linear or nonlm-
ear. For linear systems the principle of superposition holds, and the
mathematical techniques available for their treatment are well-developed.
In contrast, techniques for the analysis of nonlinear systems are less well
known, and difficult to apply. However, some knowledge of nonlinear
systems is desirable, since all systems tend to become nonlinear with
increasing amplitude of oscillation.

There are two general classes of vibrations—free and forced. Free
vibration takes place when a system oscillates under the action of forces
inherent in the system itself, and when external impressed forces are
absent. The system uader free vibration will vibrate at one or more of its
natural frequencies, which are properties of the dynamical system estab-
lished by its mass and stiffness distribution.

Vibration that takes place under the excitation of cxternal forces is
called forced vibration. When the excitation is oscillatory, the system is
forced to vibrate at the excitation frequency. If the frequency of excitation
coincides with one of the natural frequencies of the system, a condition of
resonance is encountered, and dangerously large oscillations may result.



2 Oscillatory Motion

The failure of major structures, such as bridges, buildings, or airplane
wings, is an awesome possibility under resonance. Thus, the calculation of
the natural frequencies is of major importance in the study of vibrations.

Vibrating systems are all subject to damping to some degree because
energy is dissipated by friction and other resistances. If the damping is
small, it has very little influence on the natural frequencies of the system,
and hence the calculations for the natural frequencies are generally made
on the basis of no damping. On the other hand, damping is of great
importance in limiting the amplitude of oscillation at resonance.

The number of independent coordinates required to describe the
motion of a system is called the degrees of freedom of the system. Thus a
free particle undergoing general motion in space will have three degrees of
freedom, while a rigid body will have six degrees of freedom, i.e., three
components of position and three angles defining its orientation. Further-
more, a continuous elastic body will require an infinite number of coordi-
nates (three for each point on the body) to describe its motion; hence its
degrees of freedom must be infinite. However, in many cases, parts of such
bodies may be assumed to be rigid, and the system may be considered to
be dynamically equivalent to one having finite degrees of freedom. In fact,
a surprisingly large number of vibration problems can be treated with
sufficient accuracy by reducing the system to one having a single degree of
freedom.

1.1 HARMONIC MOTION

Oscillatory motion may repeat itself regularly, as in the balance wheel of a
watch, or display considerable irregularity, as in earthquakes. When the
motion is repeated in equal intervals of time 7, it is called periodic motion.
The repetition time 7 is called the period of the oscillation, and its
reciprocal, f = 1/7, is called the frequency. If the motion is designated by
e ine fuiviion 4{ij, ien any periodic motion must sausly the reiation-
ship x(1) = x(t + 7). ’

The simplest form of periodic motion is harmonic motion. It can be
demionstrated by 2 mass suspended from a light spring, as shown in
Fig. 1.1-1. If the mass is displaced from its rest position and released, it will
oscillate up and down. By placing a light source on the oscillating mass, its
motion can be recorded on a light-sensitive film strip which is made to
move past it at constant speed.

The motion recorded on the film strip can be expressed by the
equation -

X = A sin 2'”; (1.1-1)
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Figwre 1.1-1. Recording of harmonic motion.

where A4 is the amplitude of oscillation, measured from the equilibrium
position of the mass, and 7 is the period. The niotion is repeated when
=1 .
Harmonic motion is often represented as the projection on a straight
line of a point that is moving on a circle at constant speed, as shown in
Fig. 1.1-2. With the angular speed of the line op designated by w, the
displacement x can be written as

x = Asinwf _ (1.1-2)

The quantity w is generally measured in radians per second, and is referred
to as the circular frequency. Since the motion repeats itself in 2# radians,
we have the relationship :

w = 3;’-'- = 2nf : (1.1-3)

where 7 and f are the period and frequency of the harmonic motion,
usually measured in seconds and cycles per second respectively.

_ The velocity and acceleration of harmonic motion can be simply
determined by differentiation of Eq. (1.1-2). Using the dot notation for the
derivative, we obtain

X = wA cos Wt = wA sin(wt + -’21) (1.1-9)
= —w?A sin wt = WA sin(wt + 7) (1.1-5)

A sin w!

wt

Figure 1.1-2. Harmonic motion as projection of a point moving on a circle.
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Figure 1.1-3. In harmonic motion, the velocity and acceleration lead the displacement by
n/2 and =.

Thus the velocity and acceleration are also harmonic with the same
frequency of oscillation, but lead the displacement by #/2 and = radians
respectively. Figure 1.1-3 shows both the time variation and the vector
phase relationship between the displacement, velocity, and acceleration in

harmonic motion.
Examination of Egs. (1.1-2) and (1.1-5) reveals that

X = —wix (1.1-6)

so that in harmonic motion the acceleration is proportional to the displace-
ment and is directed towards the origin. Since Newton’s second law of
motion states that the acceleration is proportional to the force, harmonic
motion can be expected for systems with linear springs with force varying
as kx.

Exponential Form. The trigonometric functions of sine and cosine
are related to the exponential function by Euler’s equation
e® = cos @ + isind (1.1-7)

A vector of amplitude A rotating at constant angular speed w can be
represented as a complex guantity z in the Argand diagram as shown in
Fig. 1.1-4.
z = Ae'
= 4 cos wt + i4 sin wt (1.1-8)
= x + iy

The quantity z 1s referred to as the complex sinusoid with x and y as the
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Figure 1.14. Figure 1.1-5, Vector z and its conjugate z*.

real and imaginary components. The quantity z = Ae’’ also satisfies the
differential equation (1.1-6) for harmonic motion.

Figure 1.1-5 shows z and its conjugate z* = de ™"’ which is rotating
in the negative direction with angular speed —w. It is evident from this
diagram that the real component x is expressible in terms of z and z* by
the equation

=dz+2%)= A cos wf = Rede'™ (1.1-9)

where Re stands for the real part of the quantity z. We will find that the
exponential form of the harmonic motion often offers mathematical

advantages.
Some of the rules of exponential operations between z, = 4,e” and

z, = A,e® are:

Multiplication 2,23 = A, A,e'®*%
A .
Division L. (_ji)e:w.oz)
72 2 (1.1-10)
Powers 2" = A%

zl/n =A l/.neiﬂ/n

1.2 PERIODIC MOTION

It is quite common for vibrations of several different frequencic: to exist
simultaneously. For example, the vibration of a violin string is composed
of the fundamental frequency f and all its harmonics 2f, 3f, etc. Another
example is the free vibration of a multidegree-of-freedom system, to which
the vibrations at each natural frequency contribute. Such vibrations result
in a complex waveform which is repeated periodically as shown in
Fig. 1.2-1.
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x(t)

e

Figure 1.2-1. Periodic motion of period 7.

The French mathematician J. Fourier (1768-1830) showed that any
periodic motion can be represented by a series of sines and cosines which
are harmonically related. If x(¢) is a pertodic functlon of the period 7, it is
represented by the Fourier series

a,
x(t)=—2—+a. €os @,/ + a,COo8 Wyt + - - -

. . (1.2-1)
+b,sinwit + bysinwyt + - - -
where
_ 27
@ = T
w, = Nw,

To determine the coefficients a, and b,, we multiply both sides of
Eq. (1.2-1) by cos w, ! or sin w,¢ and integrate each term over the period 7.
- Recognizing the foliowing relations,

f?/2 cos w_fcos w_t dt = I 0 - lf m #n
J_1s2 " (7/4 Um=n
/2 . . _ [0 ifm=+n
f- T/Zsm w,t sin o, ¢t dt = {,;7/2 Fm = n (1.2-2)

T/2 ' i
f/ cosw,,tsinwmtdt={0 if m ¥ n
—r/2 0 ifm=n

all terms except one on the right side of the equation will be zero, and we

obtain the result
T/2
a, = 2 x(t) cos w,t dt
Td2/2
5 ) (1.2-3)
b, == g x(1) sin w, ¢t dt
TJ—r/2
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The Fourier series can also be represented in terms of the exponential
function. Substituting

cos w,t = 3(e™' + e7i")
$in w,t = ~§(e™ — e~ ™)

in Eq. (1.2-1), we obtain

o0
x(t) = _“23 + > [%(a" ~ ib,)e' " + Ma, + ibn)e“"‘*’]

n=
_ (2 + § iyt + o* —iw,! (] 2.4)
=7t 2 [c,e cre '] | .
= 2 Cneiw,,t
ne= — o0
where
%0 = 3% (12-5)
¢, =3(a, — ib,)
Substituting for a, and b, from Eq. (1.2-3), we find ¢, to be
/2
= -]-f / x(1)(cos w,t — i sin w,1) dt
TS ~r/2
(1.2-6)

2 :
=1 x(t)e ' dt
T —-7/2
Some computational effort can be minimized when the function x(r)
is recognizable in terms of the even and odd functions

x(t) = E(1) + Q(t) (1.2-7)

An even function E(¢) is symmetric about the origin so that E(f) = E(—1),
i.e., cos wtr = cos(—wi). An odd function satisfies the relationship O(r) =

~ O(— ¥, ie, sin wt = — sin(—w¢). The following integrals are then help-
ful: .

/2
f / E(f)sinw,tdi =0
/2

-7

/2 (1.2-8)
f O(t) cos w,tdt =0
2 ]

_1-/

When the coefficients of the Fourier series are plotted against
frequency w,, the result is a series of discrete lines called the Fourier

spectrum. Generally plotted are the absolute value [2c,| ==\/a3 + b? and
the phase ¢, = tan~' b, /a,, an example of which is shown in Fig. 1.2-2.
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Figure 1.2-2. Fourier spectrum for pulses shown in Prob. 1-16, £ = 1/3,

With the aid of the digital computer, harmonic analysis today is
efficiently carried out. A computer algorithm known as the Fast Fourier
Transform® (FFT) is commonly used to minimize the computation time.

1.3 VIBRATION TERMINOLOGY

Certain terminologies used in vibration need to be represented here. The
simplest of these are the peak value and the average value.

The peak value will generally indicate the maximum stress which the
vibrating part is undergoing. It also places a limitation on the “rattle
space” requirement.

The average value indicates a steady or static value somewhat like
the DC level of an electrical current. It can be found by the time integral

I B
%= lim 7fo x(t) dt (1.3-1)

T

For example, the average value for a complete cycle of a sine wave,
A sin ¢, is zero; whereas its average value for a half-cycle is

. L 24
£=2 [Tsinca =22 = 0637 A
T Jg m
It is evident that this is also the average value of the rectified sine wave
shown in Fig. 1.3-1.

*See J. S. Bendat & A. G. Piersol, “Random Data™ (New York: John Wiley & Sons,
1971), p. 305-305.
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x(1)

____________

Figure 1.3-1, Average value of a rectified sine wave,

The square of the displacement generally is associated with the
energy of the vibration for which the mean square value is a measure. The
mean square value of a time function x(?) is found from the average of the
squared values, integrated over some time interval T:

2 a i —— 2 -
x }1_1.1:0 T.l(; x¥(t) dt (1.3-2)
For eXarnple, if x(#) = A sin Wy, its mean square value is
5 . A* 71 1
2 = 2 { = - = g2
x Tlgx; .Tfo 2(l cos 2wr) dt 2A

The root mean square (rms) value is the square root of the mean
square value. From the previous example, the rms of the sine wave of
amplitude 4 is A/ V2 = 0.707 A. Vibrations are commonly measured by
rms meters.

Decibel: The decibel is a unit of measurement that is frequently
used in vibration measurements. It is defined in terms of a power ratio.

Db = 10 log,o(%)
(1.3-3)
= 10 log (ﬁ)z
0\ X,
The second equation results from the fact that power is proportional to the

square of the amplitude or voltage. The decibel is often expressed in terms
of the first power of amplitude or voltage as

Db = 20 1og,o(ﬂ) (1.3-4)
X2
Thus an amplifier with a voltage gain of 5 has a decibel gain of
20 log,;(5) = +14

Because the decibel is a logarithmic unit, it compresses or expands the
scale.



10 Oscillatory Motion

Octave: When the upper limit of a frequency range is twice its
lower limit, the frequency span is said to be an octave. For example, each
of the frequency bands given below represents an octave band.

Band Frequency rangé (Hz) Frequency Bandwidth
1 10-20 10
2 20-40 20
3 40-80 40
4 200-400 200
PROBLEMS

1-1 A harmonic motion has an amplitude of 0.20 cm and a period of 0.15 sec.
Determine the maximum velocity and acceleration.

1-2  An accelerometer indicates that a structure is vibrating harmonically at 82
cps with a maximum acceleration of 50 g. Determine the amplitude of
vibration.

1-3 A harmonic motion has a frequency of 10 cps and its maximum velocity is
4.57 m/sec. Determine its amplitude, its period, and its maximum accelera-
tion.

1-4  Find the sum of two harmonic motions of equal amplitude but of slightly
different frequencies. Discuss the beating phenomena that result from this

sum.
1-5  Express the complex vector 4 + 3i in the exponential form Ae®.

1-6  Add two complex vectors (2 + 3i) and (4 — /) expressing the result as 4 Z 8.
1-7  Show that the multiplication of a vector z = Ae™’ by / rotates it by 90°.

1-8 Determine the sum of two vectors Se”/¢ and 4¢™/? and find the angle
:n: the resultant and the first vector

Yoztsiians
STUACED WL

1-9  Determine the Fourier series for the rectangular wave shown in Fig. P1-9.

Figure P1-9.



